Sprucing up the trees – error detection in treebanks
- We present a method for detecting annotation errors in manually and automatically annotated dependency parse trees, based on ensemble parsing in combination with Bayesian inference, guided by active learning. We evaluate our method in different scenarios: (i) for error detection in dependency treebanks and (ii) for improving parsing accuracy on in- and out-of-domain data.
Author: | Ines Rehbein, Josef Ruppenhofer |
---|---|
URN: | urn:nbn:de:bsz:mh39-79938 |
URL: | http://aclweb.org/anthology/C18-1010 |
ISBN: | 978-1-948087-50-6 |
Parent Title (English): | Proceedings of the 27th International Conference on Computational Linguistics. August 20-26, 2018 Santa Fe, New Mexico, USA (COLING 2018) |
Publisher: | The Association for Computational Linguistics |
Place of publication: | Stroudsburg PA, USA |
Editor: | Emily M. Bender, Leon Derczynski, Pierre Isabelle |
Document Type: | Part of a Book |
Language: | English |
Year of first Publication: | 2018 |
Date of Publication (online): | 2018/09/26 |
Publicationstate: | Veröffentlichungsversion |
Reviewstate: | Peer-Review |
GND Keyword: | Annotation; Automatische Spracherkennung; Parser |
First Page: | 107 |
Last Page: | 118 |
DDC classes: | 400 Sprache / 400 Sprache, Linguistik |
Open Access?: | ja |
Leibniz-Classification: | Sprache, Linguistik |
Program areas: | Pragmatik |
Program areas: | Digitale Sprachwissenschaft |
Licence (English): | ![]() |