Refine
Year of publication
Document Type
- Conference Proceeding (23)
- Article (2)
Keywords
- Computerlinguistik (23)
- Natürliche Sprache (19)
- Information Extraction (18)
- Maschinelles Lernen (17)
- Lebensmittel (11)
- Text Mining (9)
- Sentimentanalyse (8)
- Polarität (6)
- Korpus <Linguistik> (4)
- Food item (3)
Publicationstate
- Veröffentlichungsversion (14)
- Zweitveröffentlichung (6)
- Postprint (2)
We examine predicative adjectives as an unsupervised criterion to extract subjective adjectives. We do not only compare this criterion with a weakly supervised extraction method but also with gradable adjectives, i.e. another highly subjective subset of adjectives that can be extracted in an unsupervised fashion. In order to prove the robustness of this extraction method, we will evaluate the extraction with the help of two different state-of-the-art sentiment lexicons (as a gold standard).
In opinion mining, there has been only very little work investigating semi-supervised machine learning on document-level polarity classification. We show that semi-supervised learning performs significantly better than supervised learning when only few labelled data are available. Semi-supervised polarity classifiers rely on a predictive feature set. (Semi-)Manually built polarity lexicons are one option but they are expensive to obtain and do not necessarily work in an unknown domain. We show that extracting frequently occurring adjectives & adverbs of an unlabeled set of in-domain documents is an inexpensive alternative which works equally well throughout different domains.
We investigate the task of detecting reliable statements about food-health relationships from natural language texts. For that purpose, we created a specially annotated web corpus from forum entries discussing the healthiness of certain food items. We examine a set of task-specific features (mostly) based on linguistic insights that are instrumental in finding utterances that are commonly perceived as reliable. These features are incorporated in a supervised classifier and compared against standard features that are widely used for various tasks in natural language processing, such as bag of words, part-of speech and syntactic parse information.
In order to automatically extract opinion holders, we propose to harness the contexts of prototypical opinion holders, i.e. common nouns, such as experts or analysts, that describe particular groups of people whose profession or occupation is to form and express opinions towards specific items. We assess their effectiveness in supervised learning where these contexts are regarded as labelled training data and in rule-based classification which uses predicates that frequently co-occur with mentions of the prototypical opinion holders. Finally, we also examine in how far knowledge gained from these contexts can compensate the lack of large amounts of labeled training data in supervised learning by considering various amounts of actually labeled training sets.
Automatic Food Categorization from Large Unlabeled Corpora and Its Impact on Relation Extraction
(2014)
We present a weakly-supervised induction method to assign semantic information to food items. We consider two tasks of categorizations being food-type classification and the distinction of whether a food item is composite or not. The categorizations are induced by a graph-based algorithm applied on a large unlabeled domain-specific corpus. We show that the usage of a domain-specific corpus is vital. We do not only outperform a manually designed open-domain ontology but also prove the usefulness of these categorizations in relation extraction, outperforming state-of-the-art features that include syntactic information and Brown clustering.
We examine the task of separating types from brands in the food domain. Framing the problem as a ranking task, we convert simple textual features extracted from a domain-specific corpus into a ranker without the need of labeled training data. Such method should rank brands (e.g. sprite) higher than types (e.g. lemonade). Apart from that, we also exploit knowledge induced by semi-supervised graph-based clustering for two different purposes. On the one hand, we produce an auxiliary categorization of food items according to the Food Guide Pyramid, and assume that a food item is a type when it belongs to a category unlikely to contain brands. On the other hand, we directly model the task of brand detection using seeds provided by the output of the textual ranking features. We also harness Wikipedia articles as an additional knowledge source.
While good results have been achieved for named entity recognition (NER) in supervised settings, it remains a problem that for low resource languages and less studied domains little or no labelled data is available. As NER is a crucial preprocessing step for many natural language processing tasks, finding a way to overcome this deficit in data remains of great interest. We propose a distant supervision approach to NER that is both language and domain independent where we automatically generate labelled training data using gazetteers that we previously extracted from Wikipedia. We test our approach on English, German and Estonian data sets and contribute further by introducing several successful methods to reduce the noise in the generated training data. The tested models beat baseline systems and our results show that distant supervision can be a promising approach for NER when no labelled data is available. For the English model we also show that the distant supervision model is better at generalizing within the same domain of news texts by comparing it against a supervised model on a different test set.
Knowledge Acquisition with Natural Language Processing in the Food Domain: Potential and Challenges
(2012)
In this paper, we present an outlook on the effectiveness of natural language processing (NLP) in extracting knowledge for the food domain. We identify potential scenarios that we think are particularly suitable for NLP techniques. As a source for extracting knowledge we will highlight the benefits of textual content from social media. Typical methods that we think would be suitable will be discussed. We will also address potential problems and limits that the application of NLP methods may yield.
In this article, we explore the feasibility of extracting suitable and unsuitable food items for particular health conditions from natural language text. We refer to this task as conditional healthiness classification. For that purpose, we annotate a corpus extracted from forum entries of a food-related website. We identify different relation types that hold between food items and health conditions going beyond a binary distinction of suitability and unsuitability and devise various supervised classifiers using different types of features. We examine the impact of different task-specific resources, such as a healthiness lexicon that lists the healthiness status of a food item and a sentiment lexicon. Moreover, we also consider task-specific linguistic features that disambiguate a context in which mentions of a food item and a health condition co-occur and compare them with standard features using bag of words, part-of-speech information and syntactic parses. We also investigate in how far individual food items and health conditions correlate with specific relation types and try to harness this information for classification.
One problem of data-driven answer extraction in open-domain factoid question answering is that the class distribution of labeled training data is fairly imbalanced. In an ordinary training set, there are far more incorrect answers than correct answers. The class-imbalance is, thus, inherent to the classification task. It has a deteriorating effect on the performance of classifiers trained by standard machine learning algorithms. They usually have a heavy bias towards the majority class, i.e. the class which occurs most often in the training set. In this paper, we propose a method to tackle class imbalance by applying some form of cost-sensitive learning which is preferable to sampling. We present a simple but effective way of estimating the misclassification costs on the basis of class distribution. This approach offers three benefits. Firstly, it maintains the distribution of the classes of the labeled training data. Secondly, this form of meta-learning can be applied to a wide range of common learning algorithms. Thirdly, this approach can be easily implemented with the help of state-of-the-art machine learning software.