Refine
Year of publication
Document Type
- Conference Proceeding (24)
- Article (2)
- Part of a Book (1)
Keywords
- Computerlinguistik (23)
- Natürliche Sprache (19)
- Information Extraction (18)
- Maschinelles Lernen (17)
- Lebensmittel (11)
- Text Mining (9)
- Sentimentanalyse (8)
- Polarität (6)
- Korpus <Linguistik> (4)
- Food item (3)
Publicationstate
- Veröffentlichungsversion (16)
- Zweitveröffentlichung (6)
- Postprint (2)
We present an approach for automatic detection and correction of OCR-induced misspellings in historical texts. The main objective is the post-correction of the digitized Royal Society Corpus, a set of historical documents from 1665 to 1869. Due to the aged material the OCR procedure has made mistakes, thus leading to files corrupted by thousands of misspellings. This motivates a post processing step. The current correction technique is a pattern-based approach which due to its lack of generalization suffers from bad recall.
To generalize from the patterns we propose to use the noisy channel model. From the pattern based substitutions we train a corpus specific error model complemented with a language model. With an F1-Score of 0.61 the presented technique significantly outperforms the pattern based approach which has an F1-score of 0.28. Due to its more accurate error model it also outperforms other implementations of the noisy channel model.
While good results have been achieved for named entity recognition (NER) in supervised settings, it remains a problem that for low resource languages and less studied domains little or no labelled data is available. As NER is a crucial preprocessing step for many natural language processing tasks, finding a way to overcome this deficit in data remains of great interest. We propose a distant supervision approach to NER that is both language and domain independent where we automatically generate labelled training data using gazetteers that we previously extracted from Wikipedia. We test our approach on English, German and Estonian data sets and contribute further by introducing several successful methods to reduce the noise in the generated training data. The tested models beat baseline systems and our results show that distant supervision can be a promising approach for NER when no labelled data is available. For the English model we also show that the distant supervision model is better at generalizing within the same domain of news texts by comparing it against a supervised model on a different test set.
In this article, we explore the feasibility of extracting suitable and unsuitable food items for particular health conditions from natural language text. We refer to this task as conditional healthiness classification. For that purpose, we annotate a corpus extracted from forum entries of a food-related website. We identify different relation types that hold between food items and health conditions going beyond a binary distinction of suitability and unsuitability and devise various supervised classifiers using different types of features. We examine the impact of different task-specific resources, such as a healthiness lexicon that lists the healthiness status of a food item and a sentiment lexicon. Moreover, we also consider task-specific linguistic features that disambiguate a context in which mentions of a food item and a health condition co-occur and compare them with standard features using bag of words, part-of-speech information and syntactic parses. We also investigate in how far individual food items and health conditions correlate with specific relation types and try to harness this information for classification.
We examine the combination of pattern-based and distributional similarity for the induction of semantic categories. Pattern-based methods are precise and sparse while distributional methods have a higher recall. Given these particular properties we use the prediction of distributional methods as a back-off to pattern-based similarity. Since our pattern-based approach is embedded into a semi-supervised graph clustering algorithm, we also examine how distributional information is best added to that classifier. Our experiments are carried out on 5 different food categorization tasks.
Automatic Food Categorization from Large Unlabeled Corpora and Its Impact on Relation Extraction
(2014)
We present a weakly-supervised induction method to assign semantic information to food items. We consider two tasks of categorizations being food-type classification and the distinction of whether a food item is composite or not. The categorizations are induced by a graph-based algorithm applied on a large unlabeled domain-specific corpus. We show that the usage of a domain-specific corpus is vital. We do not only outperform a manually designed open-domain ontology but also prove the usefulness of these categorizations in relation extraction, outperforming state-of-the-art features that include syntactic information and Brown clustering.
We examine the task of separating types from brands in the food domain. Framing the problem as a ranking task, we convert simple textual features extracted from a domain-specific corpus into a ranker without the need of labeled training data. Such method should rank brands (e.g. sprite) higher than types (e.g. lemonade). Apart from that, we also exploit knowledge induced by semi-supervised graph-based clustering for two different purposes. On the one hand, we produce an auxiliary categorization of food items according to the Food Guide Pyramid, and assume that a food item is a type when it belongs to a category unlikely to contain brands. On the other hand, we directly model the task of brand detection using seeds provided by the output of the textual ranking features. We also harness Wikipedia articles as an additional knowledge source.
We examine the task of relation extraction in the food domain by employing distant supervision. We focus on the extraction of two relations that are not only relevant to product recommendation in the food domain, but that also have significance in other domains, such as the fashion or electronics domain. In order to select suitable training data, we investigate various degrees of freedom. We consider three processing levels being argument level, sentence level and feature level. As external resources, we employ manually created surface patterns and semantic types on all these levels. We also explore in how far rule-based methods employing the same information are competitive.
We examine predicative adjectives as an unsupervised criterion to extract subjective adjectives. We do not only compare this criterion with a weakly supervised extraction method but also with gradable adjectives, i.e. another highly subjective subset of adjectives that can be extracted in an unsupervised fashion. In order to prove the robustness of this extraction method, we will evaluate the extraction with the help of two different state-of-the-art sentiment lexicons (as a gold standard).
We investigate the task of detecting reliable statements about food-health relationships from natural language texts. For that purpose, we created a specially annotated web corpus from forum entries discussing the healthiness of certain food items. We examine a set of task-specific features (mostly) based on linguistic insights that are instrumental in finding utterances that are commonly perceived as reliable. These features are incorporated in a supervised classifier and compared against standard features that are widely used for various tasks in natural language processing, such as bag of words, part-of speech and syntactic parse information.