Refine
Document Type
- Part of a Book (4) (remove)
Keywords
- Negation (3)
- Semantische Analyse (3)
- sentiment analysis (2)
- Automatische Sprachanalyse (1)
- Computerlinguistik (1)
- Deutsch (1)
- Disambiguierung (1)
- Englisch (1)
- Polarität (1)
- Politische Kommunikation (1)
Reviewstate
- Peer-Review (3)
- (Verlags)-Lektorat (1)
The sentiment polarity of a phrase does not only depend on the polarities of its words, but also on how these are affected by their context. Negation words (e.g. not, no, never) can change the polarity of a phrase. Similarly, verbs and other content words can also act as polarity shifters (e.g. fail, deny, alleviate). While individually more sparse, they are far more numerous. Among verbs alone, there are more than 1200 shifters. However, sentiment analysis systems barely consider polarity shifters other than negation words. A major reason for this is the scarcity of lexicons and corpora that provide information on them. We introduce a lexicon of verbal polarity shifters that covers the entirety of verbs found in WordNet. We provide a fine-grained annotation of individual word senses, as well as information for each verbal shifter on the syntactic scopes that it can affect.
We present an approach for modeling German negation in open-domain fine grained sentiment analysis. Unlike most previous work in sentiment analysis, we assume that negation can be conveyed by many lexical units (and not only common negation words) and that different negation words have different scopes. Our approach is examined on a new dataset comprising sentences with mentions of polar expressions and various negation words. We identify different types of negation words that have the same scopes. We show that already negation modeling based on these types largely outperforms traditional negation models which assume the same scope for all negation words and which employ a window-based scope detection rather than a scope detection based on syntactic information.
Overview of the IGGSA 2016 Shared Task on Source and Target Extraction from Political Speeches
(2016)
We present the second iteration of IGGSA’s Shared Task on Sentiment Analysis for German. It resumes the STEPS task of IGGSA’s 2014 evaluation campaign: Source, Subjective Expression and Target Extraction from Political Speeches. As before, the task is focused on fine-grained sentiment analysis, extracting sources and targets with their associated subjective expressions from a corpus of speeches given in the Swiss parliament. The second iteration exhibits some differences, however; mainly the use of an adjudicated gold standard and the availability of training data. The shared task had 2 participants submitting 7 runs for the full task and 3 runs for each of the subtasks. We evaluate the results and compare them to the baselines provided by the previous iteration. The shared task homepage can be found at http://iggsasharedtask2016.github.io/.
Negation is an important contextual phenomenon that needs to be addressed in sentiment analysis. Next to common negation function words, such as not or none, there is also a considerably large class of negation content words, also referred to as shifters, such as the verbs diminish, reduce or reverse. However, many of these shifters are ambiguous. For instance, spoil as in spoil your chance reverses the polarity of the positive polar expression chance while in spoil your loved ones, no negation takes place. We present a supervised learning approach to disambiguating verbal shifters. Our approach takes into consideration various features, particularly generalization features.