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Abstract

Automatic division of spoken language
transcripts into sentence-like units is a chal-
lenging problem, caused by disfluencies,
ungrammatical structures and the lack of
punctuation. We present experiments on di-
viding up German spoken dialogues where
we investigate the impact of task setup and
data representation, encoding of context
information as well as different model ar-
chitectures for this task.

1 Introduction

Being able to structure natural spoken discourse
into sentence-like units (SLUs) is desirable not only
from a theoretical point of view, but is also a key
requirement for enabling research in corpus linguis-
tics as well as the application of Natural Language
Processing tools (e.g. POS-tagging and parsing) to
transcripts of spoken language. While various pro-
posals have been made for how to divide spoken
language in corpora into smaller units, typically
these divions were not guided by syntactic consid-
erations. Instead, division into inter-pausal units is
common (e.g. Hamaker et al. (1998) for the Switch-
board corpus). Until recently, for most languages
no well-established system existed for detecting
boundaries between sentence-like units that is both
theoretically well-founded and practically opera-
tionalizable for large and diverse corpora of spoken
interaction.

For German, the SegCor project (Westpfahl
and Gorisch, 2018; Westpfahl et al., 2019) de-
veloped guidelines for dividing transcibed speech
into sentence-like units using the topological field
model of German surface syntax. Schmidt and
Westpfahl (2018) subsequently presented a corpus-
based study on how well the length of gaps between
utterances can predict the syntactic boundaries an-
notated in the SegCor corpus.

In this work, we take up the challenge of auto-
matically detecting boundaries between SLUs on
the spoken German of the SegCor transcripts. Fur-
ther, we apply our system not only to the question
whether a gap, a long silence, coincides with a syn-
tactic boundary but to all boundaries in general,
including the ones that occur in continuous speech,
such as interruptions and aborted utterances.

This paper proceeds as follows. We discuss re-
lated work in section 2 and present our dataset in
sesction 3. In sections 4 and 5 we discuss the task
formulations we employ and the features we use.
Our experiments and their results are described in
section 6, followed by a conclusion in section 7.

2 Related Work

In the realm of medially written language, the most
closely related task is sentence boundary detection
(SBD). Typically, this has been framed as decid-
ing for a closed class of interpunctuation symbols
(mainly ’.’,’?’,’!’) whether they represent the end of
a sentence or not, with abbreviations constituting
one of the key sources of error. While tradition-
ally very high accuracies were reported, Read et
al. (2012) show in their overview of SBD that per-
formance can be significantly worse on text other
than news, with machine learning-based systems
often being less robust than rule-based or hybrid
sytems. Comparing Wikipedia pages to topically
related blogs, they also show that within the same
domain, sentence-boundary detection performs less
well the more informal the text type is. Read et al.
(2012) observe that the traditional framing of the
problem overlooks all the cases where sentences
or rather sentence-like units, text sentences in the
sense of Nunberg (1990), end without a punctua-
tion symbol: on the ‘standard’ texts in their collec-
tion, this affects 12.3% of sentences. Read et al.
(2012) therefore argue for a more general approach
‘which considers the positions after every character
as a potential boundary point’.
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In the domain of medially spoken language,
the detection of sentence-like units may use both
textual and prosodic features. Gotoh and Renals
(2000) performed experiments with HMMs on ref-
erence transcripts from BBC radio and tv programs
which included repeated and incorrect speech as
well as disfluencies. They also constructed an
alternative pause duration model alone based on
speech recogniser output aligned with the tran-
scripts. The pause duration model outperformed
the language modelling approach, while a combi-
nation of the two models provided further perfor-
mance gains. Precision and recall scores of over
70% were attained for the task of deciding for each
word whether it represents the last word of a sen-
tence. In his work on sentence boundary detec-
tion on Czech radio news and discussion programs,
Kolář (2008) similarly finds that combining several
models works best.

Liu et al. (2005) evaluate the performance of a
CRF-model on two English corpora (conversational
telephone speech and broadcast news speech) on
both human transcriptions and automatic speech
recognition output. Their experiments show that
the use of prosody improves performance over the
use of word n-grams alone and that the addition of
further features e.g. on pos-tags provides another
improvement.

Roark et al. (2006) use a re-ranking approach to
the detection of SLU boundaries. In a two stage
approach, they first fix a subset of the word bound-
aries as points of division, yielding subsequences
betwen fixed points, which they call fields. In
the second stage, candidate boundaries within the
fields are generated and then ranked.

In our own experiments, we will experiment with
various features and task paramaters used by prior
work such as e.g. POS, gap/pause-length, use of
left and/or right context etc. In addition, we also
explore extra features available with our dataset.

3 Dataset

The data used here is unlike most of the material
used in related work in that it represents conver-
sational speech that was furthermore recorded in
non-laboratory settings. Also, it is characterized by
interactions between two or more speakers. Since
tools based on the automatic processing of the au-
dio signal do not work all that well on our data, we
instead work with the transcripts only. Our dataset
consists of 33 documents with more than 54,000

lexical tokens originating from the FOLK corpus
(Schmidt, 2014) that were divided into sentence-
like units by the SegCor project. This data set was
doubly annotated and disagreements were adjudi-
cated (Westpfahl and Gorisch, 2018). Note that
to avoid confusion, we reserve the term ”segment”
and related forms for the division of speech into
chunks by the transcribers that was guided by si-
lences in the speech signal. For the division of the
material into sentence-like units we will use the
term “SLU boundary detection”.

The raw FOLK transcripts, which we take as our
input and which lack SLU-boundaries, follow the
cGAT conventions (Schmidt et al., 2015). Accord-
ingly, the data uses ”contributions” and ”segments”
as the fundamental units in the data structure. Seg-
ments of speech are the original units of transcrip-
tion: transcribers are instructed to select them as
chunks that can be transcribed in one go given cog-
nitive load and useability of the transcription en-
vironment. Crucially, segment boundaries should
be placed at word boundaries or at the beginning
or end of pauses. Like segments, contributions are
defined without any reference to syntactic consid-
erations (Schmidt et al., 2015, 8):

‘A contribution in a cGAT transcript com-
prises all immediately consecutive seg-
ments attributed to a speaker. Contribu-
tions should not be confused with sen-
tences, which are units of written lan-
guage. Instead, they are to be understood
as dialogue contributions.

Pauses (silences up to 0.2s) may occur between
separate contributions but also within a contribu-
tion. Gaps, silences longer than 0.2s, always sepa-
rate contributions in cGAT.

The relation between the input representation
in terms of contributions and the intended output
representation in terms of sentence-like units is
not always one to one. Common deviations are as
follows. First, a contribution may correspond to
several SLUs as illustrated by (1).

(1) 1 contribution : n SLUs

a. < c >h ich weiß net ich glaub eher
nich h h< /c >

b. < s >h ich weiß net< /s >
< s > ich glaub eher nich h h< /s >

c. ‘I don’t know. I rather think not.’
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Second, several contributions may jointly corre-
spond to one SLU.

(2) n contributions : 1 SLU

a. < c >der beschäftigt sich< /c >
< c >(0.85) < /c >
< c >zwei minuten mit dem< /c >

b. < s > der beschäftigt sich (0.85)
zwei minuten mit dem < /s >

c. ‘He occupies himself with that one
for two minutes.’

Both situations may also occur in combination
so that we get n : m-relations between contributions
and SLUs.

To decide on SLU boundaries, we can use not
only the transcribed word forms but also some fur-
ther kinds of information about the tokens, which
we will use as features (cf. section 5). Further,
while we do not use acoustic features such as word
durations and pitch contours, the transcript does
give us access to temporal information that has
proved useful in previous work (Gotoh and Renals,
2000). We encode pause length and, since we know
which tokens are produced by which speaker, we
also introduce turn boundaries into our representa-
tion.

4 Task formulations

We can approach the SLU boundary detection prob-
lem in various different ways. We discuss the major
points of variation in what follows.

4.1 Granularity

In one line of experiments (coarse), we predict
only whether a token is followed by some type of
syntactic boundary (B) or not (O). In another line
(fine), we also distinguish between several types of
boundaries. From Westpfahl and Gorisch (2018),
we adopt the following B(oundary) types.

S Simple sentential units consist of exactly one
clause. In terms of word order, the clause may
be of any of the types V1 (verb initial), V2
(verb second), V1/2 (cases that are unclear
between V1 and V2) or in rare cases VL (verb
last). The clauses may not have any dependent
clauses.

C Complex sentential units consist of several
clauses that are dependent on one another:

Main clauses with subordinate clauses or rel-
ative clauses, conditional sentences, reported
speech, and matrix-clause with sentient-verbs,
complex pre-pre-fields with main clause, dis-
continuous sentences, and coordinated sen-
tences if and only if the second sentence
shows subject or verb ellipsis.

N Non-sentential units are all units that are not
structured by a finite verb.

A An utterance which is disrupted, i.e. it opens a
projection that subsequently goes unfilled.

U Tokens at the end of a unit whose status could
not be categorized as one of the previous four
cases.

Since in the context of sequence labeling we
need to have a label on every token, we add several
further categories of non-boundary labels. In the
binary setting, these categories are merged into the
non-boundary class (O).

O Words spoken by one of the speakers that are
not followed by a boundary.

X is used for different types of non-verbal infor-
mation: a) speaker turns, and b) pauses. We
distinguish between pauses shorter than 0.2
sec and longer pauses. According to cGat,
longer pauses always occur between two adja-
cent contributions and are not assigned to any
speaker while shorter pauses are considered to
be part of one speaker’s contribution. For in-
stance, the pause in (i) is part of speaker RD’s
contribution as they are just pausing speech
for the purposes of word finding. By con-
trast, the pause in (ii) is not assigned to either
speaker: it is clear that speaker RD has fin-
ished their turn, but speaker LH has not yet
taken the floor.

i RD: ich könnte es ja darüber lösen dass
ich das nicht auf das <pause> ko auf die
konten der seefahrer buch sondern auf
ein verrechnungskonto
‘Well, I could fix it in this way that I don’t
book it on the acc on the accounts of the
sailor but instead to a clearing account’

ii RD: ich versthe nichts davon
‘I don’t know anything about it’
<pause>
LH: okay. ...

In our experiments, both pause types are as-
signed the tag “X”.
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4.2 Views
Since our data comes from multi-party conversa-
tion it lends itself to two views. On the one hand,
we can think of it as an integrated conversation,
where contributions of speakers alternate, with oc-
casional overlaps. The intuition behind adopting
this view on the data is that a speaker’s productions
do depend on / respond to what the other speaker
says. For instance, responses to questions are of-
ten not complete sentential units whether simple or
complex but rather consist of non-sentential mate-
rial. For that reason, it seems important to take into
account what interlocutors are saying.

A second, complementary view of the data treats
it as a set of tracks of speech, each by one spe-
cific person. The intuition behind this view is
that the sentence-like units are local only to the
given speaker’s utterances. For instance, whether
a sentence is simple or complex depends only on
what the current speaker produces. In adopting a
track view (track), we completely ignore the other
speaker’s productions.

Both views potentially have problems handling
certain kinds of so-called split utterances (Purver
et al., 2009). On the conversation view, utterances
that are distributed across multiple contributions
of the same speaker may be interrupted by con-
tributions of other speakers. On the track view,
utterances that are distributed across speakers (that
is, co-constructed turns begun by one speaker but
finished by another) cannot be recovered.

4.3 Instance creation
We define instances for the classifier either in terms
of word windows of varying size or in terms of N
merged contributions.1

4.4 Model type
As demonstrated by the related work, one estab-
lished way to approach the SLU boundary detection
problem is in terms of sequence labeling. The task
consists in algorithmically assigning a categorical
label to each item in a sequence of observed val-
ues. In our task, a token is labeled either as being
followed by a boundary or not.

As a baseline approach, we adopt a classical
Conditional Random Fields (Lafferty et al., 2001)
tagger, using the CRFsuite implementation by

1Other variations are possible such as creating overlapping
instances. For instance, with word windows we could create
one instance from words 1-10 and the next from words 2-11
etc. We could proceed similarly in the case of contributions.

Okazaki (2007), for which we provide our own
feature engineering.

We compare this system with two more recent
neural architectures. The first system is an imple-
mentation of the model of Lample et al. (2016),
using biLSTMs for input encoding, based on word
and character-based embeddings, followed by a
CRF layer on top (Reimers and Gurevych, 2017).2

The second model, the flair sequence tagger (Ak-
bik et al., 2019), has a similar architecture that also
combines biLSTMs and a CRF layer on top. In
addition, flair uses contextual string embeddings
(Akbik et al., 2018) which model words as con-
textualized sequences of characters, resulting in
different embeddings for the same string, depend-
ing on its surrounding context.

5 Features

The data encodes the following information that
we can use as features in our experiments.

Tokens The simplest feature are the raw tran-
scribed tokens.

POS The SegCor data includes automatically pre-
dicted POS tags.

Normalization The normalization layer contains
the canonicalized form for the raw tokens. For
instance, when an instance of the first per-
son present form of the verb verstehen ‘under-
stand’ is pronounced as two syllables, without
its final weak syllable, it is transcribed as ver-
steh. The normalization of the token will be
the expected canonical form verstehe. Also
while all noun tokens appear lowercased in
the transcription, they are written with initial
capitals on the normalization layer.

Lemma The lemma forms for the transcribed data.

6 Experiments

At the highest level, we divide our experiments
depending on the granularity, coarse or fine. Within
these high-level groups, we discuss the experiments
in sets that address a common research question.

We use 70, 10 and 20% of the data for train-
ing, development and testing, respectively. We do
not split up individual transcriptions but put them
whole into either train, dev or test. This makes
the task slightly harder as we test on data from
new speakers that have not been seen during train-
ing, and on new topics that are not included in

2https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf/
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ID View Instances Macro Acc Macro F1 F1 B F1 O Description

1 track single 83.75 45.58 0.00 91.16 majority class, i.e. no boundaries
2 track single 89.98 74.99 55.63 94.35 boundary at end of contribution

Table 1: Results for rule-based baselines (coarse-grained, track: track-view; singe: single contributions)

ID View Instances Macro Acc Macro F1 F1 B F1 O context features

in
st

an
ce

cr
ea

tio
n

3 track single 94.20 87.25 77.84 96.67 +/-2 word,pos
4 track single 93.66 86.04 75.73 96.36 +/-1 word,pos
5 track merged 94.69 88.33 79.71 96.95 +/-2 word,pos
6 track merged 93.99 86.74 76.93 96.54 +/-1 word,pos
7 track window 94.01 86.58 76.59 96.57 +/-2 word,pos
8 conv. window 93.54 85.42 74.54 96.30 +/-2 word,pos

co
nt

ex
ts

iz
e 9 track merged 94.78 88.56 80.13 97.00 +2 word,pos

10 track merged 93.53 85.60 74.90 96.29 +1 word,pos
11 track merged 89.21 73.25 52.58 93.91 -1 word,pos
12 track merged 88.75 72.86 52.09 93.63 -2 word,pos

si
ng

le
fe

at
s. 13 track merged 93.86 85.87 75.25 96.50 +/-2 word

14 track merged 93.86 86.46 76.46 96.47 +/-2 pos
15 track merged 93.76 85.89 75.36 96.43 +/-2 lemma
16 track merged 94.16 86.88 77.10 96.66 +/-2 normalization

no
rm

. 17 track single 94.14 87.15 77.68 96.63 +/-2 norm, pos
18 track merged 94.78 88.52 80.05 97.00 +/-2 norm, pos

tu
rn 19 track merged 92.56 84.38 73.07 95.68 +/-2 word, pos; no turns

Table 2: Results for sequence labeling with CRFsuite (coarse-grained, track-view; conv.: conversation;
merged: 5 merged contributions; window: 10-word windows)

ID View Instances Macro Acc Macro F1 F1 B F1 O Embeddings Schema

20 track merged 94.14 87.06 77.48 96.63 Reimers2017 word
21 track merged 94.36 87.69 78.63 96.75 Reimers2017 norm

Table 3: Results for biLSTM-CRF sequence tagger (Lample et al., 2016) (coarse-grained, track-view)

ID View Instances Macro Acc Macro F1 F1 B F1 O Embeddings
22 track merged5 95.07 89.59 82.05 97.14 fasttext+flair
23 track merged5 92.28 83.42 71.30 95.54 fasttext
24 track merged5 94.83 89.28 81.56 97.00 fasttext+custom
25 track merged5 95.43 90.23 83.11 97.36 fasttext+flair+custom

Table 4: Results for flair’s sequence tagger with contextual string embeddings (coarse-grained, track-view)

134



Figure 1: F1 B-score for word windows of various
sizes (dots: conversations; x’s: tracks; step size=5;
CRFsuite)

the training set. Thus, the classifier cannot adapt
to speaker-specific features and might encounter a
larger amount of unknown words. However, this
setting is more realistic and will give us a better es-
timate of what to expect when applying our models
to new data.

For all non-deterministic models, we report re-
sults averaged over three runs for each configura-
tion.

6.1 Coarse-grained classification

Baselines In addition to using CRFsuite as a
baseline, we calculated the following two rule-
based baselines (table 1). Baseline 1 always assigns
the majority class (no boundary) while baseline 2
predicts a boundary at the last token in each contri-
bution. Recall that the contributions are not gold
sentences but can also cross syntactic boundaries,
which is shown by the less-than-perfect results for
baseline 2 (89.98% acc. and 55.63% F1 for the
Boundary class). As will be shown by the experi-
ments to follow, machine-learning based systems,
unsurprisingly, can yield much better results.

Views and instance creation First, we investi-
gate the impact of view and instance creation on
the performance for varying window sizes. Fig-
ure 1 plots the F1 scores for Boundaries relative to
growing sizes of word windows used to construct
instances. The results are very similar regardless
of whether we use the conversational view or the
track view.

Figure 2 shows the development of the F1 B-
score in relation to the number of contributions that
are assembled into one instance. We observe that,

Figure 2: F1 B-score for track view in relation to
contributions merged (CRFsuite) (dots: conversa-
tions; x’s: tracks)

here too, the results hardly differ between the track
view and the conversational view.

While it should not matter much in practice, we
choose to mainly work with the combination of
merging segments on the track view for the remain-
der of the paper since the highest F1-score that
we obtained in these experiments come from this
combination.

Importance of Context We now focus on the
question where in the context the relevant informa-
tion for boundary detection is. Thus, the second
block of experiments varies the context relative to
our reference experiments 5 and 6 (Table 2), using
either only the left or the right context, or no con-
text at all. The contrast between the results for the
experiments with one-sided context shows that the
right context is clearly more important than the left
one and that the left context by itself does not hold
very much information to begin with.

Individual features Experiments 13–16 present
results for runs with individual features. The results
show that not all forms of generalizing over the con-
crete tokens work equally well. The automatically
assigned lemmatization probably is worst because
on our data it is also often wrong. POS-tags are bet-
ter but the normalized text representation, though
also automatically assigned, is best.

Normalization Following on the observation
about the utility of normalization, in experiments
17 and 18, we use the normalization layer instead
of the transcribed tokens in combination with POS
tags. When contrasting the results of these exper-
iments with those of exp. 3 and 5, we see that
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normalization gives slightly better results only in
the second setting. Given that normalization is
also time-consuming, in later experiments we will
not use the normalization layer but instead use the
transcribed speech as input.

Importance of Sequencing Information In ex-
periment 19, we use a version of the data from
which, unlike for all other track view-based ex-
periments, the representation of turns has been
eliminated. Compared to the matched basic ex-
periment 5, we see a significant drop in Macro F1
and the F1 for the B(oundary) class, which under-
scores the importance of including information on
turns.

Classical CRF vs. biLSTM-CRF Recent ad-
vances in NLP have shown the expressive power of
neural networks. We thus compare the performance
of the classical CRF sequence tagger to two neural
systems, the one of (Lample et al., 2016; Reimers
and Gurevych, 2017) and the flair sequence tagger,
as described in Section 4.4.

Table 3 shows that the neural biLSTM-CRF does
not always improve results over the classical CRF.
The first system uses word and charcter-based em-
beddings as features and predicts the binary labels
{B,O}. This configuration does not outperform
CRFsuite configurations such as 5 where we also
use POS tags as features, in addition to the word
tokens.

The biLSTM-CRF can make better use of the
normalization, as shown in experiment 21. Com-
pared to experiment 16, we gain 1.5% in perfor-
mance. Both systems, however, are outperformed
by the flair sequence tagger with contextual string
embeddings (Table 4, exp 22).

Embeddings used Given that flair outperforms
the model of Lample et al. (2016) despite their sim-
ilar architecture, we now explore variation around
the embeddings used in flair. Experiment 23 shows
the value of flair’s contextual string embeddings:
without them performance decreases by more than
10% for F1 B (see exp. 22).

In our next experiment, we want to test whether
we can increase performance by training our own
contextual string embeddings on text that is more
similar to our data. For this, we train flair embed-
dings for 20 epochs on ca. 11 million ‘sentences’
extracted from the open subtitles corpus (Lison and
Tiedemann, 2016) and an in-house twitter dataset.
These sentences were filtered to be at most 60 char-

acters long and to contain no more than one comma
and one period, question mark or exclamation mark.
The punctuation marks were removed before train-
ing and the data was lowercased. In experiment 24
we use these custom embeddings in combination
with fasttext only without the default forward and
backward embeddings provided by the flair library.

The results show that the custom embeddings are
quite good on their own (exp. 24). Combining them
with flair’s pretrained embeddings further improves
results, showing that our custom embeddings con-
tain complementary information (exp. 25). While
the results suggest that the use of more domain-
similar contextual string embeddings is beneficial,
we cannot be sure that the improvements are really
due to domain similarity. To test this in future work,
we will need to compare our results to another type
of custom embeddings trained on a corpus of equal
size but with different properties that are less simi-
lar to spoken language, such as newspaper text.

6.2 Fine-grained classification
We now turn to the fine-grained setting which
distinguishes between five kinds of boundary la-
bels. For ease of presentation and since the non-
boundary labels are not important to us, we will
report F1 scores for each boundary label with the
exception of the U(ninterpretable) class, which is
conceptually ill-defined since by definition it is un-
clear whether, and what kind of, a boundary occurs.
As well as the global Macro F1 and Macro Ac-
curacy scores, we also report a score “Macro F1
B” which constitutes the macro average over the
boundary labels, including U.

As a reference for the flair sequence tagger, Ta-
ble 5 shows results for CRFsuite for the trackwise
view and instances formed by merging contribu-
tions.3 As shown by the difference in F1-scores
between the fine-grained and the coarse-grained
settings from Table 2, the fine-grained task is much
harder. Again, using word windows of size 10 for
instance creation is worse than merging contribu-
tions.

The gap between CRFSuite and the neural sys-
tem shows the potential of the contextual string
embeddings: Flair outperforms CRFSuite susbtan-
tially (cf. exp. 29 vs. 27). Focusing on the flair
results, we see that the performance on the individ-
ual boundary types strongly depends on their fre-

3For lack of space we do not report results for the biLSTM-
CRF model of (Lample et al., 2016; Reimers and Gurevych,
2017) which again was outperformed by flair.
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Id View Instances Macro F1 Macro Acc F1 A F1 C F1 N F1 S Macro F1 B

26 track window 58.51 97.61 22.79 26.32 73.55 51.01 43.42
27 track merged 58.15 97.65 25.30 26.24 73.92 52.20 44.20

Table 5: Results for fine-grained sequence labeling with CRFsuite

Id View Instances Macro F1 Macro Acc F1 A F1 C F1 N F1 S Macro F1 B
28 track window 68.59 98.10 42.82 45.76 80.16 66.34 56.69
29 track merged5 70.24 98.22 42.93 50.49 81.59 68.95 58.98

Table 6: Results for fine-grained sequence labeling with flair

quency: results for the rarer classes A(borted) and
C(omplex) are substantially lower than the ones
for the more frequent classes N(on-sentential) and
S(imple).

6.3 Error analysis

To get a sense of what the flair sequence tagger is
able to learn, in Table 7 we take a look at the confu-
sion matrix for the best fine-grained experiment 29.
Among the boundary classes, A(borted) segments
are mostly not recognized as having any kind of
boundary, i.e. they receive the label O; smaller
subsets of true A’s are mistaken for non-sentential
units or simple sentences. When A’s get confused
for O’s, this often seems to be due to the boundary
token being an incomplete, partial word such as a
or we.

For C(omplex) segments, being mistaken for a
simple sentence (S) is the most common error, be-
fore not being recognized as any kind of bounded
segment. One class of C-S confusions arises when
subordinate complement clauses lack a comple-
mentizer and verb-second word order is used, as in
example (3).

(3) < c > ich wiederhole das sind tonsteine
(.) mit eingelagerten kalksandsteinbänke

A C N O S U X Total
A 57 3 12 93 20 0 0 185
C 0 98 5 61 75 1 0 150
N 5 6 584 78 36 0 0 709
O 12 26 102 8836 84 2 0 9062
S 7 24 17 128 439 0 0 615
U 1 0 4 6 2 9 0 22
X 0 0 0 0 0 0 2105 2105

Table 7: Confusion matrix for best fine-grained run
(exp. 29; across: predicted; down: gold)

< /c >
‘I repeat [that] these are mudstones with
embedded banks of sand-lime brick.’

Finally, for S(imple) sentences not being recog-
nized as a bounded segment is the most common
error. One subtype of this error that we recognize
are cases where the final token is an unlikely one.
Consider example 4, whose true labeling is given.
The error that flair makes is to include all the to-
kens in a single S(imple) sentence, even though
this means that the resulting simple sentence incor-
rectly has two finite verbs. Potentially, the error
occurs because the adverb angeblich ‘supposedly’
is an unlikely sentence ending token. In example
5, the initial complex sentence is correctly recog-
nized but the following simple sentence receives
no boundary label even though it is followed by a
change of turn. Again, the problem seems to be that
the subject pronoun er ‘he’ is an unlikely sentence-
final token. Other instances concern elliptical cases
where modal verbs occur sentence-finally without
an infinitival complement (e.g. die müssen ‘They
must’). A second subtype of error consists of infre-
quent sentence types. Consider the example in 6.
This is an unusual case because it is a free-standing
subordinate clause, which gets treated as a simple
sentence according to the SegCor guidelines. Flair
marks no boundary here, which results in the main
clause of the following complex sentence having
two finite verbs.

(4) < s >da war des doch fast die älteschte
mutter angeblich< /s >< s >mit siebe-
nungsechzig hat se s kind gekriegt oder
so< /s >
‘She was almost the oldest mother there
supposedly. She had the child at sixty-
seven or thereabouts.’
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(5) < c > was ich gelesen hab (.) muss immer
derjenige äh zu lebzeiten schon seine ein-
verständnis abgegben< c/ > < s >nur die
nimmt er< /s >
‘From what I have read that person al-
ways has to give their consent during their
lifteime. Only those ones he accepts.’

(6) < s > ob ich des hinkriech < /s >
‘[I am wondering] if I can manage that.’

Finally, we want to note that sentence boundary
labeling cannot be done perfectly by humans and
that its diffculty is variable across text types. Westp-
fahl and Gorisch (2018) report an average kappa
of 0.69 across 8 transcripts. Across the transcripts,
the kappa value ranges from 0.53 for a conflict-
ual interaction to 0.76 for a reading child. While
Westpfahl and Gorisch (2018) give no breakdown
of which confusions among boundary types are
most frequent for their human annotators, they do
show a further complication of the task: the differ-
ent sentence types are distributed differently across
different text types and their specific properties also
vary by text type. For instance, in so-called expert
talk, simple sentences are longer than in other texts.
Taken together, these considerations underline the
challenge in the task we tackle.

7 Conclusions and Future Work

We have investigated the problem of detecting
SLUs in spoken German. We found that the choice
of data representation for the classifier is important:
small word windows perform worse than larger
ones but the merging of contributions performs
well in a robust way, no matter the size. Further,
we found that the main challenge of the task is to
recognize sentence beginnings: the right context
is much more important than the left context. We
also verified that using information on turns is im-
portant. Finally, we found that augmenting flair’s
embeddings with domain-similar custom embed-
dings further enhances performance.

Given the success of the contextual string embed-
dings, in future work we would like to investigate
whether other contextualized representations such
as ELMo (Peters et al., 2018) and BERT (Devlin et
al., 2019) can yield further improvements.

Another approach to SLU boundary detection
frames it in terms of sequence-to-sequence learn-
ing, using attention-based neural encoder-decoder
models (Bahdanau et al., 2015). Here, a model is

trained to convert sequences from one domain to
sequences in another domain. A typical applica-
tion scenario for this class of models is machine
translation. In our case, we would translate spoken
German utterances lacking SLU boundaries into
speech with SLU boundaries. While initial experi-
ments showed that sequence-to-sequence models
are also able to learn boundaries for spoken ut-
terances, we did not have enough training data to
achieve competetive results. We will pursue this
avenue in future work, using additional naturalistic
as well as synthetically created training data.
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