Quantitative Linguistik
Refine
Year of publication
Document Type
- Article (19)
- Part of a Book (19)
- Other (3)
- Doctoral Thesis (1)
- Working Paper (1)
Keywords
- Sprachstatistik (15)
- Deutsch (13)
- Wortschatz (12)
- Lexikostatistik (10)
- Korpus <Linguistik> (9)
- COVID-19 (8)
- Online-Medien (8)
- Vielfalt (8)
- Sprachwandel (6)
- Statistik (5)
Publicationstate
- Veröffentlichungsversion (24)
- Zweitveröffentlichung (18)
- Postprint (9)
Reviewstate
One of the fundamental questions about human language is whether all languages are equally complex. Here, we approach this question from an information-theoretic perspective. We present a large scale quantitative cross-linguistic analysis of written language by training a language model on more than 6500 different documents as represented in 41 multilingual text collections consisting of ~ 3.5 billion words or ~ 9.0 billion characters and covering 2069 different languages that are spoken as a native language by more than 90% of the world population. We statistically infer the entropy of each language model as an index of what we call average prediction complexity. We compare complexity rankings across corpora and show that a language that tends to be more complex than another language in one corpus also tends to be more complex in another corpus. In addition, we show that speaker population size predicts entropy. We argue that both results constitute evidence against the equi-complexity hypothesis from an information-theoretic perspective.
In der Korpuslinguistik und der Quantitativen Linguistik werden ganz verschiedenartige formale Maße verwendet, mit denen die Gebrauchshäufigkeit eines Wortes, eines Ausdrucks oder auch abstrakter oder komplexer sprachlicher Elemente in einem gegebenen Korpus gemessen und ggf. mit anderen Gebrauchshäufigkeiten verglichen werden kann. Im Folgenden soll für eine Auswahl dieser Maße (absolute Häufigkeit, relative Häufigkeit, Wahrscheinlichkeitsverteilung, Differenzenkoeffizient, Häufigkeitsklasse) zusammengefasst werden, wie sie definiert sind, welche Eigenschaften sie haben und unter welchen Bedingungen sie (sinnvoll) anwendbar und interpretierbar sind – dabei kann eine Rolle spielen, ob das Häufigkeitsmaß auf ein Korpus als Ganzes angewendet wird oder auf einzelne Teilkorpora. Zusätzlich zu den bei den einzelnen Häufigkeitsmaßen genannten Einschränkungen gilt generell der folgende vereinfachte Zusammenhang: Je seltener ein Wort im gegebenen Korpus insgesamt vorkommt und je kleiner dieses Korpus ist, desto stärker hängt die beobachtete Gebrauchshäufigkeit des Wortes von zufälligen Faktoren ab, d.h., desto geringer ist die statistische Zuverlässigkeit der Beobachtung.
Wenn alle Forschungsfragen gestellt, alle Hypothesen formuliert, alle Korpora kompiliert und alle Daten von Proband*innen gesammelt wurden, befinden Sie sich auf einer der letzten Etappen Ihrer linguistischen Studie: der Analyse der Daten. In diesem Kapitel werden Sie einige Werkzeuge kennenlernen, die Sie dabei unterstützen können. Hier nehmen wir an, dass Sie in irgendeiner Form eine quantitative statistische Auswertung vornehmen möchten, denn für qualitative Analysen sind die Werkzeuge, die wir Ihnen vorstellen werden, weniger bis gar nicht geeignet.
Transkriptionswerkzeuge sind spezialisierte Softwaretools für die Transkription und Annotation von Audio- oder Videoaufzeichnungen gesprochener Sprache. Dieses Kapitel erklärt einleitend, worin der zusätzliche Nutzen solcher Werkzeuge gegenüber einfacher Textverarbeitungssoftware liegt, und gibt dann einen Überblick über grundlegende Prinzipien und einige weitverbreitete Tools dieser Art. Am Beispiel der Editoren FOLKER und OrthoNormal wird schließlich der praktische Einsatz zweier Werkzeuge in den Arbeitsabläufen eines Korpusprojekts illustriert.
Was darf die sprachwissenschaftliche Forschung? Juristische Fragen bei der Arbeit mit Sprachdaten
(2022)
Sich in der Linguistik mit rechtlichen Themen beschäftigen zu müssen, ist auf den ersten Blick überraschend. Da jedoch in den Sprachwissenschaften empirisch gearbeitet wird und Sprachdaten, insbesondere Texte und Ton- und Videoaufnahmen sowie Transkripte gesprochener Sprache, in den letzten Jahren auch verstärkt Sprachdaten internetbasierter Kommunikation, als Basis für die linguistische Forschung dienen, müssen rechtliche Rahmenbedingungen für jede Art von Datennutzung beachtet werden. Natürlich arbeiten auch andere Wissenschaften, wie z. B. die Astronomie oder die Meteorologie, empirisch. Jedoch gibt es einen grundsätzlichen Unterschied der empirischen Basis: Im Gegensatz zu Temperaturen, die gemessen, oder Konstellationen von Himmelskörpern, die beobachtet werden, basieren Sprachdaten auf schriftlichen, mündlichen oder gebärdeten Äußerungen von Menschen, wodurch sich juristisch begründete Beschränkungen ihrer Nutzung ergeben.
Sobald eine statistische Datenanalyse abgeschlossen ist, müssen in einem weiteren Schritt die Untersuchungsergebnisse aufbereitet und dargestellt werden. Hierzu gibt es verschiedene Möglichkeiten, die davon abhängig sind, welche Art von Analyse man durchgeführt hat. Aus diesem Grund ist der Beitrag gegliedert in die Aufbereitung von Ergebnissen für deskriptive, also beschreibende statistische Analysen (Abschnitt 2) und in die Ergebnisdarstellung von inferenzstatistischen (= schließenden) Auswertungen (Abschnitt 3). Wir gehen dabei auf die Aufbereitung der Daten in Tabellenform ein, werden an einem Beispiel zeigen, wie man die Ergebnisse von statistischen Tests berichtet und einige Visualisierungsmöglichkeiten vorstellen.
Der folgende Leitfaden bietet eine grundlegende Übersicht darüber, welche Schritte bei der Konzeption und Durchführung einer empirischen Untersuchung in der germanistischen Linguistik zu beachten sind. Wir werden den grundlegenden Ablauf und die zugrunde liegenden Konzepte allgemein bzw. modellhaft beschreiben und sie anhand von einfachen Beispielen illustrieren. Eine stärkere Ausgestaltung anhand von Beispielen zu verschiedenen linguistischen Forschungsfragen und -feldern und damit auch mehr Illustrationen, wie die einzelnen Schritte für bestimmte Forschungsfragen umzusetzen sind, finden Sie in den Fallstudien im —> Teil III dieses Bandes. Detailliertere Ausführungen zu den zentralen Konzepten des empirischen Arbeitens in der Linguistik finden Sie in —> Teil VI dieses Bandes. Weiterführende Literatur findet sich am Ende des Beitrags.
Daten und Metadaten
(2022)
In diesem Kapitel werden Metadaten als Daten definiert, die der Dokumentation und/oder Beschreibung empirischer Sprachdaten dienen. Einleitend werden die verschiedenen Funktionen von Metadaten im Forschungsprozess und ihre Bedeutung für die Konzepte der Ausgewogenheit und Repräsentativität diskutiert. Anhand des Forschungs- und Lehrkorpus Gesprochenes Deutsch (FOLK) werden dann Metadaten eines konkreten Korpus vorgestellt, und es wird gezeigt, wie diese bei Korpusanalysen zum Einsatz kommen.
cOWIDplus Analyse ist eine kontinuierlich aktualisierte Ressource zu der Frage, ob und wie stark sich der Wortschatz ausgewählter deutscher Online-Pressemeldungen während der Corona-Pandemie systematisch einschränkt und ob bzw. wann sich das Vokabular nach der Krise wieder ausweitet. In diesem Artikel erläutern die Autor*innen die hinter der Ressource stehende Forschungsfrage, die zugrunde gelegten Daten, die Methode sowie die bisherigen Ergebnisse.