Refine
Year of publication
Document Type
- Conference Proceeding (39)
- Part of a Book (7)
- Article (5)
- Doctoral Thesis (1)
Has Fulltext
- yes (52)
Keywords
- Korpus <Linguistik> (26)
- Annotation (22)
- Automatische Sprachanalyse (13)
- Syntaktische Analyse (13)
- Deutsch (12)
- Gesprochene Sprache (9)
- Computerlinguistik (5)
- Automatische Spracherkennung (4)
- German (4)
- Automatische Sprachverarbeitung (3)
Publicationstate
Reviewstate
Publisher
- European Language Resources Association (8)
- Association for Computational Linguistics (7)
- The Association for Computational Linguistics (6)
- European Language Resources Association (ELRA) (3)
- Eigenverlag ÖGAI (2)
- German Society for Computational Linguistics & Language Technology und Friedrich-Alexander-Universität Erlangen-Nürnberg (2)
- Springer (2)
- ACL (1)
- Association for Computational (1)
- Austrian academy of sciences (1)
This paper presents first steps towards metaphor detection in German poetry, in particular in expressionist poems. We create a dataset with adjective-noun pairs extracted from expressionist poems, manually annotated for metaphoricity. We discuss the annotation process and present models and experiments for metaphor detection where we investigate the impact of context and the domain dependence of the models.
I’ve got a construction looks funny – representing and recovering non-standard constructions in UD
(2020)
The UD framework defines guidelines for a crosslingual syntactic analysis in the framework of dependency grammar, with the aim of providing a consistent treatment across languages that not only supports multilingual NLP applications but also facilitates typological studies. Until now, the UD framework has mostly focussed on bilexical grammatical relations. In the paper, we propose to add a constructional perspective and discuss several examples of spoken-language constructions that occur in multiple languages and challenge the current use of basic and enhanced UD relations. The examples include cases where the surface relations are deceptive, and syntactic amalgams that either involve unconnected subtrees or structures with multiply-headed dependents. We argue that a unified treatment of constructions across languages will increase the consistency of the UD annotations and thus the quality of the treebanks for linguistic analysis.
This paper investigates evidence for linguistic coherence in new urban dialects that evolved in multiethnic and multilingual urban neighbourhoods. We propose a view of coherence as an interpretation of empirical observations rather than something that would be ‘‘out there in the data’’, and argue that this interpretation should be based on evidence of systematic links between linguistic phenomena, as established by patterns of covariation between phenomena that can be shown to be related at linguistic levels. In a case study, we present results from qualitative and quantitative analyses for a set of phenomena that have been described for Kiezdeutsch, a new dialect from multilingual urban Germany. Qualitative analyses point to linguistic relationships between different phenomena and between pragmatic and linguistic levels. Quantitative analyses, based on corpus data from KiDKo (www.kiezdeutschkorpus.de), point to systematic advantages for the Kiezdeutsch data from a multiethnic and multilingual context provided by the main corpus (KiDKo/Mu), compared to complementary corpus data from a mostly monoethnic and monolingual (German) context (KiDKo/Mo). Taken together, this indicates patterns of covariation that support an interpretation of coherence for this new dialect: our findings point to an interconnected linguistic system, rather than to a mere accumulation of individual features. In addition to this internal coherence, the data also points to external coherence: Kiezdeutsch is not disconnected on the outside either, but fully integrated within the general domain of German, an integration that defies a distinction of ‘‘autochthonous’’ and ‘‘allochthonous’’ German, not only at the level of speakers, but also at the level of linguistic systems.
We present a fine-grained NER annotations scheme with 30 labels and apply it to German data. Building on the OntoNotes 5.0 NER inventory, our scheme is adapted for a corpus of transcripts of biographic interviews by adding categories for AGE and LAN(guage) and also adding label classes for various numeric and temporal expressions. Applying the scheme to the spoken data as well as a collection of teaser tweets from newspaper sites, we can confirm its generality for both domains, also achieving good inter-annotator agreement. We also show empirically how our inventory relates to the well-established 4-category NER inventory by re-annotating a subset of the GermEval 2014 NER coarse-grained dataset with our fine label inventory. Finally, we use a BERT-based system to establish some baselines for NER tagging on our two new datasets. Global results in in-domain testing are quite high on the two datasets, near what was achieved for the coarse inventory on the CoNLLL2003 data. Cross-domain testing produces much lower results due to the severe domain differences.
The paper presents a discussion on the main linguistic phenomena of user-generated texts found in web and social media, and proposes a set of annotation guidelines for their treatment within the Universal Dependencies (UD) framework. Given on the one hand the increasing number of treebanks featuring user-generated content, and its somewhat inconsistent treatment in these resources on the other, the aim of this paper is twofold: (1) to provide a short, though comprehensive, overview of such treebanks - based on available literature - along with their main features and a comparative analysis of their annotation criteria, and (2) to propose a set of tentative UD-based annotation guidelines, to promote consistent treatment of the particular phenomena found in these types of texts. The main goal of this paper is to provide a common framework for those teams interested in developing similar resources in UD, thus enabling cross-linguistic consistency, which is a principle that has always been in the spirit of UD.
We present a new resource for German causal language, with annotations in context for verbs, nouns and adpositions. Our dataset includes 4,390 annotated instances for more than 150 different triggers. The annotation scheme distinguishes three different types of causal events (CONSEQUENCE, MOTIVATION, PURPOSE). We also provide annotations for semantic roles, i.e. of the cause and effect for the causal event as well as the actor and affected party, if present. In the paper, we present inter-annotator agreement scores for our dataset and discuss problems for annotating causal language. Finally, we present experiments where we frame causal annotation as a sequence labelling problem and report baseline results for the prediciton of causal arguments and for predicting different types of causation.
This article presents a discussion on the main linguistic phenomena which cause difficulties in the analysis of user-generated texts found on the web and in social media, and proposes a set of annotation guidelines for their treatment within the Universal Dependencies (UD) framework of syntactic analysis. Given on the one hand the increasing number of treebanks featuring user-generated content, and its somewhat inconsistent treatment in these resources on the other, the aim of this article is twofold: (1) to provide a condensed, though comprehensive, overview of such treebanks—based on available literature—along with their main features and a comparative analysis of their annotation criteria, and (2) to propose a set of tentative UD-based annotation guidelines, to promote consistent treatment of the particular phenomena found in these types of texts. The overarching goal of this article is to provide a common framework for researchers interested in developing similar resources in UD, thus promoting cross-linguistic consistency, which is a principle that has always been central to the spirit of UD.
We introduce a method for error detection in automatically annotated text, aimed at supporting the creation of high-quality language resources at affordable cost. Our method combines an unsupervised generative model with human supervision from active learning. We test our approach on in-domain and out-of-domain data in two languages, in AL simulations and in a real world setting. For all settings, the results show that our method is able to detect annotation errors with high precision and high recall.
Universal Dependency (UD) annotations, despite their usefulness for cross-lingual tasks and semantic applications, are not optimised for statistical parsing. In the paper, we ask what exactly causes the decrease in parsing accuracy when training a parser on UD-style annotations and whether the effect is similarly strong for all languages. We conduct a series of experiments where we systematically modify individual annotation decisions taken in the UD scheme and show that this results in an increased accuracy for most, but not for all languages. We show that the encoding in the UD scheme, in particular the decision to encode content words as heads, causes an increase in dependency length for nearly all treebanks and an increase in arc direction entropy for many languages, and evaluate the effect this has on parsing accuracy.
We present a method for detecting annotation errors in manually and automatically annotated dependency parse trees, based on ensemble parsing in combination with Bayesian inference, guided by active learning. We evaluate our method in different scenarios: (i) for error detection in dependency treebanks and (ii) for improving parsing accuracy on in- and out-of-domain data.