Refine
Document Type
- Part of a Book (1)
- Conference Proceeding (1)
Keywords
- Computerlinguistik (2) (remove)
In this contribution, we discuss and compare alternative options of modelling the entities and relations of wordnet-like resources in the Web Ontology Language OWL. Based on different modelling options, we developed three models of representing wordnets in OWL, i.e. the instance model, the dass model, and the metaclass model. These OWL models mainly differ with respect to the ontological Status of lexical units (word senses) and the synsets. While in the instance model lexical units and synsets are represented as individuals, in the dass model they are represented as classes; both model types can be encoded in the dialect OWL DL. As a third alternative, we developed a metaclass model in OWL FULL, in which lexical units and synsets are defined as metaclasses, the individuals of which are classes themselves. We apply the three OWL models to each of three wordnet-style resources: (1) a subset of the German wordnet GermaNet, (2) the wordnet-style domain ontology TermNet, and (3) GermaTermNet, in which TermNet technical terms and GermaNet synsets are connected by means of a set of “plug-in” relations. We report on the results of several experiments in which we evaluated the performance of querying and processing these different models: (1) A comparison of all three OWL models (dass, instance, and metaclass model) of TermNet in the context of automatic text-to-hypertext conversion, (2) an investigation of the potential of the GermaTermNet resource by the example of a wordnet-based semantic relatedness calculation.
Machine learning methods offer a great potential to automatically investigate large amounts of data in the humanities. Our contribution to the workshop reports about ongoing work in the BMBF project KobRA (http://www.kobra.tu-dortmund.de) where we apply machine learning methods to the analysis of big corpora in language-focused research of computer-mediated communication (CMC). At the workshop, we will discuss first results from training a Support Vector Machine (SVM) for the classification of selected linguistic features in talk pages of the German Wikipedia corpus in DeReKo provided by the IDS Mannheim. We will investigate different representations of the data to integrate complex syntactic and semantic information for the SVM. The results shall foster both corpus-based research of CMC and the annotation of linguistic features in CMC corpora.