Refine
Year of publication
Document Type
- Conference Proceeding (182)
- Part of a Book (51)
- Article (40)
- Working Paper (9)
- Book (7)
- Contribution to a Periodical (5)
- Doctoral Thesis (3)
- Other (2)
- Master's Thesis (1)
- Part of Periodical (1)
Language
- English (301) (remove)
Keywords
- Korpus <Linguistik> (301) (remove)
Publicationstate
- Veröffentlichungsversion (185)
- Zweitveröffentlichung (35)
- Postprint (16)
- Preprint (1)
Reviewstate
- Peer-Review (134)
- (Verlags)-Lektorat (69)
- Peer-review (9)
- Peer-Revied (3)
- Qualifikationsarbeit (Dissertation, Habilitationsschrift) (3)
- Review-Status-unbekannt (3)
- (Verlags-)Lektorat (1)
- Abschlussarbeit (Bachelor, Master, Diplom, Magister) (Bachelor, Master, Diss.) (1)
- Peer-reviewed (1)
- Verlags-Lektorat (1)
The paper reports the results of the curation project ChatCorpus2CLARIN. The goal of the project was to develop a workflow and resources for the integration of an existing chat corpus into the CLARIN-D research infrastructure for language resources and tools in the Humanities and the Social Sciences (http://clarin-d.de). The paper presents an overview of the resources and practices developed in the project, describes the added value of the resource after its integration and discusses, as an outlook, to what extent these practices can be considered best practices which may be useful for the annotation and representation of other CMC and social media corpora.
This paper presents the application of the <tiger2/> format to various linguistic scenarios with the aim of making it the standard serialisation for the ISO 24615 [1] (SynAF) standard. After outlining the main characteristics of both the SynAF metamodel and the <tiger2/> format, as extended from the initial Tiger XML format [2], we show through a range of different language families how <tiger2/> covers a variety of constituency and dependency based analyses.
This introductory tutorial describes a strictly corpus-driven approach for uncovering indications for aspects of use of lexical items. These aspects include ‘(lexical) meaning’ in a very broad sense and involve different dimensions, they are established in and emerge from respective discourses. Using data-driven mathematical-statistical methods with minimal (linguistic) premises, a word’s usage spectrum is summarized as a collocation profile. Self-organizing methods are applied to visualize the complex similarity structure spanned by these profiles. These visualizations point to the typical aspects of a word’s use, and to the common and distinctive aspects of any two words.
To build a comparable Wikipedia corpus of German, French, Italian, Norwegian, Polish and Hungarian for contrastive grammar research, we used a set of XSLT stylesheets to transform the mediawiki anntations to XML. Furthermore, the data has been amnntated with word class information using different taggers. The outcome is a corpus with rich meta data and linguistic annotation that can be used for multilingual research in various linguistic topics.
Song lyrics can be considered as a text genre that has features of both written and spoken discourse, and potentially provides extensive linguistic and cultural information to scientists from various disciplines. However, pop songs play a rather subordinate role in empirical language research so far - most likely due to the absence of scientifically valid and sustainable resources. The present paper introduces a multiply annotated corpus of German lyrics as a publicly available basis for multidisciplinary research. The resource contains three types of data for the investigation and evaluation of quite distinct phenomena: TEI-compliant song lyrics as primary data, linguistically and literary motivated annotations, and extralinguistic metadata. It promotes empirically/statistically grounded analyses of genre-specific features, systemic-structural correlations and tendencies in the texts of contemporary pop music. The corpus has been stratified into thematic and author-specific archives; the paper presents some basic descriptive statistics, as well as the public online frontend with its built-in evaluation forms and live visualisations.
In this paper, we will present a first attempt to classify commonly confused words in German by consulting their communicative functions in corpora. Although the use of so-called paronyms causes frequent uncertainties due to similarities in spelling, sound and semantics, up until now the phenomenon has attracted little attention either from the perspective of corpus linguistics or from cognitive linguistics. Existing investigations rely on structuralist models, which do not account for empirical evidence. Still, they have developed an elaborate model based on formal criteria, primarily on word formation (cf. Lăzărescu 1999). Looking from a corpus perspective, such classifications are incompatible with language in use and cognitive elements of misuse.
This article sketches first lexicological insights into a classification model as derived from semantic analyses of written communication. Firstly, a brief description of the project will be provided. Secondly, corpus-assisted paronym detection will be focused. Thirdly, in the main section the paper concerns the description of the datasets for paronym classification and the classification procedures. As a work in progress, new insights will continually be extended once spoken and CMC data are added to the investigations.
This paper presents a short insight into a new project at the "Institute for the German Language” (IDS) (Mannheim). It gives an insight into some basic ideas for a corpus-based dictionary of spoken German, which will be developed and compiled by the new project "The Lexicon of spoken German” (Lexik des gesprochenen Deutsch, LeGeDe). The work is based on the "Research and Teaching Corpus of Spoken German” (Forschungs- und Lehrkorpus Gesprochenes Deutsch, FOLK), which is implemented in the "Database for Spoken German” (Datenbank für Gesprochenes Deutsch, DGD). Both resources, the database and the corpus, have been developed at the IDS.
This paper presents the prototype of a lexicographic resource for spoken German in interaction, which was conceived within the framework of the LeGeDe-project (LeGeDe=Lexik des gesprochenen Deutsch). First of all, it summarizes the theoretical and methodological approaches that were used for the initial planning of the resource. The headword candidates were selected by analyzing corpus-based data. Therefore, the data of two corpora (written and spoken German) were compared with quantitative methods. The information that was gathered on the selected headword candidates can be assigned to two different sections: meanings and functions in interaction.
Additionally, two studies on the expectations of future users towards the resource were carried out. The results of these two studies were also taken into account in the development of the prototype. Focusing on the presentation of the resource’s content, the paper shows both the different lexicographical information in selected dictionary entries, and the information offered by the provided hyperlinks and external texts. As a conclusion, it summarizes the most important innovative aspects that were specifically developed for the implementation of such a resource.
Ph@ttSessionz and Deutsch heute are two large German speech databases. They were created for different purposes: Ph@ttSessionz to test Internet-based recordings and to adapt speech recognizers to the voices of adolescent speakers, Deutsch heute to document regional variation of German. The databases differ in their recording technique, the selection of recording locations and speakers, elicitation mode, and data processing.
In this paper, we outline how the recordings were performed, how the data was processed and annotated, and how the two databases were imported into a single relational database system. We present acoustical measurements on the digit items of both databases. Our results confirm that the elicitation technique affects the speech produced, that f0 is quite comparable despite different recording procedures, and that large speech technology databases with suitable metadata may well be used for the analysis of regional variation of speech.
In this paper, an exploratory data-driven method is presented that extracts word-types from diachronic corpora that have undergone the most pronounced change in frequency of occurrence in a given period of time. Combined with statistical methods from time series analysis, the method is able to find meaningful patterns and relationships in diachronic corpora, an idea that is still uncommon in linguistics. This indicates that the approach can facilitate an improved understanding of diachronic processes.
The present paper reports the first results of the compilation and annotation of a blog corpus for German. The main aim of the project is the representation of the blog discourse structure and relations between its elements (blog posts, comments) and participants (bloggers, commentators). The data included in the corpus were manually collected from the scientific blog portal SciLogs. The feature catalogue for the corpus annotation includes three types of information which is directly or indirectly provided in the blog or can be construed by means of statistical analysis or computational tools. At this point, only directly available information (e.g. title of the blog post, name of the blogger etc.) has been annotated. We believe, our blog corpus can be of interest for the general study of blog structure or related research questions as well as for the development of NLP methods and techniques (e.g. for authorship detection).
A key difference between traditional humanities research and the emerging field of digital humanities is that the latter aims to complement qualitative methods with quantitative data. In linguistics, this means the use of large corpora of text, which are usually annotated automatically using natural language processing tools. However, these tools do not exist for historical texts, so scholars have to work with unannotated data. We have developed a system for systematic iterative exploration and annotation of historical text corpora, which relies on an XML database (BaseX) and in particular on the Full Text and Update facilities of XQuery.
In this paper, a method for measuring synchronic corpus (dis-)similarity put forward by Kilgarriff (2001) is adapted and extended to identify trends and correlated changes in diachronic text data, using the Corpus of Historical American English (Davies 2010a) and the Google Ngram Corpora (Michel et al. 2010a). This paper shows that this fully data-driven method, which extracts word types that have undergone the most pronounced change in frequency in a given period of time, is computationally very cheap and that it allows interpretations of diachronic trends that are both intuitively plausible and motivated from the perspective of information theory. Furthermore, it demonstrates that the method is able to identify correlated linguistic changes and diachronic shifts that can be linked to historical events. Finally, it can help to improve diachronic POS tagging and complement existing NLP approaches. This indicates that the approach can facilitate an improved understanding of diachronic processes in language change.
Linguistic query systems are special purpose IR applications. We present a novel state-of-the-art approach for the efficient exploitation of very large linguistic corpora, combining the advantages of relational database management systems (RDBMS) with the functional MapReduce programming model. Our implementation uses the German DEREKO reference corpus with multi-layer linguistic annotations and several types of text-specific metadata, but the proposed strategy is language-independent and adaptable to large-scale multilingual corpora.
We present a gold standard for semantic relation extraction in the food domain for German. The relation types that we address are motivated by scenarios for which IT applications present a commercial potential, such as virtual customer advice in which a virtual agent assists a customer in a supermarket in finding those products that satisfy their needs best. Moreover, we focus on those relation types that can be extracted from natural language text corpora, ideally content from the internet, such as web forums, that are easy to retrieve. A typical relation type that meets these requirements are pairs of food items that are usually consumed together. Such a relation type could be used by a virtual agent to suggest additional products available in a shop that would potentially complement the items a customer has already in their shopping cart. Our gold standard comprises structural data, i.e. relation tables, which encode relation instances. These tables are vital in order to evaluate natural language processing systems that extract those relations.
We present a testsuite for POS tagging German web data. Our testsuite provides the original raw text as well as the gold tokenisations and is annotated for parts-of-speech. The testsuite includes a new dataset for German tweets, with a current size of 3,940 tokens. To increase the size of the data, we harmonised the annotations in already existing web corpora, based on the Stuttgart-Tübingen Tag Set. The current version of the corpus has an overall size of 48,344 tokens of web data, around half of it from Twitter. We also present experiments, showing how different experimental setups (training set size, additional out-of-domain training data, self-training) influence the accuracy of the taggers. All resources and models will be made publicly available to the research community.
This paper presents three electronic collections of polarity items: (i) negative polarity items in Romanian, (ii) negative polarity items in German, and (iii) positive polarity items in German. The presented collections are a part of a linguistic resource on lexical units with highly idiosyncratic occurrence patterns. The motivation for collecting and documenting polarity items was to provide a solid empirical basis for linguistic investigations of these expressions. Our databe provides general information about the collected items, specifies their syntactic properties, and describes the environment that licenses a given item. For each licensing context, examples from various corpora and the Internet are introduced. Finally, the type of polarity (negative or positive) and the class (superstrong, strong, weak or open) associated with a given item is speci ed. Our database is encoded in XML and is available via the Internet, offering dynamic and exible access.
We present a new resource for German causal language, with annotations in context for verbs, nouns and adpositions. Our dataset includes 4,390 annotated instances for more than 150 different triggers. The annotation scheme distinguishes three different types of causal events (CONSEQUENCE, MOTIVATION, PURPOSE). We also provide annotations for semantic roles, i.e. of the cause and effect for the causal event as well as the actor and affected party, if present. In the paper, we present inter-annotator agreement scores for our dataset and discuss problems for annotating causal language. Finally, we present experiments where we frame causal annotation as a sequence labelling problem and report baseline results for the prediciton of causal arguments and for predicting different types of causation.
Classical null hypothesis significance tests are not appropriate in corpus linguistics, because the randomness assumption underlying these testing procedures is not fulfilled. Nevertheless, there are numerous scenarios where it would be beneficial to have some kind of test in order to judge the relevance of a result (e.g. a difference between two corpora) by answering the question whether the attribute of interest is pronounced enough to warrant the conclusion that it is substantial and not due to chance. In this paper, I outline such a test.
This paper presents the current results of an ongoing research project on corpus distribution of prepositions and pronouns within Polish preposition-pronoun contractions. The goal of the project is to provide a quantitative description of Polish preposition-pronoun contractions taking into consideration morphosyntactic properties of their components. It is expected that the results will provide a basis for a revision of the traditionally assumed inflectional paradigms of Polish pronouns and, thus, for a possible remodeling of these paradigms. The results of corpus-based investigations of the distribution of prepositions within preposition-pronoun contractions can be used for grammar-theoretical and lexicographic purposes.
Feedback utterances are among the most frequent in dialogue. Feedback is also a crucial aspect of linguistic theories that take social interaction, involving language, into account. This paper introduces the corpora and datasets of a project scrutinizing this kind of feedback utterances in French. We present the genesis of the corpora (for a total of about 16 hours of transcribed and phone force-aligned speech) involved in the project. We introduce the resulting datasets and discuss how they are being used in on-going work with focus on the form-function relationship of conversational feedback. All the corpora created and the datasets produced in the framework of this project will be made available for research purposes.
A syntax-based scheme for the annotation and segmentation of German spoken language interactions
(2018)
Unlike corpora of written language where segmentation can mainly be derived from orthographic punctuation marks, the basis for segmenting spoken language corpora is not predetermined by the primary data, but rather has to be established by the corpus compilers. This impedes consistent querying and visualization of such data. Several ways of segmenting have been proposed,
some of which are based on syntax. In this study, we developed and evaluated annotation and segmentation guidelines in reference to the topological field model for German. We can show that these guidelines are used consistently across annotators. We also investigated the influence of various interactional settings with a rather simple measure, the word-count per segment and unit-type. We observed that the word count and the distribution of each unit type differ in varying interactional settings and that our developed segmentation and annotation guidelines are used consistently across annotators. In conclusion, our syntax-based segmentations reflect interactional properties that are intrinsic to the social interactions that participants are involved in. This can be used for further analysis of social interaction and opens the possibility for automatic segmentation of transcripts.
The Manatee corpus management system on which the Sketch Engine is built is efficient, but unable to harness the power of today’s multiprocessor machines. We describe a new, compatible implementation of Manatee which we develop in the Go language and report on the performance gains that we obtained.
We present an approach to an aspect of managing complex access scenarios to large and heterogeneous corpora that involves handling user queries that, intentionally or due to the complexity of the queried resource, target texts or annotations outside of the given user’s permissions. We first outline the overall architecture of the corpus analysis platform KorAP, devoting some attention to the way in which it handles multiple query languages, by implementing ISO CQLF (Corpus Query Lingua Franca), which in turn constitutes a component crucial for the functionality discussed here. Next, we look at query rewriting as it is used by KorAP and zoom in on one kind of this procedure, namely the rewriting of queries that is forced by data access restrictions.
This paper presents Release 2.0 of the SALSA corpus, a German resource for lexical semantics. The new corpus release provides new annotations for German nouns, complementing the existing annotations of German verbs in Release 1.0. The corpus now includes around 24,000 sentences with more than 36,000 annotated instances. It was designed with an eye towards NLP applications such as semantic role labeling but will also be a useful resource for linguistic studies in lexical semantics.
This paper addresses long-term archival for large corpora. Three aspects specific to language resources are focused, namely (1) the removal of resources for legal reasons, (2) versioning of (unchanged) objects in constantly growing resources, especially where objects can be part of multiple releases but also part of different collections, and (3) the conversion of data to new formats for digital preservation. It is motivated why language resources may have to be changed, and why formats may need to be converted. As a solution, the use of an intermediate proxy object called a signpost is suggested. The approach will be exemplified with respect to the corpora of the Leibniz Institute for the German Language in Mannheim, namely the German Reference Corpus (DeReKo) and the Archive for Spoken German (AGD).
In the first volume of Corpus Linguistics and Linguistic Theory, Gries (2005. Null-hypothesis significance testing of word frequencies: A follow-up on Kilgarriff. Corpus Linguistics and Linguistic Theory 1(2). doi:10.1515/ cllt.2005.1.2.277. http://www.degruyter.com/view/j/cllt.2005.1.issue-2/cllt.2005. 1.2.277/cllt.2005.1.2.277.xml: 285) asked whether corpus linguists should abandon null-hypothesis significance testing. In this paper, I want to revive this discussion by defending the argument that the assumptions that allow inferences about a given population – in this case about the studied languages – based on results observed in a sample – in this case a collection of naturally occurring language data – are not fulfilled. As a consequence, corpus linguists should indeed abandon null-hypothesis significance testing.
In the first volume of Corpus Linguistics and Linguistic Theory, Gries (2005. Null-hypothesis significance testing of word frequencies: A follow-up on Kilgarriff. Corpus Linguistics and Linguistic Theory 1(2). doi:10.1515/cllt.2005.1.2.277. http://www.degruyter.com/view//cllt.2005.1.issue-2/cllt.2005.1.2.277/cllt.2005.1.2.277.xml: 285) asked whether corpus linguists should abandon null-hypothesis significance testing. In this paper, I want to revive this discussion by defending the argument that the assumptions that allow inferences about a given population – in this case about the studied languages – based on results observed in a sample – in this case a collection of naturally occurring language data – are not fulfilled. As a consequence, corpus linguists should indeed abandon null-hypothesis significance testing.
This paper introduces the Aix Map Task corpus, a corpus of audio and video recordings of task-oriented dialogues. It was modelled after the original HCRC Map Task corpus. Lexical material was designed for the analysis of speech and prosody, as described in Astésano et al. (2007). The design of the lexical material, the protocol and some basic quantitative features of the existing corpus are presented. The corpus was collected under two communicative conditions, one audio-only condition and one face-to-face condition. The recordings took place in a studio and a sound attenuated booth respectively, with head-set microphones (and in the face-to-face condition with two video cameras). The recordings have been segmented into Inter-Pausal-Units and transcribed using transcription conventions containing actual productions and canonical forms of what was said. It is made publicly available online.
Distributional models of word use constitute an indispensable tool in corpus based lexicological research for discovering paradigmatic relations and syntagmatic patterns (Belica et al. 2010). Recently, word embeddings (Mikolov et al. 2013) have revived the field by allowing to construct and analyze distributional models on very large corpora. This is accomplished by reducing the very high dimensionality of word cooccurrence contexts, the size of the vocabulary, to few dimensions, such as 100-200. However, word use and meaning can vary widely along dimensions such as domain, register, and time, and word embeddings tend to represent only the most prevalent meaning. In this paper we thus construct domain specific word embeddings to allow for systematically analyzing variations in word use. Moreover, we also demonstrate how to reconstruct domain specific co-occurrence contexts from the dense word embeddings.
This thesis consists of the following three papers that all have been published in international peer-reviewed journals:
Chapter 3: Koplenig, Alexander (2015c). The Impact of Lacking Metadata for the Measurement of Cultural and Linguistic Change Using the Google Ngram Data Sets—Reconstructing the Composition of the German Corpus in Times of WWII. Published in: Digital Scholarship in the Humanities. Oxford: Oxford University Press. [doi:10.1093/llc/fqv037]
Chapter 4: Koplenig, Alexander (2015b). Why the quantitative analysis of dia-chronic corpora that does not consider the temporal aspect of time-series can lead to wrong conclusions. Published in: Digital Scholarship in the Humanities. Oxford: Oxford University Press. [doi:10.1093/llc/fqv030]
Chapter 5: Koplenig, Alexander (2015a). Using the parameters of the Zipf–Mandelbrot law to measure diachronic lexical, syntactical and stylistic changes – a large-scale corpus analysis. Published in: Corpus Linguistics and Linguistic Theory. Berlin/Boston: de Gruyter. [doi:10.1515/cllt-2014-0049]
Chapter 1 introduces the topic by describing and discussing several basic concepts relevant to the statistical analysis of corpus linguistic data. Chapter 2 presents a method to analyze diachronic corpus data and a summary of the three publications. Chapters 3 to 5 each represent one of the three publications. All papers are printed in this thesis with the permission of the publishers.
Annotating Discourse Relations in Spoken Language: A Comparison of the PDTB and CCR Frameworks
(2016)
In discourse relation annotation, there is currently a variety of different frameworks being used, and most of them have been developed and employed mostly on written data. This raises a number of questions regarding interoperability of discourse relation annotation schemes, as well as regarding differences in discourse annotation for written vs. spoken domains. In this paper, we describe ouron annotating two spoken domains from the SPICE Ireland corpus (telephone conversations and broadcast interviews) according todifferent discourse annotation schemes, PDTB 3.0 and CCR. We show that annotations in the two schemes can largely be mappedone another, and discuss differences in operationalisations of discourse relation schemes which present a challenge to automatic mapping. We also observe systematic differences in the prevalence of implicit discourse relations in spoken data compared to written texts,find that there are also differences in the types of causal relations between the domains. Finally, we find that PDTB 3.0 addresses many shortcomings of PDTB 2.0 wrt. the annotation of spoken discourse, and suggest further extensions. The new corpus has roughly theof the CoNLL 2015 Shared Task test set, and we hence hope that it will be a valuable resource for the evaluation of automatic discourse relation labellers.
This paper discusses computational linguistic methods for the semi-automatic analysis of modality interdependencies (the combination of complex resources such as speaking, writing, and visualizing; MID) in professional crosssituational interaction settings. The overall purpose of the approach is to develop models, methods, and a framework for the description and analysis of MID forms and functions. The paper describes work in progress—the development of an annotation framework that allows annotating different data and file formats at various levels, to relate annotation levels and entries independently of the given file format, and to visualize patterns.
Annotating Spoken Language
(2014)
Feedback utterances are among the most frequent in dialogue. Feedback is also a crucial aspect of all linguistic theories that take social interaction involving language into account. However, determining communicative functions is a notoriously difficult task both for human interpreters and systems. It involves an interpretative process that integrates various sources of information. Existing work on communicative function classification comes from either dialogue act tagging where it is generally coarse grained concerning the feed- back phenomena or it is token-based and does not address the variety of forms that feed- back utterances can take. This paper introduces an annotation framework, the dataset and the related annotation campaign (involving 7 raters to annotate nearly 6000 utterances). We present its evaluation not merely in terms of inter-rater agreement but also in terms of usability of the resulting reference dataset both from a linguistic research perspective and from a more applicative viewpoint.
As a consequence of a recent curation project, the Dortmund Chat Corpus is available in CLARIN-D research infrastructures for download and querying. In a legal expertise it had been recommended that standard measures of anonymisation be applied to the corpus before its republication. This paper reports about the anonymisation campaign that was conducted for the corpus. Anonymisation has been realised as categorisation, and the taxonomy of anonymisation categories applied is introduced and the method of applying it to the TEI files is demonstrated. The results of the anonymisation campaign as well as issues of quality assessment are discussed. Finally, pseudonymisation as an alternative to categorisation as a method of the anonymisation of CMC data is discussed, as well as possibilities of an automatisation of the process.
This paper presents ongoing research which is embedded in an empirical-linguistic research program, set out to devise viable research strategies for developing an explanatory theory of grammar as a psychological and social phenomenon. As this phenomenon cannot be studied directly, the program attempts to approach it indirectly through its correlates in language corpora, which is justified by referring to the core tenets of Emergent Grammar. The guiding principle for identifying such corpus correlates of grammatical regularities is to imitate the psychological processes underlying the emergent nature of these regularities. While previous work in this program focused on syntagmatic structures, the current paper goes one step further by investigating schematic structures that involve paradigmatic variation. It introduces and explores a general strategy by which corpus correlates of such structures may be uncovered, and it further outlines how these correlates may be used to study the nature of the psychologically real schematic structures.
Our paper describes an experiment aimed to assessment of lexical coverage in web corpora in comparison with the traditional ones for two closely related Slavic languages from the lexicographers’ perspective. The preliminary results show that web corpora should not be considered ― inferior, but rather ― different.
Common Crawl is a considerably large, heterogeneous multilingual corpus comprised of crawled documents from the internet, surpassing 20TB of data and distributed as a set of more than 50 thousand plain text files where each contains many documents written in a wide variety of languages. Even though each document has a metadata block associated to it, this data lacks any information about the language in which each document is written, making it extremely difficult to use Common Crawl for monolingual applications. We propose a general, highly parallel, multithreaded pipeline to clean and classify Common Crawl by language; we specifically design it so that it runs efficiently on medium to low resource infrastructures where I/O speeds are the main constraint. We develop the pipeline so that it can be easily reapplied to any kind of heterogeneous corpus and so that it can be parameterised to a wide range of infrastructures. We also distribute a 6.3TB version of Common Crawl, filtered, classified by language, shuffled at line level in order to avoid copyright issues, and ready to be used for NLP applications.
We present data-driven methods for the acquisition of LFG resources from two German treebanks. We discuss problems specific to semi-free word order languages as well as problems arising from the data structures determined by the design of the different treebanks. We compare two ways of encoding semi-free word order, as done in the two German treebanks, and argue that the design of the TiGer treebank is more adequate for the acquisition of LFG resources. Furthermore, we describe an architecture for LFG grammar acquisition for German, based on the two German treebanks, and compare our results with a hand-crafted German LFG grammar.
In this paper, we describe preliminary results from an ongoing experiment wherein we classify two large unstructured text corpora—a web corpus and a newspaper corpus—by topic domain (or subject area). Our primary goal is to develop a method that allows for the reliable annotation of large crawled web corpora with meta data required by many corpus linguists. We are especially interested in designing an annotation scheme whose categories are both intuitively interpretable by linguists and firmly rooted in the distribution of lexical material in the documents. Since we use data from a web corpus and a more traditional corpus, we also contribute to the important field of corpus comparison and corpus evaluation. Technically, we use (unsupervised) topic modeling to automatically induce topic distributions over gold standard corpora that were manually annotated for 13 coarse-grained topic domains. In a second step, we apply supervised machine learning to learn the manually annotated topic domains using the previously induced topics as features. We achieve around 70% accuracy in 10-fold cross validations. An analysis of the errors clearly indicates, however, that a revised classification scheme and larger gold standard corpora will likely lead to a substantial increase in accuracy.
In this paper we present the results of an automatic classification of Russian texts into three levels of difficulty. Our aim is to build a study corpus of Russian, in which a L2 student is able to select texts of a desired complexity. We are building on a pilot study, in which we classified Russian texts into two levels of difficulty. In the current paper, we apply the classification to an extended corpus of 577 labelled texts. The best-performing combination of features achieves an accuracy of 0,74 within at most one level difference.
Automatic Food Categorization from Large Unlabeled Corpora and Its Impact on Relation Extraction
(2014)
We present a weakly-supervised induction method to assign semantic information to food items. We consider two tasks of categorizations being food-type classification and the distinction of whether a food item is composite or not. The categorizations are induced by a graph-based algorithm applied on a large unlabeled domain-specific corpus. We show that the usage of a domain-specific corpus is vital. We do not only outperform a manually designed open-domain ontology but also prove the usefulness of these categorizations in relation extraction, outperforming state-of-the-art features that include syntactic information and Brown clustering.
This paper describes work directed towards the development of a syllable prominence-based prosody generation functionality for a German unit selection speech synthesis system. A general concept for syllable prominence-based prosody generation in unit selection synthesis is proposed. As a first step towards its implementation, an automated syllable prominence annotation procedure based on acoustic analyses has been performed on the BOSS speech corpus. The prominence labeling has been evaluated against an existing annotation of lexical stress levels and manual prominence labeling on a subset of the corpus. We discuss methods and results and give an outlook on further implementation steps.
Usenet is a large online resource containing user-generated messages (news articles) organised in discussion groups (newsgroups) which deal with a wide variety of different topics. We describe the download, conversion, and annotation of a comprehensive German news corpus for integration in DeReKo, the German Reference Corpus hosted at the Institut für Deutsche Sprache in Mannheim.
Catching the common cause: extraction and annotation of causal relations and their participants
(2017)
In this paper, we present a simple, yet effective method for the automatic identification and extraction of causal relations from text, based on a large English-German parallel corpus. The goal of this effort is to create a lexical resource for German causal relations. The resource will consist of a lexicon that describes constructions that trigger causality as well as the participants of the causal event, and will be augmented by a corpus with annotated instances for each entry, that can be used as training data to develop a system for automatic classification of causal relations. Focusing on verbs, our method harvested a set of 100 different lexical triggers of causality, including support verb constructions. At the moment, our corpus includes over 1,000 annotated instances. The lexicon and the annotated data will be made available to the research community.
The availability of large multi-parallel corpora offers an enormous wealth of material to contrastive corpus linguists, translators and language learners, if we can exploit the data properly. Necessary preparation steps include sentence and word alignment across multiple languages. Additionally, linguistic annotation such as partof- speech tagging, lemmatisation, chunking, and dependency parsing facilitate precise querying of linguistic properties and can be used to extend word alignment to sub-sentential groups. Such highly interconnected data is stored in a relational database to allow for efficient retrieval and linguistic data mining, which may include the statistics-based selection of good example sentences. The varying information needs of contrastive linguists require a flexible linguistic query language for ad hoc searches. Such queries in the format of generalised treebank query languages will be automatically translated into SQL queries.
CLARIN contractual framework for sharing language data: the perspective of personal data protection
(2020)
The article analyses the responsibility for ensuring compliance with the General Data Protection Regulation (GDPR) in research settings. As a general rule, organisations are considered the data controller (responsible party for the GDPR compliance). Research constitutes a unique setting influenced by academic freedom. This raises the question of whether academics could be considered the controller as well. However, there are some court cases and policy documents on this issue. It is not settled yet. The analysis serves a preliminary analytical background for redesigning CLARIN contractual framework for sharing data.
We present web services which implement a workflow for transcripts of spoken language following the TEI guidelines, in particular ISO 24624:2016 “Language resource management – Transcription of spoken language”. The web services are available at our website and will be available via the CLARIN infrastructure, including the Virtual Language Observatory and WebLicht.
We discovered several recurring errors in the current version of the Europarl Corpus originating both from the web site of the European Parliament and the corpus compilation based thereon. The most frequent error was incompletely extracted metadata leaving non-textual fragments within the textual parts of the corpus files. This is, on average, the case for every second speaker change. We not only cleaned the Europarl Corpus by correcting several kinds of errors, but also aligned the speakers’ contributions of all available languages and compiled every- thing into a new XML-structured corpus. This facilitates a more sophisticated selection of data, e.g. querying the corpus for speeches by speakers of a particular political group or in particular language combinations.
The paper presents best practices and results from projects dedicated to the creation of corpora of computer-mediated communication and social media interactions (CMC) from four different countries. Even though there are still many open issues related to building and annotating corpora of this type, there already exists a range of tested solutions which may serve as a starting point for a comprehensive discussion on how future standards for CMC corpora could (and should) be shaped like.
CMC Corpora in DeReKo
(2017)
We introduce three types of corpora of computer-mediated communication that have recently been compiled at the Institute for the German Language or curated from an external project and included in DeReKo, the German Reference Corpus, namely Wikipedia (discussion) corpora, the Usenet news corpus, and the Dortmund Chat Corpus. The data and corpora have been converted to I5, the TEI customization to represent texts in DeReKo, and are researchable via the web-based IDS corpus research interfaces and in the case of Wikipedia and chat also downloadable from the IDS repository and download server, respectively.
Since 2013 representatives of several French and German CMC corpus projects have developed three customizations of the TEI-P5 standard for text encoding in order to adapt the encoding schema and models provided by the TEI to the structural peculiarities of CMC discourse. Based on the three schema versions, a 4th version has been created which takes into account the experiences from encoding our corpora and which is specifically designed for the submission of a feature request to the TEI council. On our poster we would present the structure of this schema and its relations (commonalities and differences) to the previous schemas.
Within cognitive linguistics, there is an increasing awareness that the study of linguistic phenomena needs to be grounded in usage. Ideally, research in cognitive linguistics should be based on authentic language use, its results should be replicable, and its claims falsifiable. Consequently, more and more studies now turn to corpora as a source of data. While corpus-based methodologies have increased in sophistication, the use of corpus data is also associated with a number of unresolved problems. The study of cognition through off-line linguistic data is, arguably, indirect, even if such data fulfils desirable qualities such as being natural, representative and plentiful. Several topics in this context stand out as particularly pressing issues. This discussion note addresses (1) converging evidence from corpora and experimentation, (2) whether corpora mirror psychological reality, (3) the theoretical value of corpus linguistic studies of ‘alternations’, (4) the relation of corpus linguistics and grammaticality judgments, and, lastly, (5) the nature of explanations in cognitive corpus linguistics. We do not claim to resolve these issues nor to cover all possible angles; instead, we strongly encourage reactions and further discussion.
This paper investigates evidence for linguistic coherence in new urban dialects that evolved in multiethnic and multilingual urban neighbourhoods. We propose a view of coherence as an interpretation of empirical observations rather than something that would be ‘‘out there in the data’’, and argue that this interpretation should be based on evidence of systematic links between linguistic phenomena, as established by patterns of covariation between phenomena that can be shown to be related at linguistic levels. In a case study, we present results from qualitative and quantitative analyses for a set of phenomena that have been described for Kiezdeutsch, a new dialect from multilingual urban Germany. Qualitative analyses point to linguistic relationships between different phenomena and between pragmatic and linguistic levels. Quantitative analyses, based on corpus data from KiDKo (www.kiezdeutschkorpus.de), point to systematic advantages for the Kiezdeutsch data from a multiethnic and multilingual context provided by the main corpus (KiDKo/Mu), compared to complementary corpus data from a mostly monoethnic and monolingual (German) context (KiDKo/Mo). Taken together, this indicates patterns of covariation that support an interpretation of coherence for this new dialect: our findings point to an interconnected linguistic system, rather than to a mere accumulation of individual features. In addition to this internal coherence, the data also points to external coherence: Kiezdeutsch is not disconnected on the outside either, but fully integrated within the general domain of German, an integration that defies a distinction of ‘‘autochthonous’’ and ‘‘allochthonous’’ German, not only at the level of speakers, but also at the level of linguistic systems.
This paper shows how corpora and related tools can be used to analyse and present significant colligational patterns lexicographically. In German, patterns such as das nötige Wissen vermitteln and sein Wissen unter Beweis stellen play a vital role when learning the language, as they exhibit relevant idiomatic usage and lexical and syntactic rules of combination. Each item has specific semantic and grammatical functions and particular preferences with respect to position and distribution. An analysis of adjectives, for example, identifies preferences in adverbial, attributive, or predicative functions.
Traditionally, corpus analyses of syntagmatic constructions have not been conducted for lexicographic purposes. This paper shows how to utilise corpora to extract and examine typical syntagms and how the results of such an analysis are documented systematically in ELEXIKO, a large-scale corpus-based Internet reference work of German. It also demonstrates how this dictionary accounts for the lexical and grammatical interplay between units in a syntagm and how authentic corpus material and complementary prose-style usage notes are a useful guide to text production or reception.
German research on collocation(s) focuses on many different aspects. A comprehensive documentation would be impossible in this short report. Accepting that we cannot do justice to all the contributions to this area, we just pick out some influential comerstones. This selection does not claim to be representative or balanced, but it follows the idea to constitute the backbone of the story we want to tell: Our ‘German’ view of the still ongoing evolution of a notion of ‘collocation’ Although our own work concerns the theoretical background of and the empirical rationale for collocations, lexicography occupies a large space. Some of the recent publications ( Wahrig 2008, Häcki Buhofer et al. 2014) represent a turn to the empirical legitimation for the selection of typical expressions. Nevertheless, linking the empirical evidence to the needs of an abstract lexicographic description (or a didactic format) is still an open issue.
We compare several different corpus- based and lexicon-based methods for the scalar ordering of adjectives. Among them, we examine for the first time a low- resource approach based on distinctive- collexeme analysis that just requires a small predefined set of adverbial modifiers. While previous work on adjective intensity mostly assumes one single scale for all adjectives, we group adjectives into different scales which is more faithful to human perception. We also apply the methods to both polar and non-polar adjectives, showing that not all methods are equally suitable for both types of adjectives.
The present paper reports the first results of the compilation and annotation of a blog corpus for German. The main aim of the project is the representation of the blog discourse structure and relations between its elements (blog posts, comments) and participants (bloggers, commentators). The data included in the corpus were manually collected from the scientific blog portal SciLogs. The feature catalogue for the corpus annotation includes three types of information which is directly or indirectly provided in the blog or can be construed by means of statistical analysis or computational tools. At this point, only directly available information (e.g., title of the blog post, name of the blogger etc.) has been annotated. We believe, our blog corpus can be of interest for the general study of blog structure or related research questions as well as for the development of NLP methods and techniques (e.g. for authorship detection).
This paper presents a study on the comprehensibility of rephrased syntactic structures in German court decisions. While there are a number of studies using psycholinguistic methods to investigate the comprehensibility of original legal texts, we are not aware of any study looking into the effect resolving complex structures has on the comprehensibility. Our study combines three methodological steps. First, we analyse an annotated corpus of court decisions, press releases and newspaper reports on these decisions in order to detect those complex structures in the decisions which distinguish them from the other text types. Secondly, these structures are rephrased into two increasingly simple versions. Finally, all versions are subjected to a self paced reading experiment. The findings suggest that rephrasing greatly enhances the comprehensibility for the lay reader.
The paper reports on the results of a scientific colloquium dedicated to the creation of standards and best practices which are needed to facilitate the integration of language resources for CMC stemming from different origins and the linguistic analysis of CMC phenomena in different languages and genres. The key issue to be solved is that of interoperability – with respect to the structural representation of CMC genres, linguistic annotations metadata, and anonymization/pseudonymization schemas. The objective of the paper is to convince more projects to partake in a discussion about standards for CMC corpora and for the creation of a CMC corpus infrastructure across languages and genres. In view of the broad range of corpus projects which are currently underway all over Europe, there is a great window of opportunity for the creation of standards in a bottom-up approach.
Are borrowed neologisms accepted more slowly into the German language than German words resulting from the application of wrd formation rules? This study addresses this question by focusing on two possible indicators for the acceptance of neologisms: a) frequency development of 239 German neologisms from the 1990s (loanwords as well as new words resulting from the application of word formation rules) in the German reference corpus DEREKO and b) frequency development in the use of pragmatic markers (‘flags’, namely quotation marks and phrases such as sogenannt ‘so-called’) with these words. In the second part of the article, a psycholinguistic approach to evaluating the (psychological) status of different neologisms and non-words in an experimentally controlled study and plans to carry out interviews in a field test to collect speakers’ opinions on the acceptance of the analysed neologisms are outlined. Finally, implications for the lexicographic treatment of both types of neologisms are discussed.
Constructing a Corpus
(2016)
This paper is about the workflow for construction and dissemination of FOLK (Forschungs - und Lehrkorpus Gesprochenes Deutsch – Research and Teaching Corpus of Spoken German), a large corpus of authentic spoken interaction data, recorded on audio and video. Section 2 describes in detail the tools used in the individual steps of transcription, anonymization, orthographic normalization, lemmatization and POS tagging of the data, as well as some utilities used for corpus management. Section 3 deals with the DGD (Datenbank für Gesprochenes Deutsch - Database of Spoken German) as a tool for distributing completed data sets and making them available for qualitative and quantitative analysis. In section 4, some plans for further development are sketched.
This contribution presents the newest version of our ’Wortverbindungsfelder’ (fields of multi-word expressions), an experimental lexicographic resource that focusses on aspects of MWEs that are rarely addressed in traditional descriptions: Contexts, patterns and interrelations. The MWE fields use data from a very large corpus of written German (over 6 billion word forms) and are created in a strictly corpus-based way. In addition to traditional lexicographic descriptions, they include quantitative corpus data which is structured in new ways in order to show the usage specifics. This way of looking at MWEs gives insight in the structure of language and is especially interesting for foreign language learners.
We present an approach to making existing CLARIN web services usable for spoken language transcriptions. Our approach is based on a new TEI-based ISO standard for such transcriptions. We show how existing tool formats can be transformed to this standard, how an encoder/decoder pair for the TCF format enables users to feed this type of data through a WebLicht tool chain, and why and how web services operating directly on the standard format would be useful.
In the context of the HyTex project, our goal is to convert a corpus into a hypertext, basing conversion strategies on annotations which explicitly mark up the text-grammatical structures and relations between text segments. Domain-specific knowledge is represented in the form of a knowledge net, using topic maps. We use XML as an interchange format. In this paper, we focus on a declarative rule language designed to express conversion strategies in terms of text-grammatical structures and hypertext results. The strategies can be formulated in a concise formal syntax which is independend of the markup, and which can be transformed automatically into executable program code.
Converting and Representing Social Media Corpora into TEI: Schema and best practices from CLARIN-D
(2016)
The paper presents results from a curation project within CLARIN-D, in which an existing lMWord corpus of German chat communication has been integrated into the DEREKO and DWDS corpus infrastructures of the CLARIN-D centres at the Institute for the German Language (IDS, Mannheim) and at the Berlin-Brandenburg Academy of Sciences (BBAW, Berlin). The focus is on the solutions developed for converting and representing the corpus in a TEI format.
This article reports on the on-going CoRoLa project, aiming at creating a reference corpus of contemporary Romanian (from 1945 onwards), opened for online free exploitation by researchers in linguistics and language processing, teachers of Romanian, students. We invest serious efforts in persuading large publishing houses and other owners of IPR on relevant language data to join us and contribute the project with selections of their text and speech repositories. The CoRoLa project is coordinated by two Computer Science institutes of the Romanian Academy, but enjoys cooperation of and consulting from professional linguists from other institutes of the Romanian Academy. We foresee a written component of the corpus of more than 500 million word forms, and a speech component of about 300 hours of recordings. The entire collection of texts (covering all functional styles of the language) will be pre-processed and annotated at several levels, and also documented with standardized metadata. The pre-processing includes cleaning the data and harmonising the diacritics, sentence splitting and tokenization. Annotation will include morpho-lexical tagging and lemmatization in the first stage, followed by syntactic, semantic and discourse annotation in a later stage.
In my talk, I present an empirical approach to detecting and describing proverbs as frozen sentences with specific functions in current language use. We have developed this approach in the EU project ‘SprichWort’ (based on the German Reference Corpus). The first chapter illustrates selected aspects of our complex, iterative procedure to validate proverb candidates. Based on our corpus-driven lexpan methodology of slot analysis I then discuss semantic restrictions of proverb patterns. Furthermore, I show different degrees of proverb quality ranging from genuine proverbs to non-proverb realizations of the same abstract pattern. On the one hand, the corpus validation reveals that proverbs are definitely perceived and used as relatively fixed entities and often as sentences. On the other hand, proverbs are not only interpreted as an interesting unique phenomenon but also as part of the whole lexicon, embedded in networks of different lexical items.
The present paper describes Corpus Query Lingua Franca (ISO CQLF), a specification designed at ISO Technical Committee 37 Subcommittee 4 “Language resource management” for the purpose of facilitating the comparison of properties of corpus query languages. We overview the motivation for this endeavour and present its aims and its general architecture. CQLF is intended as a multi-part specification; here, we concentrate on the basic metamodel that provides a frame that the other parts fit in.
The present paper outlines the projected second part of the Corpus Query Lingua Franca (CQLF) family of standards: CQLF Ontology, which is currently in the process of standardization at the International Standards Organization (ISO), in its Technical Committee 37, Subcommittee 4 (TC37SC4) and its national mirrors. The first part of the family, ISO 24623-1 (henceforth CQLF Metamodel), was successfully adopted as an international standard at the beginning of 2018. The present paper reflects the state of the CQLF Ontology at the moment of submission for the Committee Draft ballot. We provide a brief overview of the CQLF Metamodel, present the assumptions and aims of the CQLF Ontology, its basic structure, and its potential extended applications. The full ontology is expected to emerge from a community process, starting from an initial version created by the authors of the present paper.
Corpus REDEWIEDERGABE
(2020)
This article presents the corpus REDEWIEDERGABE, a German-language historical corpus with detailed annotations for speech, thought and writing representation (ST&WR). With approximately 490,000 tokens, it is the largest resource of its kind. It can be used to answer literary and linguistic research questions and serve as training material for machine learning. This paper describes the composition of the corpus and the annotation structure, discusses some methodological decisions and gives basic statistics about the forms of ST&WR found in this corpus.
We present a corpus-driven approach to the study of multi-word expressions, which constitute a significant part of. As a data basis, we use collocation profiles computed from DeReKo (Deutsches Referenzkorpus), the largest available collection of written German which has approximately two billion word tokens and is located at the Institute for the German Language (IDS). We employ a strongly usage-based approach to multi-word expressions, which we think of as conventionalised patterns in language use that manifest themselves in recurrent syntagmatic patterns of words. They are defined by their distinct function in language. To find multi-word expressions, we allow ourselves to be guided by corpus data and statistical evidence as much as possible, making interpretative steps carefully and in a monitored fashion. We develop a procedure of interpretation that leads us from the evidence of collocation profiles to a collection of recurrent word patterns and finally to multi-word expressions. When building up a collection of multi-word expressions in this fashion, it becomes clear that the expressions can be defined on different levels of generalisation and are interrelated in various ways. This will be reflected in the documentation and presentation of the findings. We are planning to add annotation in a way that allows grouping the multi-word expressions according to different features and to add links between them to reflect their relationships, thus constructing a network of multi-word expressions.
Except for some recent advances in spoken language lexicography (cf. Verdonik & Sepesy Maučec 2017, Hansen & Hansen 2012, Siepmann 2015), traditional lexicographic work is mainly oriented towards the written language. In this paper, we describe a method we used to identify relevant headword candidates for a lexicographic resource for spoken language that is currently being developed at the Institute for the German Language (IDS, Mannheim). We describe the challenges of the headword selection for a dictionary of spoken language, and having made considerations regarding our headword concept, we present the corpus-based procedures that we used in order to facilitate the headword selection. After presenting the results regarding the selection of one-word lemmas, we discuss the opportunities and limitations of our approach.
In this paper, we present first results of training a classifier for discriminating Russian texts into different levels of difficulty. For the classification we considered both surface-oriented features adopted from readability assessments and more linguistically informed, positional features to classify texts into two levels of difficulty. This text classification is the main focus of our Levelled Study Corpus of Russian (LeStCoR), in which we aim to build a corpus adapted for language learning purposes – selecting simpler texts for beginner second language learners and more complex texts for advanced learners. The most discriminative feature in our pilot study was a lexical feature that approximates accessibility of the vocabulary by the second language learner in terms of the proportion of familiar words in the texts. The best feature setting achieved an accuracy of 0.91 on a pilot corpus of 209 texts.
Spoken language corpora— as used in conversation analytic research, language acquisition studies and dialectology— pose a number of challenges that are rarely addressed by corpus linguistic methodology and technology. This paper starts by giving an overview of the most important methodological issues distinguishing spoken language corpus workfrom the work with written data. It then shows what technological challenges these methodological issues entail and demonstrates how they are dealt with in the architecture and tools of the EXMARaLDA system.
Creating CorCenCC (Corpws Cenedlaethol Cymraeg Cyfoes - The National Corpus of Contemporary Welsh)
(2017)
CorCenCC is an interdisciplinary and multiinstitutional project that is creating a large-scale, open-source corpus of contemporary Welsh. CorCenCC will be the first ever large-scale corpus to represent spoken, written and electronicallymediated Welsh (compiling an initial data set of 10 million Welsh words), with a functional design informed, from the outset, by representatives of all anticipated academic and community user groups.
The goal of the present chapter is to explore the possibility of providing the research (but also the industrial) community that commonly uses spoken corpora with a stable portfolio of well-documented standardized formats that allow a high reuse rate of annotated spoken resources and, as a consequence, better interoperability across tools used to produce or exploit such resources.
Data Mining with Shallow vs. Linguistic Features to Study Diversification of Scientific Registers
(2014)
We present a methodology to analyze the linguistic evolution of scientific registers with data mining techniques, comparing the insights gained from shallow vs. linguistic features. The focus is on selected scientific disciplines at the boundaries to computer science (computational linguistics, bioinformatics, digital construction, microelectronics). The data basis is the English Scientific Text Corpus (SCITEX) which covers a time range of roughly thirty years (1970/80s to early 2000s) (Degaetano-Ortlieb et al., 2013; Teich and Fankhauser, 2010). In particular, we investigate the diversification of scientific registers over time. Our theoretical basis is Systemic Functional Linguistics (SFL) and its specific incarnation of register theory (Halliday and Hasan, 1985). In terms of methods, we combine corpus-based methods of feature extraction and data mining techniques.
In the NLP literature, adapting a parser to new text with properties different from the training data is commonly referred to as domain adaptation. In practice, however, the differences between texts from different sources often reflect a mixture of domain and genre properties, and it is by no means clear what impact each of those has on statistical parsing. In this paper, we investigate how differences between articles in a newspaper corpus relate to the concepts of genre and domain and how they influence parsing performance of a transition-based dependency parser. We do this by applying various similarity measures for data point selection and testing their adequacy for creating genre-aware parsing models.
In the NLP literature, adapting a parser to new text with properties different from the training data is commonly referred to as domain adaptation. In practice, however, the differences between texts from different sources often reflect a mixture of domain and genre properties, and it is by no means clear what impact each of those has on statistical parsing. In this paper, we investigate how differences between articles in a newspaper corpus relate to the concepts of genre and domain and how they influence parsing performance of a transition-based dependency parser. We do this by applying various similarity measures for data point selection and testing their adequacy for creating genre-aware parsing models.
We present a method to identify and document a phenomenon on which there is very little empirical data: German phrasal compounds occurring in the form of as a single token (without punctuation between their components). Relying on linguistic criteria, our approach implies to have an operational notion of compounds which can be systematically applied as well as (web) corpora which are large and diverse enough to contain rarely seen phenomena. The method is based on word segmentation and morphological analysis, it takes advantage of a data-driven learning process. Our results show that coarse-grained identification of phrasal compounds is best performed with empirical data, whereas fine-grained detection could be improved with a combination of rule-based and frequency-based word lists. Along with the characteristics of web texts, the orthographic realizations seem to be linked to the degree of expressivity.
In this paper, we examine methods to automatically extract domain-specific knowledge from the food domain from unlabeled natural language text. We employ different extraction methods ranging from surface patterns to co-occurrence measures applied on different parts of a document. We show that the effectiveness of a particular method depends very much on the relation type considered and that there is no single method that works equally well for every relation type. We also examine a combination of extraction methods and also consider relationships between different relation types. The extraction methods are applied both on a domain-specific corpus and the domain-independent factual knowledge base Wikipedia. Moreover, we examine an open-domain lexical ontology for suitability.
This paper deals with the problem of how to interrelate theory-specific treebanks and how to transform one treebank format to another. Currently, two approaches to achieve these goals can be differentiated. The first creates a mapping algorithm between treebank formats. Categories of a source format are transformed into a target format via a given set of general or language-specific mapping rules. The second relates treebanks via a transformation to a general model of linguistic categories, for example based on the EAGLES recommendations for syntactic annotations of corpora, or relying on the HPSG framework. This paper proposes a new methodology as a solution for these desiderata.
In this paper, we present our work-inprogress to automatically identify free indirect representation (FI), a type of thought representation used in literary texts. With a deep learning approach using contextual string embeddings, we achieve f1 scores between 0.45 and 0.5 (sentence-based evaluation for the FI category) on two very different German corpora, a clear improvement on earlier attempts for this task. We show how consistently marked direct speech can help in this task. In our evaluation, we also consider human inter-annotator scores and thus address measures of certainty for this difficult phenomenon.
This paper deals with multiword lexemes (MWLs), focussing on two types of verbal MWLs: verbal idioms and support verb constructions. We discuss the characteristic properties of MWLs, namely nonstandard compositionality, restricted substitutability of components, and restricted morpho-syntactic flexibility, and we show how these properties may cause serious problems during the analysis, generation, and transfer steps of machine translation systems. In order to cope with these problems, MT lexicons need to provide detailed descriptions of MWL properties. We list the types of information which we consider the necessary minimum for a successful processing of MWLs, and report on some feasibility studies aimed at the automatic extraction of German verbal multiword lexemes from text corpora and machine-readable dictionaries.
Designing a Bilingual Speech Corpus for French and German Language Learners: a Two-Step Process
(2014)
We present the design of a corpus of native and non-native speech for the language pair French-German, with a special emphasis on phonetic and prosodic aspects. To our knowledge there is no suitable corpus, in terms of size and coverage, currently available for the target language pair. To select the target L1-L2 interference phenomena we prepare a small preliminary corpus (corpus1), which is analyzed for coverage and cross-checked jointly by French and German experts. Based on this analysis, target phenomena on the phonetic and phonological level are selected on the basis of the expected degree of deviation from the native performance and the frequency of occurrence. 14 speakers performed both L2 (either French or German) and L1 material (either German or French). This allowed us to test, recordings duration, recordings material, the performance of our automatic aligner software. Then, we built corpus2 taking into account what we learned about corpus1. The aims are the same but we adapted speech material to avoid too long recording sessions. 100 speakers will be recorded. The corpus (corpus1 and corpus2) will be prepared as a searchable database, available for the scientific community after completion of the project.