Volltext-Downloads (blau) und Frontdoor-Views (grau)

Combining Pattern-Based and Distributional Similarity for Graph-Based Noun Categorization

  • We examine the combination of pattern-based and distributional similarity for the induction of semantic categories. Pattern-based methods are precise and sparse while distributional methods have a higher recall. Given these particular properties we use the prediction of distributional methods as a back-off to pattern-based similarity. Since our pattern-based approach is embedded into a semi-supervised graph clustering algorithm, we also examine how distributional information is best added to that classifier. Our experiments are carried out on 5 different food categorization tasks.

Download full text files

  • Wiegand_Roth_Klakow_Combining_pb_and_d_Similarity_for_Noun_Categorization_2015.pdf


Export metadata

Additional Services

Search Google Scholar


Author:Michael WiegandGND, Benjamin Roth, Dietrich Klakow
Parent Title (English):Natural Language Processing and Information Systems. Proceedings of the 20th International Conference on Applications of Natural Language to Information Systems, NLDB 2015, Passau, Germany, June 17–19, 2015
Series (Serial Number):Lecture Notes in Computer Science (9103)
Place of publication:Cham
Editor:Chris Biemann, Siegfried Handschuh, André Freitas, Farid Meziane, Elisabeth Métais
Document Type:Conference Proceeding
Year of first Publication:2015
Date of Publication (online):2019/04/02
Tag:Food item; Graph cluster; Neighbour classifier; Relation extraction; Unconnected node
GND Keyword:Computerlinguistik; Grafische Darstellung; Information Extraction; Lebensmittel; Maschinelles Lernen
First Page:64
Last Page:72
Dieser Beitrag ist aus urheberrechtlichen Gründen online nicht frei zugänglich.
DDC classes:400 Sprache / 400 Sprache, Linguistik
Open Access?:nein
Licence (German):License LogoUrheberrechtlich geschützt