The 10 most recently published documents
This paper presents an algorithm and an implementation for efficient tokenization of texts of space-delimited languages based on a deterministic finite state automaton. Two representations of the underlying data structure are presented and a model implementation for German is compared with state-of-the-art approaches. The presented solution is faster than other tools while maintaining comparable quality.
We present the use of count-based and predictive language models for exploring language use in the German Reference Corpus DeReKo. For collocation analysis along the syntagmatic axis we employ traditional association measures based on co-occurrence counts as well as predictive association measures derived from the output weights of skipgram word embeddings. For inspecting the semantic neighbourhood of words along the paradigmatic axis we visualize the high dimensional word embeddings in two dimensions using t-stochastic neighbourhood embeddings. Together, these visualizations provide a complementary, explorative approach to analysing very large corpora in addition to corpus querying. Moreover, we discuss count-based and predictive models w.r.t. scalability and maintainability in very large corpora.
The debate on the use of personal data in language resources usually focuses — and rightfully so — on anonymisation. However, this very same debate usually ends quickly with the conclusion that proper anonymisation would necessarily cause loss of linguistically valuable information. This paper discusses an alternative approach — pseudonymisation. While pseudonymisation does not solve all the problems (inasmuch as pseudonymised data are still to be regarded as personal data and therefore their processing should still comply with the GDPR principles), it does provide a significant relief, especially — but not only — for those who process personal data for research purposes. This paper describes pseudonymisation as a measure to safeguard rights and interests of data subjects under the GDPR (with a special focus on the right to be informed). It also provides a concrete example of pseudonymisation carried out within a research project at the Institute of Information Technology and Communications of the Otto von Guericke University Magdeburg.
Contents:
1. Vasile Pais, Maria Mitrofan, Verginica Barbu Mititelu, Elena Irimia, Roxana Micu and Carol Luca Gasan: Challenges in Creating a Representative Corpus of Romanian Micro-Blogging Text. Pp. 1-7
2. Modest von Korff: Exhaustive Indexing of PubMed Records with Medical Subject Headings. Pp. 8-15
3. Luca Brigada Villa: UDeasy: a Tool for Querying Treebanks in CoNLL-U Format. Pp. 16-19
4. Nils Diewald: Matrix and Double-Array Representations for Efficient Finite State Tokenization. Pp. 20-26
5. Peter Fankhauser and Marc Kupietz: Count-Based and Predictive Language Models for Exploring DeReKo. Pp. 27-31
6. Hanno Biber: “The word expired when that world awoke.” New Challenges for Research with Large Text Corpora and Corpus-Based Discourse Studies in Totalitarian Times. Pp. 32-35
In this paper, we address two problems in indexing and querying spoken language corpora with overlapping speaker contributions. First, we look into how token distance and token precedence can be measured when multiple primary data streams are available and when transcriptions happen to be tokenized, but are not synchronized with the sound at the level of individual tokens. We propose and experiment with a speaker based search mode that enables any speaker’s transcription tier to be the basic tokenization layer whereby the contributions of other speakers are mapped to this given tier. Secondly, we address two distinct methods of how speaker overlaps can be captured in the TEI based ISO Standard for Spoken Language Transcriptions (ISO 24624:2016) and how they can be queried by MTAS – an open source Lucene-based search engine for querying text with multilevel annotations. We illustrate the problems, introduce possible solutions and discuss their benefits and drawbacks.