Bochumer Linguistische Arbeitsberichte
Bochum: Ruhr-Universität Bochum
Refine
Year of publication
- 2016 (7)
Document Type
- Part of a Book (5)
- Book (1)
- Conference Proceeding (1)
Language
- English (7)
Has Fulltext
- yes (7)
Is part of the Bibliography
- no (7)
Keywords
Publicationstate
Reviewstate
- (Verlags)-Lektorat (5)
- Peer-Review (2)
17
The present paper reports the first results of the compilation and annotation of a blog corpus for German. The main aim of the project is the representation of the blog discourse structure and relations between its elements (blog posts, comments) and participants (bloggers, commentators). The data included in the corpus were manually collected from the scientific blog portal SciLogs. The feature catalogue for the corpus annotation includes three types of information which is directly or indirectly provided in the blog or can be construed by means of statistical analysis or computational tools. At this point, only directly available information (e.g. title of the blog post, name of the blogger etc.) has been annotated. We believe, our blog corpus can be of interest for the general study of blog structure or related research questions as well as for the development of NLP methods and techniques (e.g. for authorship detection).
16
Brown clustering has been used to help increase parsing performance for morphologically rich languages. However, much of the work has focused on using clustering techniques to replace terminal nodes or as a feature for parsing. Instead, we choose to examine how effectively Brown clustering is for unlexicalized parsing by creating data-driven POS tagsets which are then used with the Berkeley parser. We investigate cluster sizes as well as on what information (e.g. words vs. lemmas) clustering will yield the best parser performance. Our results approach the current state of the art results for the German T¨uBa-D/Z treebank when using parser internal tagging.
16
In this paper, we present first results of training a classifier for discriminating Russian texts into different levels of difficulty. For the classification we considered both surface-oriented features adopted from readability assessments and more linguistically informed, positional features to classify texts into two levels of difficulty. This text classification is the main focus of our Levelled Study Corpus of Russian (LeStCoR), in which we aim to build a corpus adapted for language learning purposes – selecting simpler texts for beginner second language learners and more complex texts for advanced learners. The most discriminative feature in our pilot study was a lexical feature that approximates accessibility of the vocabulary by the second language learner in terms of the proportion of familiar words in the texts. The best feature setting achieved an accuracy of 0.91 on a pilot corpus of 209 texts.
16
We introduce our pipeline to integrate CMC and SM corpora into the CLARIN-D corpus infrastructure. The pipeline was developed by transforming an existing CMC corpus, the Dortmund Chat Corpus, into a resource conforming to current technical and legal standards. We describe how the resource has been prepared and restructured in terms of TEI encoding, linguistic annotations, and anonymisation. The output is a CLARIN-conformant resource integrated in the CLARIN-D research infrastructure.
18
Overview of the IGGSA 2016 Shared Task on Source and Target Extraction from Political Speeches
(2016)
We present the second iteration of IGGSA’s Shared Task on Sentiment Analysis for German. It resumes the STEPS task of IGGSA’s 2014 evaluation campaign: Source, Subjective Expression and Target Extraction from Political Speeches. As before, the task is focused on fine-grained sentiment analysis, extracting sources and targets with their associated subjective expressions from a corpus of speeches given in the Swiss parliament. The second iteration exhibits some differences, however; mainly the use of an adjudicated gold standard and the availability of training data. The shared task had 2 participants submitting 7 runs for the full task and 3 runs for each of the subtasks. We evaluate the results and compare them to the baselines provided by the previous iteration. The shared task homepage can be found at http://iggsasharedtask2016.github.io/.
18
The Shared Task on Source and Target Extraction from Political Speeches (STEPS) first ran in 2014 and is organized by the Interest Group on German Sentiment Analysis (IGGSA). This volume presents the proceedings of the workshop of the second iteration of the shared task. The workshop was held at KONVENS 2016 at Ruhr-University Bochum on September 22, 2016.
16
There is increasing interest in recognizing opinion inferences in addition to expressions of explicit sentiment. While different formalisms for representing inferential mechanisms are being developed and lexical resources are being built alongside, we here address the need for deeper investigation of the robustness of various aspects of opinion inference, performing crowdsourcing experiments with constructed stimuli as well as a corpus study of attested data.