Refine
Document Type
- Conference Proceeding (17)
- Article (2)
Keywords
- Natürliche Sprache (19) (remove)
Publicationstate
- Veröffentlichungsversion (10)
- Zweitveröffentlichung (5)
- Postprint (2)
We examine the task of relation extraction in the food domain by employing distant supervision. We focus on the extraction of two relations that are not only relevant to product recommendation in the food domain, but that also have significance in other domains, such as the fashion or electronics domain. In order to select suitable training data, we investigate various degrees of freedom. We consider three processing levels being argument level, sentence level and feature level. As external resources, we employ manually created surface patterns and semantic types on all these levels. We also explore in how far rule-based methods employing the same information are competitive.
This paper presents a survey on the role of negation in sentiment analysis. Negation is a very common linguistic construction that affects polarity and, therefore, needs to be taken into consideration in sentiment analysis.
We will present various computational approaches modeling negation in sentiment analysis. We will, in particular, focus on aspects such as level of representation used for sentiment analysis, negation word detection and scope of negation. We will also discuss limits and challenges of negation modeling on that task.
In opinion mining, there has been only very little work investigating semi-supervised machine learning on document-level polarity classification. We show that semi-supervised learning performs significantly better than supervised learning when only few labelled data are available. Semi-supervised polarity classifiers rely on a predictive feature set. (Semi-)Manually built polarity lexicons are one option but they are expensive to obtain and do not necessarily work in an unknown domain. We show that extracting frequently occurring adjectives & adverbs of an unlabeled set of in-domain documents is an inexpensive alternative which works equally well throughout different domains.
We investigate the task of detecting reliable statements about food-health relationships from natural language texts. For that purpose, we created a specially annotated web corpus from forum entries discussing the healthiness of certain food items. We examine a set of task-specific features (mostly) based on linguistic insights that are instrumental in finding utterances that are commonly perceived as reliable. These features are incorporated in a supervised classifier and compared against standard features that are widely used for various tasks in natural language processing, such as bag of words, part-of speech and syntactic parse information.
We examine the task of separating types from brands in the food domain. Framing the problem as a ranking task, we convert simple textual features extracted from a domain-specific corpus into a ranker without the need of labeled training data. Such method should rank brands (e.g. sprite) higher than types (e.g. lemonade). Apart from that, we also exploit knowledge induced by semi-supervised graph-based clustering for two different purposes. On the one hand, we produce an auxiliary categorization of food items according to the Food Guide Pyramid, and assume that a food item is a type when it belongs to a category unlikely to contain brands. On the other hand, we directly model the task of brand detection using seeds provided by the output of the textual ranking features. We also harness Wikipedia articles as an additional knowledge source.
In this article, we explore the feasibility of extracting suitable and unsuitable food items for particular health conditions from natural language text. We refer to this task as conditional healthiness classification. For that purpose, we annotate a corpus extracted from forum entries of a food-related website. We identify different relation types that hold between food items and health conditions going beyond a binary distinction of suitability and unsuitability and devise various supervised classifiers using different types of features. We examine the impact of different task-specific resources, such as a healthiness lexicon that lists the healthiness status of a food item and a sentiment lexicon. Moreover, we also consider task-specific linguistic features that disambiguate a context in which mentions of a food item and a health condition co-occur and compare them with standard features using bag of words, part-of-speech information and syntactic parses. We also investigate in how far individual food items and health conditions correlate with specific relation types and try to harness this information for classification.
Opinion holder extraction is one of the important subtasks in sentiment analysis. The effective detection of an opinion holder depends on the consideration of various cues on various levels of representation, though they are hard to formulate explicitly as features. In this work, we propose to use convolution kernels for that task which identify meaningful fragments of sequences or trees by themselves. We not only investigate how different levels of information can be effectively combined in different kernels but also examine how the scope of these kernels should be chosen. In general relation extraction, the two candidate entities thought to be involved in a relation are commonly chosen to be the boundaries of sequences and trees. The definition of boundaries in opinion holder extraction, however, is less straightforward since there might be several expressions beside the candidate opinion holder to be eligible for being a boundary.
In this paper, we compare three different generalization methods for in-domain and cross-domain opinion holder extraction being simple unsupervised word clustering, an induction method inspired by distant supervision and the usage of lexical resources. The generalization methods are incorporated into diverse classifiers. We show that generalization causes significant improvements and that the impact of improvement depends on the type of classifier and on how much training and test data differ from each other. We also address the less common case of opinion holders being realized in patient position and suggest approaches including a novel (linguistically-informed) extraction method how to detect those opinion holders without labeled training data as standard datasets contain too few instances of this type.
Though polarity classification has been extensively explored at document level, there has been little work investigating feature design at sentence level. Due to the small number of words within a sentence, polarity classification at sentence level differs substantially from document-level classification in that resulting bag-of-words feature vectors tend to be very sparse resulting in a lower classification accuracy.
In this paper, we show that performance can be improved by adding features specifically designed for sentence-level polarity classification. We consider both explicit polarity information and various linguistic features. A great proportion of the improvement that can be obtained by using polarity information can also be achieved by using a set of simple domain-independent linguistic features.
Bootstrapping Supervised Machine-learning Polarity Classifiers with Rule-based Classification
(2010)
In this paper, we explore the effectiveness of bootstrapping supervised machine-learning polarity classifiers using the output of domain-independent rule-based classifiers. The benefit of this method is that no labeled training data are required. Still, this method allows to capture in-domain knowledge by training the supervised classifier on in-domain features, such as bag of words.
We investigate how important the quality of the rule-based classifier is and what features are useful for the supervised classifier. The former addresses the issue in how far relevant constructions for polarity classification, such as word sense disambiguation, negation modeling, or intensification, are important for this self-training approach. We not only compare how this method relates to conventional semi-supervised learning but also examine how it performs under more difficult settings in which classes are not balanced and mixed reviews are included in the dataset.