Refine
Document Type
- Conference Proceeding (17)
- Article (2)
Keywords
- Natürliche Sprache (19) (remove)
Publicationstate
- Veröffentlichungsversion (10)
- Zweitveröffentlichung (5)
- Postprint (2)
We present a gold standard for semantic relation extraction in the food domain for German. The relation types that we address are motivated by scenarios for which IT applications present a commercial potential, such as virtual customer advice in which a virtual agent assists a customer in a supermarket in finding those products that satisfy their needs best. Moreover, we focus on those relation types that can be extracted from natural language text corpora, ideally content from the internet, such as web forums, that are easy to retrieve. A typical relation type that meets these requirements are pairs of food items that are usually consumed together. Such a relation type could be used by a virtual agent to suggest additional products available in a shop that would potentially complement the items a customer has already in their shopping cart. Our gold standard comprises structural data, i.e. relation tables, which encode relation instances. These tables are vital in order to evaluate natural language processing systems that extract those relations.
This paper presents a survey on the role of negation in sentiment analysis. Negation is a very common linguistic construction that affects polarity and, therefore, needs to be taken into consideration in sentiment analysis.
We will present various computational approaches modeling negation in sentiment analysis. We will, in particular, focus on aspects such as level of representation used for sentiment analysis, negation word detection and scope of negation. We will also discuss limits and challenges of negation modeling on that task.
In this article, we examine the effectiveness of bootstrapping supervised machine-learning polarity classifiers with the help of a domain-independent rule-based classifier that relies on a lexical resource, i.e., a polarity lexicon and a set of linguistic rules. The benefit of this method is that though no labeled training data are required, it allows a classifier to capture in-domain knowledge by training a supervised classifier with in-domain features, such as bag of words, on instances labeled by a rule-based classifier. Thus, this approach can be considered as a simple and effective method for domain adaptation. Among the list of components of this approach, we investigate how important the quality of the rule-based classifier is and what features are useful for the supervised classifier. In particular, the former addresses the issue in how far linguistic modeling is relevant for this task. We not only examine how this method performs under more difficult settings in which classes are not balanced and mixed reviews are included in the data set but also compare how this linguistically-driven method relates to state-of-the-art statistical domain adaptation.
Bootstrapping Supervised Machine-learning Polarity Classifiers with Rule-based Classification
(2010)
In this paper, we explore the effectiveness of bootstrapping supervised machine-learning polarity classifiers using the output of domain-independent rule-based classifiers. The benefit of this method is that no labeled training data are required. Still, this method allows to capture in-domain knowledge by training the supervised classifier on in-domain features, such as bag of words.
We investigate how important the quality of the rule-based classifier is and what features are useful for the supervised classifier. The former addresses the issue in how far relevant constructions for polarity classification, such as word sense disambiguation, negation modeling, or intensification, are important for this self-training approach. We not only compare how this method relates to conventional semi-supervised learning but also examine how it performs under more difficult settings in which classes are not balanced and mixed reviews are included in the dataset.
Opinion holder extraction is one of the important subtasks in sentiment analysis. The effective detection of an opinion holder depends on the consideration of various cues on various levels of representation, though they are hard to formulate explicitly as features. In this work, we propose to use convolution kernels for that task which identify meaningful fragments of sequences or trees by themselves. We not only investigate how different levels of information can be effectively combined in different kernels but also examine how the scope of these kernels should be chosen. In general relation extraction, the two candidate entities thought to be involved in a relation are commonly chosen to be the boundaries of sequences and trees. The definition of boundaries in opinion holder extraction, however, is less straightforward since there might be several expressions beside the candidate opinion holder to be eligible for being a boundary.
In this paper, we explore different linguistic structures encoded as convolution kernels for the detection of subjective expressions. The advantage of convolution kernels is that complex structures can be directly provided to a classifier without deriving explicit features. The feature design for the detection of subjective expressions is fairly difficult and there currently exists no commonly accepted feature set. We consider various structures, such as constituency parse structures, dependency parse structures, and predicate-argument structures. In order to generalize from lexical information, we additionally augment these structures with clustering information and the task-specific knowledge of subjective words. The convolution kernels will be compared with a standard vector kernel.
One problem of data-driven answer extraction in open-domain factoid question answering is that the class distribution of labeled training data is fairly imbalanced. In an ordinary training set, there are far more incorrect answers than correct answers. The class-imbalance is, thus, inherent to the classification task. It has a deteriorating effect on the performance of classifiers trained by standard machine learning algorithms. They usually have a heavy bias towards the majority class, i.e. the class which occurs most often in the training set. In this paper, we propose a method to tackle class imbalance by applying some form of cost-sensitive learning which is preferable to sampling. We present a simple but effective way of estimating the misclassification costs on the basis of class distribution. This approach offers three benefits. Firstly, it maintains the distribution of the classes of the labeled training data. Secondly, this form of meta-learning can be applied to a wide range of common learning algorithms. Thirdly, this approach can be easily implemented with the help of state-of-the-art machine learning software.
In this article, we explore the feasibility of extracting suitable and unsuitable food items for particular health conditions from natural language text. We refer to this task as conditional healthiness classification. For that purpose, we annotate a corpus extracted from forum entries of a food-related website. We identify different relation types that hold between food items and health conditions going beyond a binary distinction of suitability and unsuitability and devise various supervised classifiers using different types of features. We examine the impact of different task-specific resources, such as a healthiness lexicon that lists the healthiness status of a food item and a sentiment lexicon. Moreover, we also consider task-specific linguistic features that disambiguate a context in which mentions of a food item and a health condition co-occur and compare them with standard features using bag of words, part-of-speech information and syntactic parses. We also investigate in how far individual food items and health conditions correlate with specific relation types and try to harness this information for classification.
In this paper, we compare three different generalization methods for in-domain and cross-domain opinion holder extraction being simple unsupervised word clustering, an induction method inspired by distant supervision and the usage of lexical resources. The generalization methods are incorporated into diverse classifiers. We show that generalization causes significant improvements and that the impact of improvement depends on the type of classifier and on how much training and test data differ from each other. We also address the less common case of opinion holders being realized in patient position and suggest approaches including a novel (linguistically-informed) extraction method how to detect those opinion holders without labeled training data as standard datasets contain too few instances of this type.
Knowledge Acquisition with Natural Language Processing in the Food Domain: Potential and Challenges
(2012)
In this paper, we present an outlook on the effectiveness of natural language processing (NLP) in extracting knowledge for the food domain. We identify potential scenarios that we think are particularly suitable for NLP techniques. As a source for extracting knowledge we will highlight the benefits of textual content from social media. Typical methods that we think would be suitable will be discussed. We will also address potential problems and limits that the application of NLP methods may yield.