Volltext-Downloads (blau) und Frontdoor-Views (grau)

A Survey on Hate Speech Detection using Natural Language Processing

  • This paper presents a survey on hate speech detection. Given the steadily growing body of social media content, the amount of online hate speech is also increasing. Due to the massive scale of the web, methods that automatically detect hate speech are required. Our survey describes key areas that have been explored to automatically recognize these types of utterances using natural language processing. We also discuss limits of those approaches.

Export metadata

Additional Services

Share in Twitter Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Anna Schmidt, Michael WiegandGND
URN:urn:nbn:de:bsz:mh39-84266
URL:http://www.aclweb.org/anthology/W/W17/#1100
ISBN:978-1-945626-42-5
Parent Title (English):Proceedings of the Fifth International Workshop on Natural Language Processing for Social Media, April 3, 2017, Valencia, Spain
Publisher:Association for Computational Linguistics
Place of publication:Stroudsburg, PA
Document Type:Conference Proceeding
Language:English
Year of first Publication:2017
Date of Publication (online):2019/01/17
Publicationstate:Veröffentlichungsversion
Reviewstate:Peer-Review
Tag:Sentimentanalyse
GND Keyword:Computerlinguistik; Hassrede; Natürliche Sprache; Social Media; Text Mining
First Page:1
Last Page:10
Dewey Decimal Classification:400 Sprache / 400 Sprache, Linguistik
Linguistics-Classification:Computerlinguistik
Open Access?:Ja
Licence (German):Es gilt das UrhG