Volltext-Downloads (blau) und Frontdoor-Views (grau)

Using LLMs for experimental stimulus pretests in linguistics. Evidence from semantic associations between words and social gender

  • Whether large language models (LLMs) can validly complement or substitute human participants in experimental research remains an open question. Focusing on language cognition, we assess the suitability of GPT-4o and LLaMA 3.1 models (70B Instruct and 8B Instruct) for performing a semantic-association task in German. LLMs labeled noun phrases by social-gender association and rated association strength, mirroring a human participant task. Overall, LLM ratings aligned with human data, but item-level analyses revealed systematic deviations in response patterns.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author:Christian LangORCiDGND, Franziska KretzschmarORCiDGND, Sandra HansenORCiDGND
URN:urn:nbn:de:bsz:mh39-134338
URL:https://aclanthology.org/2025.konvens-1.28/
Parent Title (English):KONVENS : 21th Conference on Natural Language Processing (KONVENS 2025) ; Proceedings of the Conference. Volume 1: Long and Short Papers
Publisher:HsH Applied Academics
Place of publication:Hannover
Editor:Christian WartenaORCiDGND, Ulrich HeidORCiDGND
Document Type:Part of a Book
Language:English
Year of first Publication:2025
Date of Publication (online):2025/09/11
Publishing Institution:Leibniz-Institut für Deutsche Sprache (IDS)
Publicationstate:Veröffentlichungsversion
Reviewstate:Peer-Review
Tag:GPT-4o; LLaMA 3.1; noun phrases; semantic-association task; social gender
GND Keyword:Deutsch; Semantik; large language models
First Page:326
Last Page:332
DDC classes:400 Sprache / 400 Sprache, Linguistik
Open Access?:ja
BDSL-Classification:Grammatik
Linguistics-Classification:Soziolinguistik
Program areas:Grammatik
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International