Volltext-Downloads (blau) und Frontdoor-Views (grau)

Enhancing a Lexicon of Polarity Shifters through the Supervised Classification of Shifting Directions

  • The sentiment polarity of an expression (whether it is perceived as positive, negative or neutral) can be influenced by a number of phenomena, foremost among them negation. Apart from closed-class negation words like no, not or without, negation can also be caused by so-called polarity shifters. These are content words, such as verbs, nouns or adjectives, that shift polarities in their opposite direction, e. g. abandoned in “abandoned hope” or alleviate in “alleviate pain”. Many polarity shifters can affect both positive and negative polar expressions, shifting them towards the opposing polarity. However, other shifters are restricted to a single shifting direction. Recoup shifts negative to positive in “recoup your losses”, but does not affect the positive polarity of fortune in “recoup a fortune”. Existing polarity shifter lexica only specify whether a word can, in general, cause shifting, but they do not specify when this is limited to one shifting direction. To address this issue we introduce a supervised classifier that determines the shifting direction of shifters. This classifier uses both resource-driven features, such as WordNet relations, and data-driven features like in-context polarity conflicts. Using this classifier we enhance the largest available polarity shifter lexicon.

Export metadata

Additional Services

Share in Twitter Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Marc SchulderGND, Michael WiegandGND, Josef RuppenhoferGND
URN:urn:nbn:de:bsz:mh39-98677
URL:http://www.lrec-conf.org/proceedings/lrec2020/index.html#5010
ISBN:979-10-95546-34-4
Parent Title (English):Proceedings of the 12th International Conference on Language Resources and Evaluation (LREC), May 11-16, 2020, Palais du Pharo, Marseille, France
Publisher:European Language Resources Association
Place of publication:Paris
Editor:Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis
Document Type:Conference Proceeding
Language:English
Year of first Publication:2020
Date of Publication (online):2020/06/01
Publicationstate:Zweitveröffentlichung
Reviewstate:Peer-Review
Tag:Lexical Semantics; Lexicon; Negation; Polarity Shifter; Sentiment Analysis; Supervised Classification
GND Keyword:Klassifikation; Lexikalische Semantik; Maschinelles Lernen; Natürliche Sprache; Negativer Polaritätsausdruck; Polarität
First Page:5010
Last Page:5016
DDC classes:400 Sprache / 400 Sprache, Linguistik
Open Access?:ja
Leibniz-Classification:Sprache, Linguistik
Linguistics-Classification:Computerlinguistik
Linguistics-Classification:Korpuslinguistik
Licence (English):License LogoCreative Commons - Attribution-NonCommercial 4.0 International