
Proceedings of the GermEval 2018 Workshop

14th Conference on Natural Language Processing

KONVENS 2018

Austrian Academy of Sciences, Vienna
September 21, 2018

Edited by

Josef Ruppenhofer
Melanie Siegel
Michael Wiegand

theke
Textfeld
                   Publikationsserver des Instituts für Deutsche Sprache             URN: http://nbn-resolving.de/urn:nbn:de:bsz:mh39-84901



Contents

Preface iv

1 Overview
Michael Wiegand, Melanie Siegel & Josef Ruppenhofer 1

2 Offensive Language without Offensive Words (OLWOW)
Manfred Klenner 11

3 h da Submission for the Germeval Shared Task on the Identification of Offensive
Language
Melanie Siegel & Markus Meyer 16

4 Saarland University’s Participation in the GermEval Task 2018 (UdSW) – Ex-
amining Different Types of Classifiers and Features
Michael Wiegand, Anastasija Amann, Tatiana Anikina, Aikaterini Azoidou, Anastasia

Borisenkov, Kirstin Kolmorgen, Insa Kröger & Christine Schäfer 21

5 Challenges of Automatically Detecting Offensive Language Online: Participa-
tion Paper for the Germeval Shared Task 2018 (HaUA)
Tom De Smedt & Sylvia Jaki 27

6 KAUSTmine - Offensive Comment Classification on German Language Micro-
posts
Matthias Bachfischer, Uchenna Akujuobi & Xiangliang Zhang 33

7 Fine-Grained Classification of Offensive Language
Julian Risch, Eva Krebs, Alexander Löser, Alexander Riese & Ralf Krestel 38

8 TUWienKBS at GermEval 2018: German Abusive Tweet Detection
Joaqúın Padilla Montani & Peter Schüller 45

9 Feature Explorations for Hate Speech Classification
Tatjana Scheffler, Erik Haegert, Santichai Pornavalai & Mino Lee Sasse 51

10 Offensive Language Detection with Neural Networks for Germeval Task 2018
Dominik Stammbach, Azin Zahraei, Polina Stadnikova & Dietrich Klakow 58

11 RuG at GermEval: Detecting Offensive Speech in German Social Media
Xiaoyu Bai, Flavio Merenda, Claudia Zaghi, Tommaso Caselli & Malvina Nissim 63

ii



12 upInf - Offensive Language Detection in German Tweets
Bastian Birkeneder, Jelena Mitrović, Julia Niemeier, Leon Teubert & Siegfried Hand-

schuh 71

13 InriaFBK at Germeval 2018: Identifying Offensive Tweets Using Recurrent Neu-
ral Networks
Michele Corazza, Stefano Menini, Pinar Arslan, Rachele Sprugnoli, Elena Cabrio,

Sara Tonelli & Serena Villata 80

14 Transfer Learning from LDA to BiLSTM-CNN for Offensive Language Detection
in Twitter
Gregor Wiedemann, Eugen Ruppert, Raghav Jindal & Chris Biemann 85

15 Towards the Automatic Classification of Offensive Language and Related Phe-
nomena in German Tweets
Julian Moreno Schneider, Roland Roller, Peter Bourgonje, Stefanie Hegele & Georg

Rehm 95

16 HIIwiStJS at GermEval-2018: Integrating Linguistic Features in a Neural Net-
work for the Identification of Offensive Language in Microposts
Johannes Schäfer 104

17 ULMFiT at GermEval-2018: A Deep Neural Language Model for the Classifi-
cation of Hate Speech in German Tweets
Kristian Rother & Achim Rettberg 113

18 German Hate Speech Detection on Twitter
Samantha Kent 120

19 CNN-Based Offensive Language Detection
Jian Xi, Michael Spranger & Dirk Labudde 125

20 spMMMP at GermEval 2018 Shared Task: Classification of Offensive Content
in Tweets using Convolutional Neural Networks and Gated Recurrent Units
Dirk von Grunigen, Fernando Benites, Pius von Däniken, Mark Cieliebak & Ralf

Grubenmann 130

21 GermEval 2018: Machine Learning and Neural Network Approaches for Offen-
sive Language Identification
Pruthwik Mishra, Vandan Mujadia & Soujanya Lanka 138

iii

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018



Preface

Offensive language in social media is a problem currently widely discussed.
Researchers in language technology have started to work on solutions to support
the classification of offensive posts. We present the pilot edition of the GermEval
Shared Task on the Identification of Offensive Language. This shared task deals
with the classification of German tweets from Twitter. GermEval 2018 is the fourth
workshop in a series of shared tasks on German processing. These shared tasks
have been run informally by self-organized groups of interested researchers and
were endorsed by special interest groups within the German Society for Compu-
tational Linguistics (GSCL). The workshop was co-located with the Conference
on Natural Language Processing (Konvens) 2018 in Vienna. The results indicate
that the domain of offensive language in social media offers challenging tasks.
There were two tasks, a coarse classification and a more fine-grained classification
of tweets. We received 76 submissions from 20 groups. The results and the full
dataset can be found at the task website at https://projects.fzai.h-da.
de/iggsa/.

We are grateful to the large number of participants whose enthusiastic partici-
pation made GermEval 2018 a success. We would like to thank Markus Meyer for
maintaining home page and mailing lists and supporting the evaluation process.
We also thank the Konvens 2018 conference organizers for their support.

Vienna, September 2018

The organizing committee

Organizers:

Josef Ruppenhofer (Institute for German Language, Mannheim)
Melanie Siegel (Darmstadt University of Applied Sciences)
Michael Wiegand (Saarland University)

iv



group id authors affiliation paper title
CLuzh Klenner University of

Zurich
Offensive Language without Offen-
sive Words (OLWOW)

hda Siegel & Meyer Darmstadt Univer-
sity of Applied Sci-
ences

h da Submission for the Germeval
Shared Task on the Identification of
Offensive Language

UdSW Wiegand et al. Saarland University Saarland Universitys Participa-
tion in the GermEval Task 2018
(UdSW) Examining Different
Types of Classifiers and Features

HaUA De Smedt & Jaki Hildesheim Univer-
sity & Antwerpen
University

Challenges of Automatically De-
tecting Offensive Language Online:
Participation Paper for the Ger-
meval Shared Task 2018 ( HaUA )

KAUSTmine Bachfischer et al. King Abdullah
University for
Science and Tech-
nology

KAUSTmine - Offensive Comment
Classification on German Language
Microposts

hpiTM Risch et al. University of Pots-
dam

Fine-Grained Classification of Of-
fensive Language

TUWienKBS Montani & Schüller TU Wien TUWienKBS at GermEval 2018:
German Abusive Tweet Detection

Potsdam Scheffler et al. University of Pots-
dam

Feature Explorations for Hate
Speech Classification

SaarOffDe Stammbach et al. Saarland University Offensive Language Detection with
Neural Networks for Germeval
Task 2018

RuG Bai et al. Rijksuniversiteit
Groningen & Uni-
versita degli Studi
di Salerno

RuG at GermEval: Detecting Of-
fensive Speech in German Social
Media

upInf Birkeneder et al. University of Pas-
sau & University of
St. Gallen

upInf - Offensive Language Detec-
tion in German Tweets

InriaFBK Corazza et al. Universite Cote
dAzur & Fon-
dazione Bruno
Kessler

InriaFBK at Germeval 2018: Iden-
tifying Offensive Tweets Using Re-
current Neural Networks

uhhLT Wiedemann et al. University of Ham-
burg

Transfer Learning from LDA to
BiLSTM-CNN for Offensive Lan-
guage Detection in Twitter

DFKILT Moreno Schneider
et al.

DFKI GmbH Towards the Automatic Classifica-
tion of Offensive Language and Re-
lated Phenomena in German Tweets

v



HIIwiStJS Schäfer University of
Hildesheim

HIIwiStJS at GermEval-2018: In-
tegrating Linguistic Features in a
Neural Network for the Identifica-
tion of Offensive Language in Mi-
croposts

ULMFiT Rother & Rettberg Hochschule
Hamm-Lippstadt

ULMFiT at GermEval-2018: A
Deep Neural Language Model for
the Classification of Hate Speech in
German Tweets

fkieITF Kent Fraunhofer FKIE German Hate Speech Detection on
Twitter

FoSIL Xi et al. University of Ap-
plied Sciences Mit-
tweida & Fraun-
hofer SIT

CNN-Based Offensive Language
Detection

spMMMP von Grünigen et al. Zurich Univer-
sity of Applied
Sciences & Spin-
ningBytes AG

spMMMP at GermEval 2018
Shared Task: Classification of
Offensive Content in Tweets using
Convolutional Neural Networks
and Gated Recurrent Units

iam Mishra et al. IIIT-Hyderabad &
i.am+ LLC

GermEval 2018 : Machine
Learning and Neural Network Ap-
proaches for Offensive Language
Identification

Table 1: Group IDs, Authors and Paper Titles

vi



Overview of the GermEval 2018 Shared Task on the Identification of
Offensive Language

Michael Wiegand
Spoken Language Systems

Saarland University

michael.wiegand@
lsv.uni-saarland.de

Melanie Siegel
Information Science
Darmstadt University
of Applied Sciences

melanie.siegel@h-da.de

Josef Ruppenhofer
Empirical Linguistics and

Language Modelling
Institut für deutsche Sprache

ruppenhofer@
ids-mannheim.de

Abstract

We present the pilot edition of the
GermEval Shared Task on the Identifica-
tion of Offensive Language. This shared
task deals with the classification of German
tweets from Twitter. It comprises two tasks,
a coarse-grained binary classification task
and a fine-grained multi-class classification
task.

The shared task had 20 participants submit-
ting 51 runs for the coarse-grained task and
25 runs for the fine-grained task. Since this
is a pilot task, we describe the process of ex-
tracting the raw-data for the data collection
and the annotation schema. We evaluate
the results of the systems submitted to the
shared task. The shared task homepage can
be found at https://projects.cai.
fbi.h-da.de/iggsa/

1 Introduction

Offensive Language is commonly defined as hurt-
ful, derogatory or obscene comments made by one
person to another person. This type of language
can be increasingly found on the web. As a conse-
quence, many operators of social media websites
no longer manage to manually monitor user posts.
Therefore, there is a pressing demand for methods
to automatically identify suspicious posts.

The GermEval Shared Task on the Identification
of Offensive Language is intended to initiate and
foster research on the identification of offensive
content in German language microposts. Offensive
comments are to be detected from a set of German
tweets. We focus on Twitter since tweets can be
regarded as a prototypical type of micropost.

The shared task was endorsed by two of the spe-
cial interest groups of the German Society for Com-
putational Linguistics and Language Technology
(GSCL): the Interest Group on German Sentiment

Analysis (IGGSA) as well as the Interest Group on
Social Media Analysis.

This paper will give a short overview on related
work in §2. We will then describe the task in §3
and the data in §4. 20 teams participated in the
shared task. We describe the participants and their
approaches in §5 and give an overview of the results
in §6.

2 Related Work

For a detailed summary of related work on the de-
tection of abusive language, we refer the reader to
Schmidt and Wiegand (2017). In the following, we
will briefly comment on related shared tasks and
datasets in German language. We will also pro-
vide some information on the GermEval evaluation
campaign.

• Kaggle’s Toxic Comment Classification Chal-
lenge1 is a shared task in which comments
from the English Wikipedia are to be classi-
fied. There are 6 different categories of toxity
to be identified (i.e. toxic, severe toxic, ob-
scene, insult, identity hate and threat). These
categories are not mutually exclusive.

• The shared task on aggression identification2

includes both English and Hindi Facebook
comments. Participants have to detect abusive
comments and to distinguish between overtly
aggressive comments and covertly aggressive
comments.

• The shared task on Automatic Misogyny Iden-
tification (AMI)3 is jointly run by IberEval4

1https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge

2https://sites.google.com/view/trac1/
shared-task

3https://amievalita2018.wordpress.com
https://amiibereval2018.wordpress.com

4https://sites.google.com/view/
ibereval-2018

1



and EVALITA5. It exclusively focuses on the
detection of misogynist tweets on Twitter.
There are two subtasks. Task A addresses
the identification of misogynist tweets, while
Task B focuses on the categorization of misog-
ynist tweets (i.e. Discredit, Derailing, Dom-
inance, Sexual Harassment & Threats of Vi-
olence, Stereotype & Objectification, Active
and Passive). Both IberEval and EVALITA
include a task on English tweets. IberEval
also includes a task on Spanish tweets while
EVALITA also includes a subtask on Italian
tweets.

We are not aware of any shared task on the de-
tection abusive language that includes German lan-
guage data. With regard to publicly-available Ger-
man datasets for this task, we only know of Ross
et al. (2016) who present a dataset of about 500
tweets which has been annotated regarding hate
speech. The authors employed a binary catego-
rization scheme. While the dataset from Ross et
al. (2016) may be too small for some data-hungry
learning-based approaches, we hope that the Ger-
man dataset we introduce in this shared task is
sufficiently large (i.e. more than 8,000 tweets) even
for those approaches.

GermEval is a series of shared task evaluation
campaigns that focus on Natural Language Pro-
cessing for the German language. So far, there
have been three iterations of GermEval, each with
a different type of task: named entity recognition
(Benikova et al., 2014), lexical substitution (Tris-
tan Miller et al., 2015) and aspect-based sentiment
analysis in social media customer feedback (Wo-
jatzki et al., 2017). GermEval shared tasks have
been run informally by self-organized groups of
interested researchers.

3 Task Description

Participants were allowed to participate in one or
both tasks and submit at most three runs per task.

3.1 Task 1: Coarse-grained Binary
Classification

Task 1 was to decide whether a tweet includes some
form of offensive language or not. The tweets had
to be classified into the two classes OFFENSE and
OTHER. The OFFENSE category covered abusive
language, insults, as well as merely profane state-
ments.

5http://www.evalita.it/2018

3.2 Task 2: Fine-grained 4-way Classification

The second task involved four categories, a non-
offensive OTHER class and three sub-categories
of what is OFFENSE in Task 1. In the case of
PROFANITY, profane words are used, however,
the tweet does not want to insult anyone. This typi-
cally concerns the usage of swearwords (Scheiße,
Fuck etc.) and cursing (Zur Hölle! Verdammt! etc.).
This can be often found in youth language. Swear-
words and cursing may, but need not, co-occur with
insults or abusive speech. Profane language may
in fact be used in tweets with positive sentiment
to express emphasis. Whenever profane words are
not directed towards a specific person or group of
persons and there are no separate cues of INSULT
or ABUSE, then tweets are labeled as simple cases
of PROFANITY.

In the case of INSULT, unlike PROFANITY, the
tweet clearly wants to offend someone. INSULT is
the ascription of negatively evaluated qualities or
deficiencies or the labeling of persons as unworthy
(in some sense) or unvalued. Insults convey dis-
respect and contempt. Whether an utterance is an
insult usually depends on the community in which
it is made, on the social context (ongoing activity
etc.) in which it is made, and on the linguistic
means that are used (which have to be found to be
conventional means whose assessment as insulting
are intersubjectively reasonably stable).

And finally, in the case of ABUSE, the tweet
does not just insult a person but represents the
stronger form of abusive language. By abuse we
define a special type of degradation. This type of
degrading consists in ascribing a social identity to
a person that is judged negatively by a (perceived)
majority of society. The identity in question is seen
as a shameful, unworthy, morally objectionable or
marginal identity. In contrast to insults, instances
of abusive language require that the target of judg-
ment is seen as a representative of a group and it
is ascribed negative qualities that are taken to be
universal, omnipresent and unchangeable charac-
teristics of the group. (This part of the definition
largely co-incides with what is referred to as abu-
sive speech in other research.) Aside from the cases
where people are degraded based on their member-
ship in some group, we also classify it as abusive
language when dehumanization is employed even
just towards an individual (i.e. describing a person
as scum or vermin etc.).

2



3.3 Evaluation Metrics

We evaluate the classification performance by the
common evaluation measures precision, recall, and
F1-score. These measures are computed for each
of the individual classes in the two tasks. For each
task, we also compute the macro-average precision,
recall and F1-score. We also compute accuracy. We
rank systems by their macro-average scores. We do
not use accuracy since in both tasks the class dis-
tribution is fairly imbalanced. Accuracy typically
rewards correct classification of the majority class.

An evaluation tool computing all of the above
evaluation measures on the two tasks of the shared
task was provided by the organizers prior to the
release of the training data. It is publicly available
and can be downloaded via the webpage of the
shared task.

4 Data Set

As a source for our data collection, we chose Twit-
ter. Thus we are able to make our collection pub-
licly available. Unlike existing corpora, Twitter
also contains a much higher proportion of offen-
sive language (Wiegand et al., 2018).

4.1 Data Collection

Much care was taken in sampling the tweets for
our gold standard. Although a natural sample of
tweets would represent the most unbiased form of
data, we decided against it. A sample of a few
thousand tweets would have resulted in just too few
occurrences of offensive language as the propor-
tion of offensive tweets is known to be generally
low (Schmidt and Wiegand, 2017). We also de-
cided against sampling by specific query terms (as
Waseem and Hovy (2016) suggest) since our ini-
tial experiments showed that using offensive query
terms, such as Idiot or Schmarotzer, greatly re-
duced the variety of offensive terms occurring in
the retrieved tweets.6

Instead, we sampled tweets from the timeline of
various users. In total, we considered about 100
different users. We started by heuristically identi-
fying users that regularly post offensive tweets. By
sampling from their timeline, we obtained offen-
sive tweets that exhibited a more varied vocabulary
than we would have obtained by sampling by pre-
defined query terms. It also enabled us to extract

6Our observation was that the overwhelming proportion
of retrieved tweets would contain just the query words as
offensive terms.

a substantial amount of non-offensive tweets since
only very few users exclusively post offensive con-
tent.

Although this extraction process prevents the
dataset from becoming biased towards specific top-
ics trending at the point in time when the extrac-
tion is run (a problem one typically faces when
extracting data from the Twitter-stream), we still
found certain topics dominating our extracted data.
Most of the extracted offensive tweets concerned
the situation of migrants or the German govern-
ment. The tweets not considered offensive, how-
ever, often addressed different topics. For example,
the politician names Maas and Merkel and the com-
mon noun Flüchtlinge ‘refugees’ were almost ex-
clusively observed in offensive tweets. Since these
high-frequency words undoubtedly do not repre-
sent offensive terms, we decided to debias our data
collection by sampling further arbitrary tweets con-
taining these terms. We specifically sought tweets
from across the entire political spectrum. We also
deliberately included tweets from users that regu-
larly post highly-critical tweets with respect to the
above topics. Otherwise, our data collection would
allow classifiers to score well that simply infer of-
fensive content by observing a negative polarity co-
occurring with particular topics (e.g. Maas, Merkel
or Flüchtlinge).

When sampling tweets from Twitter, we also
imposed certain formal restrictions on the tweets
to be extracted. They are as follows:

(1) Each tweet had to be written in German.

(2) Each tweet had to contain at least five ordinary
alphabetic tokens.

(3) No tweet was allowed to contain any URLs.

(4) No tweet was allowed to be a retweet.

All of these restrictions are mainly designed to
speed up the annotation process (cf. §4.2) by re-
moving tweets that are not relevant to the gold
standard. (2) was included to remove tweets that
just function as an advertisement or spam. We
wanted to exclude URLs (3) since our data collec-
tion should be self-contained to the degree possi-
ble.7 We avoid retweets since they represent a form
of reported content where it is often difficult to de-
cide whether the views expressed in the reported
content are shared by the user retweeting or not.

7The offensive nature of tweets with an URL often only
becomes visible by taking into account their linked content.

3



In splitting our data collection into training and
test set, we made sure that any given user’s com-
plete set of tweets was assigned to either the train-
ing set or the test set. In this way, we wanted to
avoid that classifiers could benefit from learning
user-specific information. For example, if a user,
who very often posts offensive tweets has a very
idiosyncratic writing style and his/her tweets were
distributed across training and test set, then a classi-
fier could exploit the knowledge about the writing
style in order to infer offensive language. Such a
classifier would not really have learned to detect
offensive language but a very specific writing style
which, beyond that given dataset, would not be of
any use for detecting offensive language.

The data collection was also divided up in such a
manner that the training and test sets have a similar
class distribution. This is one of the major pre-
requisites for supervised learning approaches to
work effectively.

4.2 Annotation

Each tweet of the resulting data collection with an
overall size of 8541 tweets was manually annotated
by one of the three organizers of the shared task.
All annotators are native speakers of German.

In order to measure inter-annotation agreement,
a sample of 300 tweets were annotated by the three
annotators in parallel. We removed all tweets that
were marked as HUNH or EXEMPT at least by one
annotator. HUNH was used for incomprehensible
utterances. We do not require that a sentence is
perfectly grammatically well-formed and correctly
spelled to be included in our data. However, if a
sentence is so erroneous that the annotator does
not understand its content, then this sentence was
labeled as HUNH and removed. This label also
applies if the sentence is formally correct but the
annotator still does not understand what is meant
by this utterance. Tweets that are EXEMPT from
the subtyping annotation involve tweets which only
contain abuse or insults that represent the view of
somebody other than the tweeter, utterances which
depend on non-textual information, utterances that
are just a series of hashtags and/or usernames, even
if they indicate abusive speech (e.g. #crimigrants
or #rapefugees), or utterances that are incomplete.

On the remaining 240 tweets, an agreement of
κ = 0.66 was measured. It can be considered sub-
stantial (Landis and Koch, 1977). All remaining
tweets of the gold standard were only annotated by

one of the three annotators.
Table 1 displays the class distribution among the

training and the test set. It comes as no surprise that
non-offensive tweets represent the majority class.
The most frequent subtype of offensive language
are cases of abuse followed by (common) insults.
By far the smallest category are profane tweets.

4.3 Data Format
Our data is distributed in the form of tab-separated
value files. An example row representing one tweet
is shown in Table 2. As the task is focused only
on the linguistic aspect of offensive language, each
tweet is represented only by its text in column 1.
Meta-data contained in Twitter’s json files was not
used. The text column is followed by the coarse-
grained label in column 2 and the fine-grained label
in column 3. Note that we applied no preprocessing
to the tweet text with one exception: as shown in
Table 2, line breaks were replaced with the special
5-character string |LBR| so that each tweet could
be stored on one line.

5 Participants and Approaches

Overall, we had 20 teams participating in the shared
task. All teams participated in Task 1 and 11 of
them took part in Task 2.

Across both tasks, the teams made use of a vari-
ety of approaches. Below, we identify some major
trends and commonalities between the teams. For
a detailed description of the systems, we refer read-
ers to the dedicated system description papers.

5.1 Preprocessing
Tokenization 9 teams mention tokenization as a
preprocessing step in their papers. Most used tok-
enizers adapted to social media: 3 teams used the
TweetTokenizer in nltk (Bird et al., 2009), one team
used the SoMaJo social media tokenizer (Proisl and
Uhrig, 2016), one team used twokenize (Owoputi
et al., 2013) and one team developed an extension
of the tokenizer of Baziotis et al. (2017). Of the
others, one team used the tokenizer in spaCy8, one
team split based mostly on punctuation and the last
team did not give any details about its tokenizer.

POS-Tagging 6 teams used POS-Tagging. In
most cases, the POS-tags were not produced by a
stand-alone tagger but derived from a more com-
plex software tool such as spaCy, the TextBlob9

8https://spacy.io/
9https://github.com/sloria/TextBlob

4



training set test set
categories freq % freq %
coarse-grained OFFENSE 1688 33.7 1202 34.0

OTHER 3321 66.3 2330 66.0
fine-grained ABUSE 1022 20.4 773 21.9

INSULT 595 11.9 381 10.8
PROFANITY 71 1.4 48 1.4
OTHER 3321 66.3 2330 66.0

total 5009 100.0 3532 100.0

Table 1: Class distribution on training and test set.

@Ralf Stegner Oman Ralle..dich mag ja immer noch keiner.
Du willst das die Hetze gegen dich aufhört? |LBR| Geh in
Rente und verzichte auf die 1/2deiner Pension

OFFENSE INSULT

Table 2: Data format

package or the ParZu dependency parser (Sennrich
et al., 2013).

Lemmatization and stemming 5 systems used
lemmatization. Three teams used spaCy, and one
team each used the TreeTagger (Schmid, 1995) and
ParZu. 2 teams used stemming.

Parsing Only two teams used parsing, one the
ParZu parser (Sennrich et al., 2013) and the other
the mate-tools parser (Björkelund et al., 2010).

5.2 Lexical Resources

While 8 teams used no task-specific lexicon, 8 other
teams used one or more publicly available lexicons,
and 7 teams created a new lexicon.10 9 teams used
polarity lexicons, chief among them PolArt (Klen-
ner et al., 2009), PolarityClues (Waltinger, 2010)
and SentiWS (Remus et al., 2010), and 8 teams
used dictionaries containing swearwords, slurs or
offensive words. Several teams expanded avail-
able polarity of swearword lexicons. One team
translated and post-edited the English dictionary of
abusive terms provided by Wiegand et al. (2018).

5.3 Word Vectors

15 teams used pre-trained word embeddings in their
systems. The most commonly used vectors were
those provided by spinningbytes (word2vec, fast-
text) on the one hand and those provided by the
organizers (word2vec) on the other hand. Some

10The publicly available lexicons used were often ones that
the shared task organizers had pointed out on the shared task’s
web pages.

teams trained on tweet collections of their own.
Two teams pursuing a cross-lingual or translation
approach used multi-lingual word embeddings, the
aligned languages being German and English in
both cases. One team used embeddings only for
the purpose of lexicon expansion but not as a fea-
ture fed to their classifier.

5.4 Classifiers

The classifiers used involve a fairly broad variety
of familiar non-neural types as well as (variations
on) recent neural network-type classifiers. Among
the non-neural types, SVMs were the most com-
mon type. 12 teams used a flavor of SVM, either
as a baseline or their main system. Logistic regres-
sion was used by 7 teams, in two cases as a meta-
classifier. Decision Trees were used by 2 teams
and 1 team used a Naive Bayes classifier. Among
the neural network classifiers common recent ar-
chitectures are found: CNN (10 teams), LSTM
and variants (11 teams), GRU (6 teams), as well as
combinations of these.

6 Submissions and Results

The full set of results for both tasks is available at
the shared task website.

A high-level summary of the results is given
in Table 3, which provides summary statistics on
the macro-average F1 score that was used as the
official ranking criterion in the shared task. As the
table shows, the scores achieved span a substantial
range: more than 25% points in the case of the
coarse task and more than 20% points in the case

5



of the fine-grained task.

6.1 Coarse-grained Classification

We received 51 different runs from 20 teams for
the binary classification into OFFENSE vs OTHER.
For lack of space, we only show the best 15 runs
in Table 4. As a baseline, we also included the
performance of majority-class classifier always pre-
dicting the majority class OTHER.

6.2 Fine-grained Classification

We received 25 different runs from 10 teams for the
fine-grained task that distinguishes three sub-types
of offensive language from OTHER. We report the
best 10 submissions in Table 5. As a baseline,
again, we included the performance of majority-
class classifier always predicting the majority class
OTHER.

6.3 General Conclusions Drawn from the
Evaluation

6.3.1 System Design
Given the diversity of approaches and the large
number of participating groups in this shared task,
it is difficult to draw general conclusions about the
effectiveness about specific types of features.

With regard to the choice of classifiers, there is
a competition between traditional feature-based su-
pervised learning (typically represented by SVMs)
and the more recent deep learning methods. Un-
doubtedly, most top performing systems in both
shared tasks employed deep learning (e.g. spM-
MMP, uhhLT, SaarOffDe, InriaFBK), yet the top
performing system in Task 1 and the second-best
performing system in Task 2 (i.e. TUWienKBS) ex-
clusively employed traditional supervised learning.
This team even explicitly states in its participation
paper that the usage of deep learning did not im-
prove their results. This makes us wonder whether
the frequent occurrence of such methods in top
performing systems is just a result of the current
popularity of deep learning algorithms and whether
traditional engineering is not similarly effective (at
least for the classification task in GermEval 2018).
We also note that there was quite a bit of varia-
tion among the specific deep learning approaches
used. It was not necessarily the most complex
approach that produced the best results. For exam-
ple, SaarOffDe with its straightforward approach
of using RNNs and CNNs produced top scores.
The scores of systems employing complex transfer-

learning (e.g. spMMMP, InriaFBK or uhhLT) are
not necessarily better.

Although overall it may not always be a crucial
aspect of system design, the usage of ensemble
classification seems to very often improve classifi-
cation approaches (e.g. Potsdam, RuG, SaarOffDe,
TUWienKBS, UdSW).

With regard to traditional feature engineering,
the features found effective very much reflect the
insights of recent research on English data, partic-
ulary the extensive study presented in Nobata et
al. (2016). Several submissions include a combi-
nation of word embeddings, character n-grams and
some form of (task-specific) lexicon. Both HaUA
and UdSW report that high performance scores can
already be achieved with a classifier solely rely-
ing on a lexicon. Yet both groups show that such
classifiers can be outperformed by classifiers using
additional (typically more generic) features, e.g.
character n-grams.

The usage of datasets from other languages (typ-
ically English) to augment the training data pro-
vided by GermEval may be a very popular idea
(e.g. InriaFBK, hpiTM, UdSW, spMMMP), how-
ever, the results of this shared task do not support
systematic effectiveness.11 There are two issues
that may stand in the way. Firstly, the definition
of abusive language varies throughout the different
datasets. Secondly, the predominant type of abuse
may be different: Not every English dataset on abu-
sive language detection similarly has so many abu-
sive comments towards migrants as the GermEval
dataset.

6.3.2 Task and Data
Overall, we can conclude that the task of iden-
tifying offensive language on German tweets is
doable. However, with the highest F-scores up to
76% F1-score on Task 1 and 52% on Task 2, the
task is clearly far from solved. If we consider the
large span of different F1-scores within the same
task (i.e. 27% points on Task 1 and 20% points on
Task 2), we also have to acknowledge that building
classifiers that achieve top scores is not a trivial
undertaking.

The overall performance scores achieved on Task
2 are considerably lower than on Task 1. This does
not come as a surprise as Task 2 is considerably
more difficult, having 4 instead of 2 classes. More-

11UdSW reports that no matter how crosslingual informa-
tion is added to a classifier, the performance compared to a
monolingual classifier drops.

6



task # teams # runs min max median mean sd
coarse 20 51 49.03 76.77 69.15 66.35 8.45
fine 11 25 32.07 52.71 38.76 39.71 5.00

Table 3: Summary statistics for overall macro-F1 scores in the two tasks

over, for some classes, particularly PROFANITY
there are simply too few instances in the dataset
(Table 1).

On several comparable English datasets, much
higher classification scores have been reported
(Agrawal and Awekar, 2018; Badjatiya et al., 2017).
Again, there may be several reasons for that. Ger-
man is undoubtedly more difficult than English.
Due to its higher degree of inflection and com-
pounding, the issue of data sparseness is more
prominent. Additionally, we took great efforts in re-
moving biases from the dataset allowing classifiers
to overfit (§4.1). For example, we found that if we
were to eliminate the constraint that tweets in train-
ing and test data have to originate from different
users, performance of supervised classifiers would
increase by approximately 7% points in F1-score.

Although a proper error analysis is beyond the
scope of this overview paper, we inspected the
output of the best performing systems and found
that while offensive utterances that contain predic-
tive keywords, also referred to as explicit offense
(Waseem et al., 2017), are mostly detected, offen-
sive utterances that lack such keywords, also re-
ferred to as implicit offense (Waseem et al., 2017),
are mostly missed. Examples (5)-(9) display some
of the latter tweets. Clearly, many of these cases
require world knowledge and thus remain out of
reach for systems that solely employ text classifica-
tion.

(5) Ich verstehe immer weniger, warum die
Polen, Tschechen und Ungarn unsere vor-
bildliche Migrationspolitik nicht mitmachen
wollen. Ist es denen nicht langweilig mit
Weihnachtsmärkten so ganz ohne Barrieren,
Polizisten und Nagelbomben?

(6) Sei mal ehrlich, wie sollen man Frauen noch
ernst nehmen?

(7) Zion wird sein Nürnberg jetzt erleben!

(8) Wenn wir Glück haben, wird China die Welt
beherrschen. Wenn wir Pech haben, der Islam.

(9) Da zeigt sich leider mal wieder dass uns der
Fall der Mauer nicht nur viel Gutes gebracht

hat sonder eben auch @RenateKuenast. #fall-
dermauer

A final aspect of the task design and evaluation
that leads to significantly lower scores on the fine-
grained task is the combination of macro-F1-based
scoring and the inclusion of a very low-frequency
class among the labels, namely PROFANITY. Per-
formance on that class was low even for the overall
best teams (cf. Table 5), dragging down the macro-
F1 score. By comparison, the accuracy for the
fine-grained task is only about 6% lower than for
the coarse-grained task.

7 Conclusion

In this paper, we described the pilot edition of the
GermEval Shared on the Identification of Offen-
sive Language. The shared task comprises two
tasks, a coarse-grained binary classification task
and a fine-grained multi-class classification task.
20 groups submitted to the former task while 10
groups submitted to the latter task.

Our results show that both tasks are doable
but difficult and far from solved. In terms of
features and classifiers, there is no clear winner.
While many deep-learning approaches produce
good scores, traditional supervised classifiers may
produce similar scores. Word embeddings, char-
acter n-grams and lexicons of offensive words are
popular features, but a robust system does not nec-
essarily have to include all three components. En-
semble methods mostly help. The effectiveness
of crosslingual methods is debatable. Implicitly
offensive language seems particularly difficult.

Though much care was taken in creating the an-
notated data of the shared task, it is not clear in
how far the top performing systems in our shared
task overfit to the dataset we created. Therefore, an
obvious extension to this task that could shed more
light onto the question of generalization would con-
sist of including data from additional domains.

We introduced a new dataset of 8,000 annotated
tweets as part of this shared task. All this data
has been made publicly available to the research
community via the shared task website.

7



Su
bm

is
si

on
A

cc
ur

ac
y

O
ff

en
se

O
th

er
Av

er
ag

e
Te

am
R

un
ID

Pe
rc

en
t

C
or

re
ct

To
ta

l
P

R
F

P
R

F
P

R
F

1
T

U
W

ie
nK

B
S

co
ar

se
1

79
.5

3
28

09
35

32
71

.8
7

65
.4

7
68

.5
2

82
.9

7
86

.7
8

84
.8

3
77

.4
2

76
.1

3
76

.7
7

2
sp

M
M

M
P

co
ar

se
2

78
.8

5
27

85
35

32
74

.6
5

57
.3

2
64

.8
5

80
.3

4
89

.9
6

84
.8

8
77

.4
9

73
.6

4
75

.5
2

3
sp

M
M

M
P

co
ar

se
1

78
.6

0
27

76
35

32
73

.9
8

57
.2

4
64

.5
4

80
.2

5
89

.6
1

84
.6

7
77

.1
1

73
.4

3
75

.2
2

4
uh

hL
T

co
ar

se
3

77
.4

9
27

37
35

32
66

.2
9

68
.8

9
67

.5
6

83
.6

2
81

.9
3

82
.7

7
74

.9
6

75
.4

1
75

.1
8

5
Sa

ar
O

ff
D

e
co

ar
se

3
77

.2
7

27
29

35
32

66
.7

2
66

.2
2

66
.4

7
82

.6
4

82
.9

6
82

.8
0

74
.6

8
74

.5
9

74
.6

4
6

Sa
ar

O
ff

D
e

co
ar

se
1

77
.3

2
27

31
35

32
67

.1
2

65
.3

9
66

.2
5

82
.3

8
83

.4
8

82
.9

2
74

.7
5

74
.4

3
74

.5
9

7
In

ri
aF

B
K

co
ar

se
1

76
.9

0
27

16
35

32
66

.1
1

65
.8

9
66

.0
0

82
.4

3
82

.5
8

82
.5

0
74

.2
7

74
.2

3
74

.2
5

8
In

ri
aF

B
K

co
ar

se
2

78
.2

0
27

62
35

32
73

.1
8

56
.7

4
63

.9
2

80
.0

0
89

.2
7

84
.3

8
76

.5
9

73
.0

0
74

.2
5

9
Sa

ar
O

ff
D

e
co

ar
se

2
76

.5
0

27
02

35
32

65
.6

8
64

.8
1

65
.2

4
81

.9
7

82
.5

3
82

.2
5

73
.8

3
73

.6
7

73
.7

5
10

In
ri

aF
B

K
co

ar
se

3
77

.2
4

27
28

35
32

70
.4

3
57

.0
7

63
.0

5
79

.8
3

87
.6

4
83

.5
5

75
.1

3
72

.3
6

73
.7

2
11

H
aU

A
co

ar
se

1
76

.7
0

27
09

35
32

72
.9

1
50

.1
7

59
.4

4
77

.8
6

90
.3

9
83

.6
5

75
.3

8
70

.2
8

72
.7

4
12

U
dS

W
co

ar
se

3
75

.6
2

26
71

35
32

66
.4

7
57

.2
4

61
.5

1
79

.4
2

85
.1

1
82

.1
6

72
.9

4
71

.1
7

72
.0

5
13

D
FK

IL
T

co
ar

se
2

76
.0

2
26

85
35

32
77

.9
5

41
.1

8
53

.8
9

75
.6

0
93

.9
9

83
.8

0
76

.7
7

67
.5

9
71

.8
9

14
Po

ts
da

m
co

ar
se

3
75

.9
1

26
81

35
32

72
.4

1
47

.1
7

57
.1

3
76

.9
0

90
.7

3
83

.2
4

74
.6

6
68

.9
5

71
.6

9
15

uh
hL

T
co

ar
se

1
75

.4
2

26
64

35
32

71
.5

2
46

.1
7

56
.1

2
76

.5
2

90
.5

2
82

.9
3

74
.0

2
68

.3
4

71
.0

7
m

aj
or

ity
-c

la
ss

cl
as

si
fie

r
65

.9
7

23
30

35
32

-N
/A

-
-N

/A
-

-N
/A

-
65

.9
7

10
0.

00
79

.5
0

32
.9

8
50

.0
0

39
.7

5

Ta
bl

e
4:

To
p

15
ru

ns
fo

rT
as

k
1:

co
ar

se
-g

ra
in

ed
cl

as
si

fic
at

io
n

Su
bm

is
si

on
A

cc
ur

ac
y

A
bu

se
In

su
lt

O
th

er
Pr

of
an

ity
Av

er
ag

e
Te

am
R

un
ID

Pe
rc

en
t

C
or

re
ct

To
ta

l
P

R
F

P
R

F
P

R
F

P
R

F
P

R
F

1
uh

hL
T

fin
e

3
73

.6
7

26
02

35
32

54
.7

1
51

.8
8

53
.2

5
55

.1
9

30
.7

1
39

.4
6

81
.1

3
88

.9
3

84
.8

5
36

.3
6

25
.0

0
29

.6
3

56
.8

5
49

.1
3

52
.7

1
2

T
U

W
ie

nK
B

S
fin

e
1

74
.5

2
26

32
35

32
63

.7
0

44
.5

0
52

.4
0

50
.8

7
38

.3
2

43
.7

1
80

.8
3

91
.4

2
85

.8
0

17
.1

4
25

.0
0

20
.3

4
53

.1
4

49
.8

1
51

.4
2

3
uh

hL
T

fin
e

2
72

.7
9

25
71

35
32

56
.6

4
47

.9
9

51
.9

6
46

.3
9

35
.4

3
40

.1
8

80
.5

2
88

.3
7

84
.2

6
20

.6
9

12
.5

0
15

.5
8

51
.0

6
46

.0
7

48
.4

4
4

uh
hL

T
fin

e
1

70
.4

4
24

88
35

32
49

.9
2

42
.8

2
46

.1
0

43
.8

0
13

.9
1

21
.1

2
76

.6
1

90
.2

6
82

.8
8

33
.3

3
2.

08
3.

92
50

.9
2

37
.2

7
43

.0
4

5
In

ri
aF

B
K

fin
e

2
70

.5
0

24
90

35
32

58
.9

9
31

.8
2

41
.3

4
37

.7
6

29
.1

3
32

.8
9

76
.4

6
91

.4
6

83
.2

9
5.

88
4.

17
4.

88
44

.7
7

39
.1

5
41

.7
7

6
In

ri
aF

B
K

fin
e

3
68

.6
6

24
25

35
32

54
.2

4
37

.2
6

44
.1

7
29

.7
5

28
.3

5
29

.0
3

77
.5

7
86

.9
5

81
.9

9
11

.5
4

6.
25

8.
11

43
.2

7
39

.7
0

41
.4

1
7

sp
M

M
M

P
fin

e
3

67
.8

9
23

98
35

32
48

.8
6

38
.6

8
43

.1
8

32
.4

3
18

.9
0

23
.8

8
75

.5
7

86
.8

2
80

.8
1

19
.0

5
8.

33
11

.5
9

43
.9

8
38

.1
8

40
.8

8
8

In
ri

aF
B

K
fin

e
1

67
.8

9
23

98
35

32
51

.6
4

30
.5

3
38

.3
7

30
.2

4
33

.3
3

31
.7

1
77

.0
4

87
.2

5
81

.8
3

12
.5

0
4.

17
6.

25
42

.8
5

38
.8

2
40

.7
4

9
fk

ie
lT

F
fin

e
1

68
.7

4
24

28
35

32
66

.3
6

18
.8

9
29

.4
1

34
.3

1
18

.3
7

23
.9

3
71

.2
1

94
.8

9
81

.3
6

33
.3

3
2.

08
3.

92
51

.3
0

33
.5

6
40

.5
8

10
R

uG
fin

e
1

69
.4

2
24

52
35

32
53

.2
9

31
.4

4
39

.5
4

43
.1

7
15

.7
5

23
.0

8
73

.3
4

92
.1

9
81

.6
9

12
.5

0
2.

08
3.

57
45

.5
7

35
.3

5
39

.8
2

m
aj

or
ity

-c
la

ss
cl

as
si

fie
r

65
.9

7
23

30
35

32
-N

/A
-

-N
/A

-
-N

/A
-

-N
/A

-
-N

/A
-

-N
/A

-
65

.9
7

10
0.

00
79

.5
0

-N
/A

-
-N

/A
-

-N
/A

-
16

.4
9

25
.0

0
19

.8
7

Ta
bl

e
5:

To
p

10
re

su
lts

fo
rT

as
k

2:
fin

e-
gr

ai
ne

d
cl

as
si

fic
at

io
n

8



Acknowledgments

We would like to thank Torsten Zesch for providing
very constructive feedback in the early stages of
producing the gold standard data of the shared task.

We would like to thank Markus Meyer for main-
taining home page and mailing lists and supporting
the evaluation process.

Michael Wiegand was partially supported by the
German Research Foundation (DFG) under grant
WI 4204/2-1.

References
Sweeta Agrawal and Amit Awekar. 2018. Deep Learn-

ing for Detecting Cyberbullying Across Multiple So-
cial Media Platforms. In Proceedings of the Euro-
pean Conference in Information Retrieval (ECIR),
pages 141–153, Grenoble, France.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep Learning for
Hate Speech Detection in Tweets. In Proceedings
of the International Conference on World Wide Web
(WWW), pages 759–760, Perth, Australia.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada, August. Association for Computational Lin-
guistics.

Darina Benikova, Chris Biemann, Max Kisselew, and
Sebastian Padó. 2014. GermEval 2014 Named
Entity Recognition Shared Task: Companion Paper.
In Workshop Proceedings of the KONVENS Confer-
ence, pages 104–112, Hildesheim, Germany.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. ” O’Reilly
Media, Inc.”.

Anders Björkelund, Bernd Bohnet, Love Hafdell, and
Pierre Nugues. 2010. A high-performance syntac-
tic and semantic dependency parser. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics: Demonstrations, COLING ’10,
pages 33–36, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Manfred Klenner, Angela Fahrni, and Stefanos Pe-
trakis. 2009. Polart: A robust tool for sentiment
analysis.

J. Richard Landis and Gary G. Koch. 1977. The
Measurement of Observer Agreement for Categori-
cal Data. Biometrics, 33(1):159–174.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive Lan-
guage Detection in Online User Content. In Pro-
ceedings of the International Conference on World
Wide Web (WWW), pages 145–153, Republic and
Canton of Geneva, Switzerland.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 380–390.

Thomas Proisl and Peter Uhrig. 2016. Somajo: State-
of-the-art tokenization for german web and social
media texts. In WAC@ACL.

Robert Remus, Uwe Quasthoff, and Gerhard Heyer.
2010. Sentiws-a publicly available german-
language resource for sentiment analysis. In LREC.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2016. Measuring the Reliability of Hate
Speech Annotations: The Case of the European
Refugee Crisis. In Proceedings of the Workshop
on Natural Language Processing for Computer-
Mediated Communication, pages 6–9, Bochum, Ger-
many.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to german. In
Proceedings of the ACL SIGDAT-Workshop. Dublin.

Anna Schmidt and Michael Wiegand. 2017. A Survey
on Hate Speech Detection using Natural Language
Processing. In Proceedings of the EACL-Workshop
on Natural Language Processing for Social Media
(SocialNLP), pages 1–10, Valencia, Spain.

Rico Sennrich, Martin Volk, and Gerold Schneider.
2013. Exploiting synergies between open resources
for german dependency parsing, pos-tagging, and
morphological analysis. In Proceedings of the In-
ternational Conference Recent Advances in Natural
Language Processing RANLP 2013, pages 601–609.

David J. Tristan Miller, Darina Benikova, and Sallam
Abualhaija. 2015. GermEval 2015: LexSub A
Shared Task for German-language Lexical Substitu-
tion. In Proceedings of GermEval 2015: LexSub,
pages 1–10, Essen, Germany.

Ulli Waltinger. 2010. Germanpolarityclues: A lexical
resource for german sentiment analysis. In LREC.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

9



Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse:
A Typology of Abusive Language Detection Sub-
tasks. In Proceedings of the ACL-Workshop on Abu-
sive Language Online, pages 78–84, Vancouver, BC,
Canada.

Michael Wiegand, Josef Ruppenhofer, Anna Schmidt,
and Clayton Greenberg. 2018. Inducing a Lexi-
con of Abusive Words – A Feature-Based Approach.
In Proceedings of the Human Language Technology
Conference of the North American Chapter of the
ACL (HLT/NAACL), New Orleans, USA.

Michael Wojatzki, Eugen Ruppert, Sarah Holschneider,
Torsten Zesch, and Chris Biemann. 2017. Ger-
mEval 2017: Shared Task on Aspect-based Senti-
ment in Social Media Customer Feedback. In Pro-
ceedings of the GermEval 2017 – Shared Task on
Aspect-based Sentiment in Social Media Customer
Feedback, pages 1–12, Berlin, Germany.

10



Offensive Language without Offensive Words (OLWOW)

Manfred Klenner
Institute of Computational Linguistics

University of Zurich
Switzerland

klenner@cl.uzh.ch

Abstract

In our contribution, we have applied stance
analysis in order to identify offensive dis-
course. This gives us access to the pros and
cons of the writer of some tweets and re-
veals his/her role framing of the discourse
referents. We also semi-automatically aug-
mented our polarity lexicon with a new
type of polarity labels, namely P for profan-
ity. Starting from seed words, we derived
new entries on the basis of word embed-
dings. Our approach also focuses on of-
fensive language without offensive words
(OLWOW) and discusses strategies to cope
with it.

1 Introduction

The GermEval Task 2018 deals with offensive lan-
guage. The training material are about 5,000 Ger-
man tweets classified (task I) as offensive (label OF-
FENSE) compared to not offensive (label OTHER).
Task II further specifies offensive language as pro-
fanity, abuse or insult. According to the annotation
guidelines, profanity indicates the use of indecent,
nasty or vulgar vocabulary, while insult and abuse
moreover are given, if such words are used to char-
acterise the attributes of a person (INSULT) or to
assign a negatively connotated social class to a per-
son (ABUSE). See the following examples insult
(ex. 1), abuse (ex. 2) and profanity (ex .3).

ex. 1. Merkel ist die grösste Versagerin der Welt-
geschichte !!! (Merkel is the biggest loser in world
history)

ex. 2. Clinton - Der Antichrist (Clinton -the an-
tichrist)

ex. 3. Ist zum kotzen (it sucks)

After a couple of attempts to predict the annota-
tions of the gold standard, the author of this paper

is convinced that this annotation task was not triv-
ial. I still believe that the annotations of a couple
of sentences are debatable.

About one third of the data is classified as
offensive language, where abuse is the majority
class (about 1,000 tweets), followed by insult (600
tweets) and complemented by a small profanity
sample (70 examples). The majority baseline for
task I - assigning OTHER - yields an accuracy of
66.3%.

A glimpse at the data reveals that - as expected -
the vocabulary being used is the central indicator
of offensive language. This seems to prompt for a
lexicon-based solution, although the resulting task
then is to deal with unknown words. Especially
compounds are a very flexible means to create new
words in German. But the number of vulgar words
is large, anyway, so a mechanism to induce such
words is needed. Word embeddings might help.
Thus deep learning comes into play. However, we
were not so much interested in the best perform-
ing black box, but wanted to find out whether our
stance analysis system based on a purely symbolic
computation could be of any use.

2 Resources

The organisers provided a couple of resources,
among others German word embeddings, but also
lexicons with e.g. German swearwords. We only in-
tegrated one resource, the swearword lexicon. We
did it semi-automatically. First, we determined the
frequency of each word in a corpus of Facebook
posts from a German right-wing party. Then we
had a look at the most frequent words and kept
300 of them. We added these words to our polar-
ity lexicon for German, comprising 6,800 nouns
and adjectives classified as positive or negative in
one of three dimension, namely, the dimension of
emotion, moral or appreciation (following the dis-
tinction of the appraisal theory, cf. (Martin and
White., 2005)). We also have specified a verb lex-

11



icon comprising 1.100 verbs, where a verb might
have various frames indicating the syntactic frame
of the verb and whether the verb has a polar effect
on its arguments (positive or negative). For exam-
ple, the verb anpöbeln (to accost sb, to molest sb)
casts a negative effect on its agent role (which is
the source) and on its patient role (the target). Also
a negative relation (con) between source and target
is assigned (given that the verb is being affirma-
tively used). This forms the basis of our system
for stance analysis. We also assigned verb specific
polar roles to source and target. For instance, the
patient of the target role of verleumden (to slander,
slur, vilify) is said to be a victim while the source
takes the role of a villain. We call the assignment
of polar roles to discourse referents role framing,
since it conceptualizes a referent in a specific way.
It represents the writer perspective. It indirectly
indicates the writer’s stance towards the referents:
he/she is against the villain but in favour of the
victims.

Although we are dealing with tweets, we ap-
plied an ordinary dependency parser (Sennrich et
al., 2013). We just stripped hash tags, emoticons
and other social media language noise.

3 Qualitative Analysis

Although it is rather evident that - for a good per-
formance - a subsymbolic approach would be well
suited (either character level n-grams or deep learn-
ing), we pursued another approach. Our goal was
to find out, whether our system for stance analysis
could help to understand the problem and help to
solve the task. The idea was to first identify the
proponents and opponents of the writer of the (of-
fensive) tweets and then to look for polar relations
where e.g. a proponent of the writer received a neg-
ative effect, or the opponent of the writer received a
positive effect. We thought that such constellations
might bear conflict potential which - in the best
case - would be the yeast of offensive language us-
age. Very soon we realised that we still had to deal
with vocabulary gaps, since most of the time offen-
sive language is based on the usage of offensive
words. Actually, our hope was that we were able to
identify exactly those cases of (implicit) offensive
language that are not indicated by offensive words.
We give a couple of examples (cf. examples ex.4
to ex.6).

ex. 4. Das deutsche Volk wird unaufhörlich belo-
gen! (The German people are constantly being lied

to!)

ex. 5. Merkel muss weg. (Merkel has to go.)

ex. 6. Sie warnen vor Nazis und führen deren
Methoden der Bücherverbrennung und Meinung-
sunterdrückung ein. (They warn against Nazis and
introduce their methods of burning books and sup-
pressing opinion.)

Example ex.4: our system derives that Volk is
a victim (after passive normalization), since the
target of belügen (lie to) in an affirmatively used
sentence is a victim (the source is a villain, but no
source is given here). Example ex.5: a negative ef-
fect applies to Merkel stemming from wegmüssen.
We are not able to deal with example ex.6 at the
moment. Although a con relation from the source
(they) to the target (Nazis) is derived, and although
we were able to deduce a positive effect on they1

the implicit contrast with the second conjunct (fol-
lowing the “and”) is beyond the current capabilities
of our system.

These sentences contain no offensive words, but
are annotated as offensive language. How to deal
with these sophisticated examples?

4 Model Based on Lexicon

We trained a word2vec model on the basis of three
Swiss newspapers (NZZ, Tagesanzeiger, Blick). In
order to find new examples of offensive words, we
manually specified a seed lexicon comprising 20
words. On the basis of the gensim module, we
then generated for each seed word the 25 closed
neighbors and manually removed false positives.
After three rounds, we ended up with 275 entries.

We randomly extracted 500 tweets from the train-
ing set as a preliminary test set and carried out sev-
eral experiments with the full polarity lexicon and
subversions of it. This revealed that the precision
was ok, but recall was a bit low. Next we calcu-
lated the correlation between words of the training
set and the offensive class. This gave better results.
The precision of OFFENSE was 61.41%, recall was
69.32%, f1 was 65.12% and accuracy was 75.80 %.
We took this as our starting point. We now turn to
a more detailed description of our approach.

Rather quickly it became clear that some words
are very good indicators of offensive language. For
instance, the word Scheiss (shit) perfectly indicates
the class OFFENSE. We thus decided to simply pre-
dict the class of a tweet on the basis of these words.

1A negative effect on a negative target gives a positive
effect on the source of such a situation.

12



We estimated the probability of an offensive class
given a word W with the following approximation:

P(OFFENSE|W )≈ #(W,OFFENSE)
#W

This is: the number of times OFFENSE is the
label of a tweet that includes word W divided by
the number of times word W occurs in the training
corpus. We kept those words that have a proba-
bility above 0.75 and of a frequency in the corpus
above a THRESHOLD which is 2 for words not
in the polarity lexicon and 0 for words from the
polarity lexicon. We call this filter the word indica-
tor filter(it comprises 508 words) and used it as a
classifier in the following way.:

P(OFFENSE|TWEET ) = 1 i f
∃W ∈ TWEET : P(OFFENSE|W ) > 0.75
∧ f req(W,CORPUS) > T HRESHOLD

If a tweet contains one word of the filter it is clas-
sified as OFFENSE. There are other filters: verb
related filters (see next section) and an exclamation
mark filter. Those tweets that pass all filters are
classified as OTHER.

There are a couple of possible correlations one
could take into consideration and a machine learn-
ing tool could do this much better than a manual
engineer. However, since we were not so much
interested in exploiting indicators that are language
independent (like the number of hash tags being
used, capital letter usage etc.), but rather in the lan-
guage specific means, we have not undertaken a
detailed analysis on that level. The only exception
are exclamation marks. If a tweet contains more
than two successive exclamation marks, it is clas-
sified as offensive. This is the exclamation mark
filter. Let us now turn to our stance-based filters.

5 Model Based on Stance Detection

Our stance analysis is verb-based (Klenner et al.,
2016). It only triggers if a model verb with the right
syntactic frame (and sometimes further lexical re-
strictions) is present. Then, dependent on the verb
and its affirmative status (negated or not), role fram-
ing, i.e. the assignment of polar roles occurs and a
polar relation (pro or con) is established from the
source towards the target. The main polar roles are
victim, villain, benefactor, beneficiary, pos actor,
neg actor, neg affected, pos affected. They are as-
sociated with the source and target (cf. (Wiegand et
al., 2016)) of a verb. The source marks the seman-
tic roles of the initiator of the positive or negative

relation that a verb expresses towards the target.
For instance the verb to cheat: the direct object (pa-
tient) is the target as well as a victim and the source
is the (logical) subject (agent) and it is modelled as
a villain (since to cheat is morally negative). Our
stance model claims that role framing, the assign-
ment of polar roles, reveals the writer perspective,
since if the writer conceptualises someone as e.g. a
villain, he/she is against this referent. Finding the
targets of the stance of the author, thus, boils down
to analyse his/her role framing. If the proponents
and opponents of the writer are known, we can
start to infer additional proponents and opponents
of his/her. For instance, if someone is in favour of
a proponent of the writer, then this person becomes
a candidate proponent of the writer. So if the EU is
a proponent of mine and you praises the EU, you
might be a proponent of mine. We do not need
the full-fledged capabilities of our stance system.
We wanted to explore the idea that we were able
to identify offensive language, namely the cases
where no offensive vocabulary is present.

But the first question was: is our approach
comprising 1,100 verbs and about 1,700 different
frames plagued by sparseness? In 827 of the 3532
sentences from the test set it triggered. This is
23.4 % of all sentences (for the training set it is
25.38%). This is not too sparse. This gave us
818 polar roles and 176 pro (73) and con (103)
relations, altogether 994 assignments. The first
step in stance analysis is to find the targets of
the writer: who is he/she against or in favour of?
We just took those referents conceptualized as vil-
lains and neg actors: λx : villain(x)∨neg actor(x).
The result comprises SPD (a political party), Mob
(mob), Salafisten (Salafists), Einwanderer (immi-
grants), Lügenpresse (lie press), Merkel (German
chancelor), Allah (Allah). Obviously, the (some)
writers are against these referents. And who are
the victims? We get (among others): Volk (people),
Jude (jew), Planet (planet), Polizist (cop), Deutsch-
land (Germany), Sicherheit (safety), Kind (child),
Frauen (women).

Are there correlations we could exploit: e.g.
between role framing and the class OFFENSE? We
run quite a number of tests. E.g. we determined the
probability P(OFFENSE|villain) = 0.66,
but the are only 35 cases. Other ex-
amples are: P(OFFENSE|neg actor) =
0.51, P(OFFENSE|victim) = 0.58,
P(OFFENSE|pos actor) = 0.29. That is,

13



pos actor indicates OTHER with a probabil-
ity of 71%. When it comes to pro and con
relations, we got P(OT HER|pro) = 0.73 and
P(OT HER|con) = 0.60. As we can see, a
correlation between polar facts and binary classes
(task 1) is given, but is not very striking. We use it
as filters in our pipeline architecture.

The strongest filter is the word indicator filter.
It is applied first. Tweets that do not pass it, are
classified as OFFENSE. The rest runs through the
filters: pro, pos actor, villain and victim. Those
who pass all filters are classified as OTHER. For
our 500 sample test set derived from the training set,
this gave us 61.41% precision and 69.32% recall.

6 Offensive Language without Offensive
Words

In the training set there are a couple of examples of
offensive language without offensive words (OL-
WOW). We created filters to identify such tweets.
If a tweet triggers stance analysis and if a negative
polar fact is derived, but none of its words are in
our polarity lexicon, then this tweet is a candidate
for an OLWOW. If, additionally, a negative polar
fact hits an opponent of the writer, it is a candidate
of OFFENSE. Here are three examples.

ex. 7. Es gibt bei uns keine Pressefreiheit mehr.
(There is no longer a free press.)

ex. 8. Mal schauen wieviel Frauen dieses Jahr von
illegalen Einwanderern vergewaltigt oder belästigt
werden. (Let us see how many women get raped or
harrased by illegal immigrants this year.)

ex. 9. Hier wird Vergewaltigung legalisiert! (Here,
rape gets legalized!)

Example 7 and example 8 are annotated as
ABUSE, while example 9 is a negative one, since it
is annotated with OTHER. Our system is not able
to deal with example 7 but correctly identifies ex-
ample 8: women is classified as victim, immigrants
as villain. Since immigrants are an element of the
opponents and, in this sentence, are conceptualized
as a villain (which is a negative effect), we are
entitled to conclude that this tweet is offensive - al-
though neither rape nor harass are offensive words.
They denote aggressive events.

The concept of an OLWOW is demanding. Ac-
cording to the gold standard and our filters, 175
tweets are OLWOW tweets. However, if we re-
quire that the polar effect hits an opponent (our cri-
teria for offensiveness), this is reduced to 9 cases.

There are various reasons for the resulting sparse-
ness: sometimes the parser has introduced wrong
sentence boundaries, sometimes a pronoun occu-
pies the polar role and we do not do coreference
resolution, sometimes the cause for offensiveness
is distributed over more than one sentence, etc. An
example of a distributed representation is:

ex. 10. Wir haben Jerusalem vom Islam befreit und
das heutige Banken System erfunden. Wer oder
was sollte uns aufhalten. Merkel oder Maas etwa.
Lachhaft. (We liberated Jerusalem from Islam and
invented today’s banking system. Who or what
should stop us. Merkel or Maas? Ridiculous.)

As we can see, no offensive words are used and
the abusive argumentation is distributed among 4
pieces. OLWOW annotations are also debatable
since sometimes it is unclear whether we are talk-
ing about offensive language or just the freedom of
speech. For instance example 7: is this not just an
ordinary opinion?

We believe that OLWOW is an interesting and
demanding research topic. Although we have
explicated some conditions and discussed some
ideas how to operationalize OLWOW detection,
we could not make it fruitful for the task at hand
because of sparseness.

7 Filter-based Model: GermEval Runs

We submitted three runs in the coarse-grained task
setting.

We have filters that classify tweets as OFFENSE
(word indicator, exclamation mark, neg actor, vil-
lain, victim) and filters that classify tweets as
OTHER (pro, pos affected).

Run 1 (cluzh coarse1.txt’) includes the fil-
ters (in that sequence): pro, pos affected,
pos actor, word indicator, exclamation mark.
Run 2 (cluzh coarse2.txt’) includes the filters
(in that sequence): word indicator, exlamation
mark, neg actor, villain and victim. Run 3
(cluzh coarse1.txt’) only includes the word indi-
cator filter.

Tweets that pass all filters are classified
as OTHER. We did not use the filters con,
neg affected, benefactor, beneficiary. Also the fil-
ters from the last section were not part of any sub-
mission because of the sparseness problem.

8 Conclusion

We presented a plain vocabulary-based approach to
the detection of offensive language. We realised a

14



cascade of filters including verb-based ones coming
from stance analysis. We also focussed on a partic-
ular interesting research topic that we named OL-
WOW, offensive language without offensive words
(known as implicit offensive language). We dis-
cussed ideas how to cope with it, pointed out prob-
lems with the annotation process of OLWOW and
presented of a couple of examples our stance analy-
sis system is able to cope with. We could, however,
not exploit this notion for our shared task runs due
to the sparseness of trigger conditions. We have,
however, gained some insights that we will explore
in our future work.

Acknowledgments
I would like to thank Michi Amsler for interesting
discussions, useful word embeddings and a list of
nice swearwords.

References
Manfred Klenner, Don Tuggener and Simon Clematide

(2016). Stance Detection in Facebook Posts of a
German Right-wing Party. In:LSDSem 2017/LSD-
Sem Linking Models of Lexical, Sentential and
Discourse-level Semantics, Valencia, 2017

J. R. Martin and P. R. R. White (2005). Appraisal in
English. Palgrave, London, 2005

Rico Sennrich, Martin Volk and Gerold Schneider
(2013). Exploiting Synergies Between Open Re-
sources for German Dependency Parsing, POS-
tagging, and Morphological Analysis. In: Pro-
ceedings of the International Conference Recent Ad-
vances in Natural Language Processing Hissar, Bul-
garia, 2013

Michael Wiegand and Josef Ruppenhofer (2015).
Opinion Holder and Target Extraction based on the
Induction of Verbal Categories. Proceedings of
the 19th Conference on Computational Natural Lan-
guage Learning (CONLL) , Beijing, China, July 30-
31, 2015

15



h da Submission for the Germeval Shared Task on the Identification of
Offensive Language

Melanie Siegel
Darmstadt University
of Applied Sciences

melanie.siegel@h-da.de

Markus Meyer
Darmstadt University
of Applied Sciences

markus.meyer@stud.h-da.de

Abstract

This paper describes the Darmstadt Uni-
versity of Applied Sciences (h da) sub-
mission to the binary classification task
of the Germeval Task 2018 - Shared
Task on the Identification of Offensive
Language. We submitted three runs,
both a combination of lexical resources
and an adapted sentiment analysis sys-
tem. In run 1 (hda coarse 1.txt) and 2
(hda coarse 2.txt), we had a threshold-
based approach (with different thresholds)
and in run 3 (hda coarse 3.txt), an ap-
proach based on machine learning.

1 Introduction

The social media such as Twitter, Facebook and
also the commentary columns of the online pres-
ences of newspapers and radio stations are increas-
ingly dominated by people who defame, insult and
threaten. Automatically generated messages are
also used to give the impression that these extreme
opinions are widespread among the population.
The “Germeval Shared Task on the Identification of
Offensive Language” tries to develop and compare
methods that automatically recognize such state-
ments. The special features of this shared task: It
is the first competition of its kind that deals with
German language, and it analyzes data from Twit-
ter.

In summer semester 2018, we participated in the
shared task with a group of students in the Informa-
tion Science Bachelor’s programme of Darmstadt
University of Applied Sciences.

We have formed working groups covering the
following areas:

• project management

• programming

• documentary

• resources

• methods in literature

An NLP task for German language is complex
because most publicly available resources are made
for the English language. Therefore, we had to de-
velop or significantly expand some resources our-
selves. The resources that are available for the
German language are also mostly targeted at news-
paper text. However, Twitter data differ consider-
ably from newspaper texts in terms of language, so
we also had to make adjustments here.

The Germeval Shared Task consists of two sub-
tasks: Task 1 is a binary classification of tweets into
the categories OFFENSIVE and OTHER. In task
2, the tweets of the class OFFENSIVE are further
classified in PROFANITY, ABUSE and INSULT.
We worked on task 1, the binary classification, tak-
ing the PROFANITY class of task 2 into account.
We also did some preliminary work on task 2 that
we describe in section 5.

We have chosen a combination of a lexical ap-
proach and a sentiment analysis approach. For the
lexical approach we have created resources mainly
from the training data of the shared task. The sen-
timent analysis program was created in previous
projects for Amazon product reviews and had to be
adapted to Twitter data.

2 Resources

We were able to build on and adapt some exist-
ing dictionaries and have created some additional
dictionaries based on the training data.

2.1 Sentiment Lexicon
In previous projects for sentiment analysis we have
created a comprehensive sentiment dictionary with
approx. 7800 entries and polarity measurements
from Amazon product reviews and cinema reviews.
We have applied this to the training data of the
shared task. We looked at the cases where tweets

16



were recognized as positive or neutral, although
they were marked as OFFENSIVE. OFFENSIVE
statements are not always negative opinions, as in
this example from the training data:

(1) Irgendwie verständlich daß Berlusconi
diesen #Schulz mit einem KZ-Aufseher ver-
glich.
(Somehow understandable that Berlusconi
compared this #Schulz with a concentration
camp guard.)

In many other cases, however, words were missing
from the sentiment lexicon, which we could add.
This lexicon now contains 9385 words.

2.2 Offensive Words

To create a lexicon of offensive words, we used
the training data. We divided the data into tweets
marked with ‘OFFENSIVE’ and those marked with
‘OTHER’. We then made a list of the tokens in these
tweets. We omitted the names (tokens beginning
with ‘@’) and hashtags (tokens beginning with ‘#’).
We have also filtered stop words such as articles or
pronouns. Then, we included in the list of offensive
words all words that occurred only in the OFFEN-
SIVE data, but not in the OTHER data. The result
is a list of 3536 words.

2.3 Profane Words

To get a list of profane words, we proceeded in
a similar way as with the offensive words. We
divided the training data into those marked with
‘PROFANITY’ and extracted the words that only
appeared in the tweets marked with ‘PROFANITY’,
in the way described above. With 57 entries, this
list is significantly smaller than the other lists. This
is because there are only 71 tweets in the training
data marked ‘PROFANITY’.

3 Classifying Tweets

We have opted for a combined approach of sen-
timent analysis and lexicon-based analysis. We
have worked with both machine learning and a
threshold-based approach, both of which use the
same resources. This allows us to compare the two
approaches. Figure 1 shows the pipeline of our
approach.

3.1 Preprocessing

In preprocessing, we first delete special characters
such as Emojis. In the second step we analyze

Figure 1: Pipeline of h da classification

Lemma POS DEP Head.Text Text
Abschieben VERB sb sind Abschieben
ich PRON sb Abschieben es
sein AUX ROOT sind sind
doch ADV mo sind doch
nur ADV mo Moslems nur
Moslem NOUN pd sind Moslems
! PUNCT punct sind !
! PUNCT punct sind !

Table 1: Spacy analysis of
‘Abschieben es sind doch nur Moslems!!’
(Deport! They’re only Muslims!!)

the tweet with the Python module Spacy, such that
we get tokens, POS information, lemmas and also
dependencies.

Table 1 shows the spacy analysis of a tweet from
the training set.

3.2 Sentiment Analysis

The purpose of sentiment analysis is to find out
whether a tweet contains a strong negative expres-
sion of opinion or a rather positive expression of
opinion. In the case of a positive expression of
opinion it is rarely a case of ABUSE or INSULT,
while PROFANITY is quite common. Therefore,
although we worked mainly on task 1 we took PRO-
FANITY into account.

As mentioned earlier, we used and customized
a sentiment analysis program designed for Ama-
zon product reviews. It is a Python program that
compares words in the text with a sentiment lex-
icon and includes negations (e.g. ‘nicht’ - not)
and intensifiers (e.g. ‘sehr’ - very) by using Spacy

17



dependencies to determine the scope.
In addition to the extension of the sentiment lex-

icon, however, further adjustment was necessary:
While it makes sense to exclude conditional clauses
and questions in sentiment analysis of product re-
views, this does not make sense for tweets:

(2) Kennt jemand ein gutes Autoradio?
(Does anyone know a good car radio?)
Example for a question in product reviews

(3) Kann man diesen ganzen Scheiß noch
glauben..?
(Can you believe all this shit...?)
Example for a question in tweets

The calculated numerical sentiment values are pos-
itive if the expression is positive, negative if the
expression is negative and 0 if the expression is
neutral.

3.3 Lexical Lookup

The lexical lookup in the lexicons for offensive
words and for profane words was realized in two
ways. In both cases we compare the words in lower
case, because the upper and lower case is not stan-
dardized in tweets. In the first case, we check for a
tweet how many words can be found in the respec-
tive lexicon and output them as numerical values.
The disadvantage of this method is that these nu-
merical values can lie between 0 and potentially
the number of tokens in the tweet, which means
that no value range can be determined.

In the second case we use the Cosine coefficient
to calculate the similarity of a tweet with the words
in the lexicons. This procedure was described
among others by Liu (2007). Here the tweet is
broken down into a set of tokens, which is then
compared with the lexicon of offensive words. The
return value is a floating point number between 0
and 1, where 0 means that there is no match to the
words in the dictionary and 1 means that all words
match. The disadvantage of the Cosine similarity
is that it exhibits high fluctuations, even if the ini-
tial data only marginally increase or decrease in
size. In addition, the size of the comparative data
influences the similarity evaluation.

3.4 Threshold-Based Classification

In experiments with the training data, we set limits
for sentiment and words in the lexicons. There are
three values that are combined with each other: The
sentiment value, the offense value and the profanity

000 100 010 111 110
Accuracy 0.82 0.91 0.81 0.92 0.93

Table 2: Accuracy on Training Data with Different
Thresholds

value. If the sentiment value is higher than 1 (i.e. if
the utterance is strongly positive), then the offense
value gets the value ‘0’, since strongly positive
utterances are rarely offensive. However, the pro-
fanity value is still calculated, i.e. it is checked how
many profane words are contained in the tweet.
If the sentiment value is less than or equal to a
threshold, then the offense and profanity values
are calculated. In the classification of tweets in
OFFENSE and OTHER, all tweets with an offense
value higher than a threshold and a profanity value
higher than a threshold were marked as OFFENSE,
all others as OTHER.

Table 2 shows the accuracy values for different
threshold combinations:

• 000: offense value > 0, sentiment value > 0,
profanity value > 0

• 100: offense value > 1, sentiment value > 0,
profanity value > 0

• 010: offense value > 0, sentiment value > 1,
profanity value > 0

• 111: offense value > 1, sentiment value > 1,
profanity value > 1

• 110: offense value > 1, sentiment value > 1,
profanity value > 0

We decided to submit two runs for the threshold-
based approach: hda coarse 1.txt (010) and
hda coarse 2.txt (110).

3.5 Classification Based on Supervised
Learning

First, we identified the features that are useful for
machine learning. Then, we preprocessed the out-
comes of these features, using sklearn’s Min-Max
Scaler1, because of their different types of return
values. These features are the values for sentiment
and the Cosine similarity measure of the tweet
on the offensive and the profanity lexicons.2 We
trained an RBF SVM as part of sklearn’s library on

1http://scikit-learn.org
2Here as well, we took PROFANITY into account, though

we worked on task 1.

18



the first 80% of the training data (4007 tweets). The
remaining 20% (1002 tweets) were classified by
the trained model. The result (for task 1, training
data) is an accuracy of 73.25 on these tweets.

Furthermore we experimented with two more
classifiers, namely decision trees and linear-based
SVM, which are also part of the python sklearn-
library.

Decision trees require a balanced frequency de-
stribution of classes to avoid overfitting, which was
a problem in this shared task, as the distribution
of PROFANITY Tweets is exceedingly lower than
the distribution of INSULT and ABUSE tweets. A
reduction of INSULT and ABUSE tweets for rea-
sons of balancing resulted in a precion loss of the
decision tree, therefore we dismissed the usage of
decision trees.

The linear-based SVM on the other hand re-
sulted in slightly higher f-scores, almost as high
as the RBF SVM. However, the implementation
of a linear-based SVM uses a random generator
to weight the features, making predictions non-
deterministic. For that reason we dismissed the
usage of a linear-based SVM.

4 Error Analysis

We try to analyse the error sources that lead to
offensive tweets not being detected or to non-
offensive tweets being classified as offensive. The
training data consists of 5009 tweets. Of these,
4675 were correctly classified. 138 tweets have
been classified as OTHER, although they fall under
the OFFENSE category. 196 Tweets were clas-
sified as OFFENSE although they fall under the
category OTHER.

4.1 Classified as OTHER Although
OFFENSE

Of the 138 tweets falsely detected as OTHER, one
was PROFANITY, 42 INSULT and 95 ABUSE. In
the PROFANITY case, a high degree of contextual
knowledge is required to recognize it:

(4) Wie viel Oblaten muss ich denn jetzt essen
bis ich ein Steak von Jesus zusammen hab?
(How many wafers do I have to eat now
until I have a steak of Jesus together?)

Most cases of PROFANITY are clearly recogniz-
able by the use of profane words. We have recorded
these quite well for the training data. We are curi-
ous whether this will also suffice for the analysis

of the test data.
Of the 42 INSULT cases that were not recog-

nized, 11 need very complex background informa-
tion that we could not model. In one case, the
insult was part of a hashtag (‘#erdoganistderhass’).
However, we excluded hashtags from our investiga-
tion so far. One case was a positive expression of
opinion in which the insult happened on the side:

(5) @Riedegost Dem stimme ich vorbehaltlos
zu Ralf. Wenn Merkel nur halb so viel
Verstand hätte, wie Du, oder wie Mecklen-
burger
(@Riedegost I agree wholeheartedly with
Ralf. If Merkel had only half as much brain
as you, or as Mecklenburger)

In another case, spaces were missing, so the to-
kenization failed. The remaining 28 cases could
potentially be solved with further lexicon entries.

Of the 95 ABUSE cases, two were not recog-
nized because important words were abbreviated:

(6) @AkifPirincci Es gibt in Deutschland nur
eine Art von Flüchtling und das ist der
Wirtschaftsflü. ! Alle Kriegsfl. sind durch
sichere 3tstaat. gereist!
(@AkifPirincci There is only one kind of
refugee in Germany and that is the eco-
nomic ref. ! All war ref. have traveled
through safe 3rdcount.)

In 46 cases, a classification requires substantial
background information, as in this example:

(7) Warum soll die natürliche Selektion in
Afrika bekämpft werden? Zu |LBR| viele
Menschen haben eben nicht genug zu essen.
Geburtenkontrolle!
(Why fight against natural selection in
Africa? A lot of people don’t have enough
to eat. Birth control!)

In 6 cases the offensive word is part of a hashtag
and in 8 cases the expression is positive:

(8) @IAMMASCHO Hitler war auch nicht
absolut böse sondern hat viel gutes auch
gemacht
(@IAMMASCHO Hitler was also not ab-
solutely evil but has done a lot of positive
things too)

In the remaining 33 cases, we hope to improve

19



detection with lexicon work.

5 First Steps on the Fine-Grained
Classification: Targets of Hate

We have carried out initial work necessary for the
fine-grained classification (task 2). The PROFAN-
ITY classification was already necessary for the
binary classification task.

To distinguish the tweets in ABUSIVE and IN-
SULT, it is necessary to recognize the targets of
hate. While in the case of INSULT the targets
are individuals, in the case of ABUSIVE they are
groups of people, or the membership of a person in
a group is targeted.

The annotation guidelines of the Shared Task
states 3:

In contrast to insults, instances of abu-
sive language require that the target of
judgment is seen as a representative of
a group and it is ascribed negative qual-
ities that are taken to be universal, om-
nipresent and unchangeable characteris-
tics of the group.

Therefore, we first extracted all named entities
that appear in the tweets marked with OFFEN-
SIVE from the training data. For this we used
the Python package Spacy4. We also looked for
other nouns, verbs and adjectives that appeared
in tweets together with these named entities. The
result is a list of 187 named entities with their co-
ocurring offensive words. The next step was to dis-
tinguish whether the addressee of the offensive ex-
pression represents an individual or a group. So we
had to determine the semantic number. This may
well differ from the syntactic number, as in e.g.,
‘Lügenpresse’ (fake news), where syntactically it is
a singular and semantically a group name, because
the expression stands for a group of journalists
and media representatives. Also ‘Islam’ (Islam) is
syntactically singular, but semantically (especially
in this context) often describes a group of people
with Islamic faith. We made this distinction manu-
ally. In addition, we extracted 16,600 nouns from
the German TIGER corpus (Brants et al., 2004)
and stored them with their syntactic numbers. We
did not proceed to work on the fine-grained task,
though, because of time limits.

3http://www.coli.uni-saarland.de/
˜miwieg/Germeval/guidelines-iggsa-shared.
pdf

4https://spacy.io/

6 Conclusion and Future Work

In this paper we presented the contribution of Darm-
stadt University of Applied Sciences to the first task
of the Germeval Shared Task on the Identification
of Offensive Language. This first task is a binary
classification of tweets into the classes OFFEN-
SIVE and OTHER.

Our approach combines lexical resources lookup
with rule-based sentiment analysis. Together with
a group of students we built up lexical resources,
partly manually and partly automatically extracted
from the training data, and adapted the existing
sentiment analysis tool to the training data mate-
rial. With these resources and results, we applied
a threshold-based approach (hda coarse 1.txt and
hda coarse 2.txt) and a machine learning-based
approach (hda coarse 3.txt).

As a next step, we want to expand the lexical
resources - also with the test data - and thus refine
the detection. We also want to work on task 2 - the
fine-grained classification. Due to time constraints,
we were unable to complete the work on this part
of the project. First steps in this direction have
been taken: We already recognize PROFANITY
quite reliably in tweets and have developed first
approaches for distinguishing between ABUSE and
INSULT. Further development could be part of a
final thesis in the Information Science programme
at Darmstadt University of Applied Sciences.

Acknowledgments

We would like to thank Ante Bilic, Rio Fiore,
Chris Gernand, Sascha Haas, Tahseena Khan, Vera
Khramova, Kjell Kunz, Felix Marechal, Johanna
Pfau, and Nadia Shah, who attended Melanie
Siegel’s course on “Advanced Methods in Natural
Language Processing” at Darmstadt University of
Applied Sciences and created the very first version
on which these results are based.

References
S. Brants, S. Dipper, P. Eisenberg, S. Hansen-Schirra,

E. König, W. Lezius, C. Rohrer, G. Smith, and
H. Uszkoreit. 2004. Tiger: Linguistic interpreta-
tion of a german corpus. Research on language and
computation, 2(4):597–620.

Bing Liu. 2007. Web data mining: exploring hyper-
links, contents, and usage data. Springer Science &
Business Media.

20



Saarland University’s Participation in the GermEval Task 2018 (UdSW) –
Examining Different Types of Classifiers and Features

Michael Wiegand, Anastasija Amann, Tatiana Anikina, Aikaterini Azoidou,
Anastasia Borisenkov, Kirstin Kolmorgen, Insa Kröger, Christine Schäfer

Spoken Language Systems
Saarland University

D-66123, Saarbrücken, Germany
michael.wiegand@lsv.uni-saarland.de

Abstract

We report on our participation in GermEval
Task 2018 – Shared Task on the Identifica-
tion of Offensive Language. In our sub-
mission we considered both lexicon-based
approaches and supervised learning. We
experimented with both monolingual and
crosslingual information. We compared tra-
ditional SVMs with the more recent neural
networks.

1 Introduction

We report on our submission for GermEval Task
2018 – Shared Task on the Identification of Of-
fensive Language. We participated in Task I, the
binary classification task distinguishing offensive
from non-offensive tweets.

The choice of our approach is mostly guided
by the methods that have previously been reported
effective on English data (Schmidt and Wiegand,
2017). In our submission we considered both
lexicon-based approaches and supervised learning.
We compared traditional SVMs with the more re-
cent neural networks.

Since this is the first shared task on German data,
there are only very few task-specific resources for
German. This is why we also experimented with
crosslingual information that takes into account
English data.

2 The Different Classification
Approaches

2.1 Task-specific Lexicon
A popular resource for text-classification tasks is a
task-specific lexicon, i.e. a list of words predictive
for the classes to be detected. With regard to the
detection of abusive language, one typically uses
a list of explicitly abusive words (e.g. cunt, idiot,
nigger). Such lexicons can be easily converted
into a text classifier. One predicts a comment to be

abusive in case at least one of the words included in
the task-specific lexicon is found in the comment.

Though lexicon-based approaches are, by de-
sign, restricted and unable to detect certain sub-
types of abusive language, such as implicit abuse
(Waseem et al., 2017), they are fairly robust when
it comes to cross-domain evaluations (Wiegand et
al., 2018). The reason for this is that, unlike many
other classifiers, they are less susceptible to overfit
to some specific training data. Since we report on
building a classifier for the first edition of a shared
task and only a limited amount of training data
have been released, we may always run the risk of
overfitting when applying supervised learning. A
lexicon-based approach may be a safer alternative.

Since we are not aware of any comprehensive
publicly available lexicon with abusive words for
German, we created a lexicon ourselves. The
lexicon was created semi-automatically. We first
started with the large bootstrapped English lexi-
con from Wiegand et al. (2018) which had been
extensively evaluated on several English datasets
for detecting abusive language. This lexicon was
automatically translated into German with Google
Translate.1 The result was manually edited. For
more than half of the entries no appropriate German
translation was found. These entries were removed
from the German lexicon. We added abusive words
we could extract from the German version of Wik-
tionary2 using the Wiktionary-API JWKTL (Zesch
et al., 2008). We mainly focused on those entries
that contained some predictive word-usage tag, e.g.
abwertend (pejorative) or beleidigend (offensive).
Figure 1 illustrates such a tag in the entry of the
abusive word Vollidiot (wally). In order to further
increase the coverage, we also added the entries
linked as synonyms to these expressions. Again,
the resulting list was manually filtered. We also

1https://translate.google.com/
2https://de.wiktionary.org/wiki/

Wiktionary:Hauptseite

21



Figure 1: Illustration of Wiktionary-entry of the
abusive word Vollidiot (wally) with its word-usage
tag beleidigend (offensive).

extracted words that possess a high distributional
similarity with the words from our lexicon. Dis-
tributional similarity was computed on the basis
cosine-similarity of the word embeddings induced
on Twitter released by Heidelberg University.3 By
using embeddings from Twitter, we hope to include
some more domain-specific information. However,
this step only resulted in a meagre yield of less than
100 additional words. Our final lexicon contains
1566 (unigram) entries.

In order to increase the coverage of our lexicon,
we also implemented a soft-matching function that
is more flexible than strict token matching. We
compared prefix-matching, suffix-matching, infix-
matching and some combinations. We found that
prefix-matching works best. We therefore decided
to use this in our final system. We also investi-
gated whether even more flexible matching might
increase classification performance. However, af-
ter running some experiments with Levenshtein-
distance that turned out not to be effective, we
abandoned these experiments.

3http://www.cl.uni-heidelberg.de/
english/research/downloads/resource_
pages/GermanTwitterEmbeddings/
GermanTwitterEmbeddings_data.shtml

2.2 Traditional Supervised Learning with
Feature Engineering

Schmidt and Wiegand (2017) report that traditional
supervised-learning methods, particularly, SVMs
are still the most frequently used classification ap-
proach for the detection of abusive language. This
is why we also took this approach into account in
our participation. As a tool, we used LIBLINEAR.4

Our choice of features is mostly inspired by the
feature set proposed by Nobata et al. (2016), par-
ticularly since Wiegand et al. (2018) report it to be
the most effective classification approach on four
established datasets (for in-domain evaluation).

The specific features we explored are displayed
in Table 1. Regarding word embeddings for Ger-
man, we experimented with the pre-trained embed-
dings induced from Twitter released by Heidelberg
University.3 In addition, we also induced embed-
dings from German ourselves using Web As Cor-
pus (Baroni et al., 2009) and COW16 (Schäfer and
Bildhauer, 2012; Schäfer, 2015). For induction we
employed Word2Vec (Mikolov et al., 2013) in its
standard configuration. (With regard to vector di-
mensions, we tested 100, 200 and 500 dimensions.)
In order to obtain a vector representation based on
embeddings of an entire tweet, we simply averaged
the word embeddings of the words found in the
tweet.

We tested various combinations of different fea-
ture sets from Table 1. For those experiments,
we divided the training data from GermEval into
further subsets (see also §3.1). With regard to
word embeddings, we always got best performance
with the highest dimensional embeddings that were
available to us (i.e. 500 dimensions). We found that
only the subset of the features comprising character
n-grams, word embeddings and our task-specific
lexicon (§2.1) is actually necessary. In the official
evaluation of the shared task, we, therefore, took
only these features into account. In combination
with other features, the most effective embeddings
turned out to be the ones induced on COW16. We
ascribe it to the fact that this is by far the largest
corpus which we used for embedding induction.

2.3 Neural Networks

We considered two types of standard network archi-
tectures: Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRU). As an implementa-

4https://www.csie.ntu.edu.tw/˜cjlin/
/liblinear/

22



Feature Further Comments Used in the Official Run?
bag of words lemmatized unigrams no
part-of-speech information no. of nouns, adjs, verbs no
surface features looking for suspicious words (e.g. b*tch or fxck) no
character ngrams n = 6 yes
word-embeddings COW16, 500 dimensions yes
prediction of task-specific lexicon we use the lexicon from §2.1 yes

Table 1: Feature set used for traditional supervised learning.

tion we mainly relied on the pre-implemented net-
works from Keras.5 The following hyperparame-
ters were optimized using an informal development
set that we split off from the GermEval-training
data (§3.1):

• types of embeddings6

• activation function

• batch size

• drop-out rate

• number of epochs

• optimizer

2.4 Crosslingual Approaches

One challenge of the setting of the shared task
is that only a limited amount of labelled training
data has been made available. For English, how-
ever, there meanwhile exists a plethora of different
datasets. Some of them are also fairly large com-
prising more than 100K labelled instances. There-
fore, we also wanted to examine whether we can
leverage large collections of labelled training data
from English for the present task. As English
datasets, we considered the datasets from Waseem
and Hovy (2016) and from Wulczyn et al. (2017).
The former focuses on sexism and racism, particu-
larly Islamophobia. That dataset may be suitable
since we observed that the abusive tweets from
the training collection of the GermEval-shared
task also predominantly address Islamic migrants.
Moreover, like the GermEval-data, this corpus
exclusively comprises tweets from Twitter. The
dataset from Wulczyn et al. (2017), which consists
of Wikipedia comments, on the other hand, was
chosen because of its size (the entire collection
contains about 115K comments – the dataset by
Waseem only 16K tweets).

We considered two different approaches:

5https://keras.io/
6We considered the same embeddings as in §2.2.

Translation-based approach. On the one hand,
we simply automatically translated the existing
English datasets to German (again with Google
Translate) and trained classifiers on the translated
datasets. The supervised classifier was trained as a
typical monolingual classifier with the most effec-
tive embeddings (COW16) as features. The result-
ing architecture is illustrated in Figure 2.

Crosslingual embeddings. On the other hand,
we considered crosslingual embeddings. These are
embeddings that represent words in two languages,
in our case, English and German, in the same em-
bedding space. The embedding space is induced in
such a way that two words from the different lan-
guages that have either similar or identical meaning
(e.g. Dummkopf and blockhead) should have simi-
lar word embeddings. Such a representation allows
us to train on the original English data directly
(i.e. without translating them into German) and test
them on the German tweets from the shared task.
This pipeline is illustrated in Figure 3. In order
to obtain crosslingual embeddings, we used the
publicly available software VecMap (Artetxe et al.,
2017). This method does not even require parallel
corpora but only two large monolingual corpora.7

We chose the Amazon Review Corpus (Jindal and
Liu, 2008) for English and again Web As Corpus
for German.

For both crosslingual approaches we always
trained on our German GermEval-training data and
added some English dataset (either in its original
version or translated into German). Our interest
therefore exclusively lies in improving classifica-
tion performance of a monolingual (German) clas-
sifier with additional crosslingual information.

3 Experiments

3.1 Experiment Set-Up

For the preparation of the shared task, we randomly
split the official training data of the GermEval-2018
shared task into three sets:

7The seed word-alignment happens via numerals which
are identical in both languages.

23



Figure 2: Illustration of translation-based classifier.

Figure 3: Illustration of translation-based classifier
using crosslingual embeddings.

• 3009 tweets were used as a training set.

• 1000 tweets were used as a development set.

• 1000 tweets were used as a test set.

In the following we report some preliminary evalu-
ation on our informal test set. For the crosslingual
experiments, we downsampled the English datasets
and the additional German datasets translated from
English so that their class distribution resembles
that of the GermEval-training data. We evaluated
with the evaluation tool provided by the shared
task. We report macro-average precision, recall
and f-measure.

3.2 Results
Table 2 shows the performance of best classifiers
of our different approaches on our informal test set.
The best crosslingual approach (i.e. the translation-
based approach) scores lowest. The F-score of
the lexicon at 71.2% is quite respectable given
that it was not specifically tuned on the available
GermEval data. The best neural network (GRU)
scores reasonably but lower than the SVM. This
result is reminiscent of the in-domain evaluation
from Wiegand et al. (2018). Obviously, the SVM
also benefits from features other than embeddings
(i.e. character n-grams and the task-specific lex-
icon) to which the neural networks do not have
access.

Table 3 sheds more light on the behaviour of
the two crosslingual approaches. We also include
monolingual baselines. It is interesting to note that
for the translation-based approach better results are
obtained by training from the dataset by Wulczyn

24



Feature Prec Rec F1
crosslingual (translation-based) 69.5 71.0 70.2
lexicon 73.8 69.1 71.4
deep learning (GRU) 75.1 72.1 73.5
SVM 79.7 75.2 77.4

Table 2: Comparison of different classifiers.

Feature Prec Rec F1
LSTM 67.5 66.8 67.2
GRU 75.1 72.1 73.5

Table 4: Comparison of different neural networks.

et al. (2017) while for crosslingual embeddings,
we obtain better results by training on the dataset
by Waseem and Hovy (2016). However, for both
approaches, we actually observe that each time
when we add some English training data, the per-
formance score slightly decreases. This means that
none of the English datasets is really helpful for
this type of classification.

Table 4 compares the two different neural net-
works we experimented with. GRUs outperform
LSTMs. Given that we only have a limited amount
of training data, this result does not come as a sur-
prise. LSTMs are more complex in design and
require more parameters to be optimized. Obvi-
ously, a simpler model is more suitable for this
task.

Table 5 examines the feature set of the SVM
more closely. All of these three features when
evaluated individually produce very similar scores.
However, since their combination results in an in-
crease by approximately 7% points, we assume
that the information contained in those different
features is complementary to some extent.

4 Description of the Submitted Runs

We submitted three runs. The configurations are as
follows.

Feature Prec Rec F1
character ngrams 67.4 69.3 68.3
embeddings 70.1 68.6 69.4
lexicon 73.8 69.1 71.4
char. ngrams + embed. + lexicon 79.7 75.2 77.4

Table 5: SVM with different feature sets.

4.1 Run I (UdSW coarse 1) –
Lexicon-based Approach

In our first run, we employed the full lexicon we de-
scribed in §2.1.8 We chose this configuration since
Wiegand et al. (2018) have shown that lexicon-
based classification is usually the safest bet for
cross-domain detection of abusive language be-
cause it is less susceptible to overfitting. In shared
tasks like GermEval, where only limited training
data are available, there is always the risk for su-
pervised classifiers to overfit to the given training
data.

4.2 Run II (UdSW coarse 2) – SVM with
Large Feature Set

In our second run, we employed an SVM with the
feature set described in Table 1. From all classifiers
we tested on our informal test set, we achieved,
by far, the highest performance scores with this
approach.

4.3 Run III (UdSW coarse 3) – Ensemble

In our third run, we combined the output of all
individual classifiers from Table 2. Since we do
not have any further training data from which to
learn a combination of those classifiers, we simply
created a classifier that takes the majority vote of
the predictions made by the individual classifiers.
This run should be considered a wild guess.

5 Conclusion

We presented our submission for GermEval Task
2018 – Shared Task on the Identification of Of-
fensive Language. We participated in Task I, the
binary classification task distinguishing offensive
from non-offensive tweets. We experimented with
lexicon-based classification, supervised learning
with traditional feature engineering, crosslingual
classification and deep learning. On our informal
test set, we obtained the best performance scores
with supervised learning using traditional feature
engineering using a task-specific lexicon, character
n-grams and word embeddings.

Acknowledgements

The authors would like to thank Marc Schulder for providing

the crosslingual embeddings used in the experiments presented

in this paper. Michael Wiegand was partially supported by the

8To be precise, we ran our SVM with just the prediction
of our task-specific lexicon as a feature.

25



Feature Prec Rec F1
crosslingual embeddings: GermEval (monolingual baseline) 70.0 71.6 70.8
crosslingual embeddings: GermEval+Wulczyn 57.4 56.0 56.7
crosslingual embeddings: GermEval+Waseem 69.8 68.3 69.0
translation-based: GermEval (monolingual baseline) 70.7 72.2 71.4
translation-based: GermEval+Wulczyn 69.5 71.0 70.2
translation-based: GermEval+Waseem 59.6 58.5 59.0

Table 3: Comparison of different crosslingual classifiers.

German Research Foundation (DFG) under grant WI 4204/2-

1.

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.

Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 451–462, Vancouver, Canada.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetti. 2009. The WaCky Wide Web:
A Collection of Very Large Linguistically Processed
Web-Crawled Corpora. Language Resources and
Evaluation, 43(3):209–226.

Nitin Jindal and Bing Liu. 2008. Opinion Spam
and Analysis. In Proceedings of the ACM Interna-
tional Conference on Web Search and Data Mining
(WSDM), pages 219–230, Palo Alto, CA, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient Estimation of Word Repre-
sentations in Vector Space. In Proceedings of Work-
shop at the International Conference on Learning
Representations (ICLR), Scottsdale, AZ, USA.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive Lan-
guage Detection in Online User Content. In Pro-
ceedings of the International Conference on World
Wide Web (WWW), pages 145–153, Republic and
Canton of Geneva, Switzerland.

Roland Schäfer and Felix Bildhauer. 2012. Building
Large Corpora from the Web Using a New Efficient
Tool Chain. pages 486–493, Instanbul, Turkey.

Roland Schäfer. 2015. Processing and querying large
web corpora with the COW14 architecture. In Pro-
ceedings of the Workshop on Challenges in the Man-
agement of Large Corpora (CMLC), pages 28–34,
Lancaster, United Kingdom.

Anna Schmidt and Michael Wiegand. 2017. A Survey
on Hate Speech Detection using Natural Language
Processing. In Proceedings of the EACL-Workshop
on Natural Language Processing for Social Media
(SocialNLP), pages 1–10, Valencia, Spain.

Zeerak Waseem and Dirk Hovy. 2016. Hateful Sym-
bols or Hateful People? Predictive Features for Hate
Speech Detection on Twitter. In Proceedings of

the Human Language Technology Conference of the
North American Chapter of the ACL – Student Re-
search Workshop), pages 88–93, San Diego, CA,
USA.

Zeerak Waseem, Thomas Davidson, Dana Warmsley,
and Ingmar Weber. 2017. Understanding Abuse:
A Typology of Abusive Language Detection Sub-
tasks. In Proceedings of the ACL-Workshop on Abu-
sive Language Online, pages 78–84, Vancouver, BC,
Canada.

Michael Wiegand, Josef Ruppenhofer, Anna Schmidt,
and Clayton Greenberg. 2018. Inducing a Lexi-
con of Abusive Words – A Feature-Based Approach.
In Proceedings of the Human Language Technol-
ogy Conference of the North American Chapter of
the ACL (HLT/NAACL), pages 1046–1056, New Or-
leans, LA, USA.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex Machina: Personal Attacks Seen at Scale.
In Proceedings of the International Conference on
World Wide Web (WWW), pages 1391–1399, Perth,
Australia.

Torsten Zesch, Christof Müller, and Iryna Gurevych.
2008. Extracting Lexical Semantic Knowledge from
Wikipedia and Wiktionary. In Proceedings of the
Conference on Language Resources and Evaluation
(LREC), pages 1646–1652, Marrakech, Morocco.

26



Challenges of Automatically Detecting Offensive Language Online: 
Participation Paper for the Germeval Shared Task 2018 ( H a UA ) 

Tom De Smedt  
University of Antwerp 

Computational Linguistics Research Group 
Experimental Media Research Group 
tom.desmedt@uantwerpen.be

Sylvia Jaki  
University of Hildesheim 

Department of Translation and 
Specialized Communication 

jakisy@unihildesheim.de

Abstract 

This paper presents our submission (HaUA) for             
Germeval Shared Task 1 (Binary Classification)           
on the identification of offensive language. With             
feature selection and features such as character             
ngrams, offensive word lexicons, and sentiment           
polarity, our  SVM classifier is able to distinguish               
between offensive and nonoffensive German         
language tweets with an indomain F 1 score of               
88.9%. In this paper, we report our methodology               
and discuss machine learning problems such as             
imbalance, overfitting, and the interpretability of           
machine learning algorithms. In the discussion           
section, we also briefly go beyond the technical               
perspectives and argue for a thorough discussion             
of the dilemma between internet security and             
freedom of speech, and what kind of language               
we are actually predicting with such algorithms.  

1 Introduction 

The new German Netzwerkdurchsetzungsgesetz       
law (NetzDG) allows for the removal of illegal               
content posted on social media platforms, where             
illegal  pertains to one of 21 elements of offense                 
according to the German Strafgesetzbuch. Recent           
reports expose several points of interest (Brühl             
and von Au, 2018). Firstly, the most common               
reasons for suspension on Twitter are incitement             
to hatred ( §130 ), insults ( §185 ), unconstitutional           
symbols ( §86a ), incitement to crime ( §111 ), and             
pornography ( §184 ). Secondly, only a fraction of             
the reported content has been blocked (11%, or               
28,645 out of 264,828 tweets). Thirdly, primarily             
relating to Facebook, the decisionmaking is not             
transparent, with various reported cases of under             
and overblocking. As a result, it is not surprising                 
that many people feel that the current situation,               

in which forprofit IT companies independently           
decide what should be removed, is undesirable. 

The recent surge of workshops on offensive             
language such as this year’s Shared Task, and the                 
large number of participants, reveals a commit             
ment of the linguistics community to collaborate             
towards a safer internet, by providing algorithms             
that can help to detect abusive content online. In                 
this workshop, comparing approaches, methods,         
and opinions will foster advances in the long run,                 
which may be useful to German policy makers               
and humanrights organizations to counter online           
polarization and the proliferation of hate. 

In our contribution, we have paid attention to               
the ethical consequences of releasing AI in the               
wild. We can offer a model that is not perfect, but                     
interpretable. In section 2, we will discuss a brief                 
analysis of the training data. In section 3, we will                   
discuss the (unknown) test data and how we have                 
approximated it by indomain and crossdomain           
evaluation. We will then describe our algorithm             
in section 4, and zoom in on the model’s features                   
in section 5 and methods for feature selection in                 
section 6. After the technical report, we briefly               
discuss some implications of our approach and             
challenges that, as of yet, cannot be solved with                 
automatic NLP techniques alone in section 7. 

Figure 1a: Example  OFFENSE  tweet. 

27



Figure 1b: Example  OTHER  tweet. 

2 Training Data 

The training data for the Shared Task consists of                 
5,009 manually annotated German tweets, each           
about 70210 characters long, of which 1,688 are               
labeled  OFFENSE (33.7% or about 1/3) and 3,321               
are labeled  OTHER (66.3% or about 2/3). Tweets               
labeled  OFFENSE  use offensive language (Fig 1). 

2.1 Data Distribution 

The training data is imbalanced (1:2 ratio), which               
reflects reality – assuming most Twitter users             
will not post offensive tweets – but which can                 
also be problematic, since classifiers tend to be               
“overwhelmed” by the majority class (Chawla et             
al., 2004). Solutions for imbalanced data that are               
reported to be effective include undersampling,           
i.e., discarding training examples of the majority             
class until the data is balanced, oversampling,             
e.g., training on examples of the minority class               
multiple times, and feature selection, removing           
ambiguous features to increase the separability of             
the classes. We tested with both undersampling             
and oversampling as well as feature selection,             
where oversampling + feature selection seems to             
work best in our case (~ +5% F 1  score). 

2.2 Data Entropy 

Ideally, a given machine learning algorithm will             
automatically discover features in the training           
data that can be used to predict whether unknown                 
tweets are  OFFENSE or  OTHER . Such features             
might be words like  Scheiße that are statistically               
biased, i.e., occurring more often in offensive             
tweets. To get a sense of the biased words in the                     
data, we used the chisquared test ( p  ≤ 0.01; see                   
also Liu and Motoda, 2007) with word counts per                 
class to expose them. The results are in line with                   1

what we observed in previous work on German               
farright propaganda (Jaki and De Smedt, 2018)             
and jihadist extremism (De Smedt et al., 2018).  

1 https://docs.google.com/spreadsheets/d/1Q3f
Ls4mfjWEWYJtv26ddUd8jk_1Tz2svk94LxtONwA

Broadly, offensive tweets seem to be marked by: 

● defamation (often political opponents), e.g.,       
Gutmensch ,  Nazi ,  Volksverräterin (dogooder,     
fascist, traitor of the people),

● dehumanization (refugees), e.g.,  Abschaum ,     
Pack ,  Schmarotzer  (scum, rabble, parasites),

● stereotyping , e.g.,  Kanakenstadt ,  Museldiebe     
(Turk town, Muslim thieves),

● racism , e.g.,  Nafris ,  Neger (North African         
repeat offenders, niggers),

● profanity , e.g.,  Arsch ,  Dreck ,  Scheiße (ass,         
crap, shit),

● negativity , e.g.,  dumm ,  Gelaber ,  kotzen ,       
(dumb, drivel, to vomit),

● capitalization , e.g.,  DEUTSCH ,  ISLAM ,  LINKS       
(German, Islam, left),

● propaganda  and fake news posted by known           
user profiles (see Netzpolitik, 2017).

About 50% of the most biased nouns exposed by                 
the chisquared test occur in our automatically             
generated list of offensive words, which is an               
important feature in our model (see section 5). 

3 Test Data 

The Shared Task 1 entails a test dataset of 3,532                   
German tweets for which we have to accurately               
predict either  OFFENSE  or  OTHER . 

3.1 Indomain Evaluation 

Various statistical techniques exist to predict how             
well our trained classifier is going to perform.               
Most notably,  k fold crossvalidation partitions         
the training data into  k training / test subsets and                   
reports the average recall and precision, where             
recall is an estimation of  how  many offensive               
tweets are found, and precision is an estimation               
of how many reported offensive tweets are  really               
offensive (henceforth called the  IN evaluation).           
For example, a classifier with 75% recall finds               
3/4 of offensive tweets (1/4 goes by undetected).               
A classifier with 75% precision mislabels 1/4 of               
“normal” tweets as offensive.  

The main drawback of this approach is that it                 
only reports indomain performance, it assumes           
that unknown tweets on which the classifier will               
eventually be applied will have features identical             
to those in the training data, which may be false. 

28



3.2 Crossdomain Evaluation 

Domain adaptation refers to a machine learning             
problem where a classifier seems to perform well               
on its training data (indomain performance) but             
not on related data (outofdomain performance).           
To test the scalability of our classifier, we cut                 
500 tweets (~10%) from the training data as a                 
holdout testing set, for which we know the class                 
labels (henceforth called the  OUT evaluation).           
Since we do not know the distribution of the                 
class labels in the  actual test data, we did three                   
runs with the holdout set having respectively a               
1:1 (250/250), 1:2 (150/300), and 1:4 (100/400)             
ratio of  OFFENSE / OTHER  tweets. 

We also used a manually annotated subset of               
Jaki and De Smedt (2018) for testing (henceforth               
called the  CROSS evaluation). This set consists of               
800 German rightwing extremist tweets with           
offensive language + 1,600 other German tweets.             
The 1:2 ratio means that a classifier that always                 
predicts  OTHER (the majority class) would score             
F 1 44% on this data. We can use this as a baseline                       
for our classifier (see also Table 2 & 3). In other                     
words, it must score at least F 1 45% to have any                     
predictive value. 

4 Algorithm 

We used the  LIBSVM machine learning algorithm             
(Chang and Lin, 2011) in the Pattern toolkit for                 
Python (De Smedt and Daelemans, 2012) to train               
our classifier, and Pattern helper functions. 

4.1 Interpretability 

No doubt, the most recent multilayered neural             
networks (“Deep Learning”) will achieve better           
results, especially in combination with word           
embeddings. The downside of deep neural nets is               
that their decisionmaking might be difficult to             
interpret (Lipton, 2016). This is problematic once             
such systems are applied in the wild: as of yet,                   
there is still ongoing debate as to what exactly                 
constitutes offensive language / hate speech, and             
laws such as NetzDG tend to be vague (Human                 
Rights Watch, 2018). Introducing “black box” AI             
systems to the decisionmaking may be morally             
questionable and may jeopardize the freedom of             
expression (see section 7), particularly in light of               
the new privacy protection regulations in the EU               
(GDPR; European Commission, 2018). 

By comparison, classic machine learning         
algorithms such as  k NN, decision trees, and             
linear SVMs are often more interpretable. In fact,               
in our tests a lexicon of offensive words with                 
confidence scores (e.g.,  autoritär = 0.5) is only               
about 3% less accurate and might also be useful,                 
e.g., offensive words can be visually highlighted           
for human moderators. 

5 Features 

The  LIBSVM algorithm expects its input to be               
vectorized, where each tweet is represented as a               
vector of feature/weight pairs. The features could             
be the words that appear in the tweet and the                   
weights could be word count. In our case, we use                   
lexical features such as character trigrams, e.g.,             
Scheiß → {  Sch ,  che ,  hei ,  eiß }, and binary                   
weights, i.e., a feature is present or not. Character                 
ngrams efficiently capture spelling errors, word           
endings, function words, emoticons, and so on.             
For example,  Scheiß and  Scheiss have multiple             
matching trigrams ( Sch ,  che ,  hei ). 

An overview of the features we used: 

● each tweet is lowercased:  Dreck  →  dreck ,
● C1 , character 1grams, e.g.,  d ,  r ,  e ,  c ,  k ,
● C3 , character 3grams, e.g.,  dre ,  rec ,  eck ,
● C5 , character 5grams, e.g.,  dreck ,
● W1 , word 1grams, e.g.,  dreckiger ,
● W2 , word 2grams, e.g.,  dreckiger   neger ,
● W3 , word 3grams, e.g.,  neger   dürfen   bleiben ,
● UP , if tweet has  + 40% uppercase characters,
● !! , if tweet has 2+ exclamation marks,
● O? , if tweet has an offensive word,
● O+ , if tweet has 2+ offensive words,
● O% , if tweet has  autoritär (for example) then a               
feature  O%50  will be present,

● :( , if tweet has a negative polarity.

Offensive words are those words that occur in               
our automatically generated lexicon of 1,750           
words and their confidence scores. To populate             
the lexicon, we started with 50 highprecision             
seed words to which we assigned a score (e.g.,                 
Abfall = 0.50,  Arsch = 0.75,  Gesindel = 1.00) and                   
then queried the German Twitter Embeddings           
(Ruppenhofer, 2018) to find semantically similar           
words (Mikolov et al., 2013).  

29



For each seed word, we then took the 100 most                   
similar words ( Gesindel → 81%  Dreckspack ),           
propagated the seed score (1.00 x 0.81 = 0.81),                 
and then assigned new words to one of five bins                   
( 0.00 |  0.25 |  0.50 |  0.75 |  1.00 ; e.g.,                   
Dreckspack  = 0.75,  Schnurrbart  = 0.25). 

Sentiment analysis (Pang and Lee, 2008) refers             
to the task of automatically detecting the polarity               
(positive or negative tone) of a text. Polarity was                 
predicted using a Perceptron classifier trained on             
German tweets containing emoji from the  POLLY             
corpus (De Smedt and Jaki, 2018). The model is                 
about 85% accurate. For example,  sehr  schöner             
Urlaub! (very nice holiday!) is labeled positive             
while  islamgeile  Propaganda (Islamloving pro         
paganda) is labeled negative. 

Using this set of features, the  LIBSVM algorithm               
trained on the given data (1:2  OFFENSE / OTHER )             
yields recall 75.8% and precision 78.7% with             
indomain 10fold crossvalidation.  

Table 1 provides an overview of performance             
(i.e., F 1 score = mean of recall and precision) for                   
different combinations of features. Interestingly,         
offensive words and shape features are nearly as               
predictive ( O +  UP +  !! = 74.5%) as all features                   
combined (77.2%). However, the best results are             
achieved by applying feature selection ( FSEL , i.e.,             
removing noisy features), which raises F 1 score             
from 77.2% to 88.9% (1 mistake per 10 tweets). 

6 Feature Selection 

Using this set of features, the trained model (after                 
holdout) has about 250K features in total. Each               
tweet has about 350 features. To improve the per                 
formance for imbalanced data, we computed the             
posterior probability of each feature (e.g.,  der =               
50%  OFFENSE vs 50%  OTHER , and  Dreckspack =               
100%  OFFENSE vs 0%  OTHER ) and removed the               
most ambiguous ones with probabilities between           
25% and 75% until each vector has at most 100                   
features. This removes about 50K features in             
total: 90% of  C1 (e.g.,  @ is too noisy), 50% of                   
C3 , 25% of  W1 (e.g.,  skeptisch is too noisy), 10%                 
of  W2  (e.g.,  und   mit ), and so on.

6.1 Model Overfitting 

This raises the F 1 score by about 10% for the  IN                     
evaluation, from 77.2% to 88.9% (recall 87.3%             
and precision 90.6%). We can remove even more               
features, eventually training a model that has             

99% indomain performance, but which also has             
no features left to fit outofdomain data. This is                 
known as overfitting (Hawkins, 2004). To assess             
whether we might be overfitting our classifier,             
we tested on the OUT and  CROSS sets. In general,                   
our feature selection method raises F 1 score by               
about 2% on the  OUT set (with varying  OFFENSE /                 
OTHER distributions) and by 6% on the  CROSS set                 
(see Table 2 for an overview). Removing more               
features lowers the F 1  score on both sets. 

6.2 Model Oversampling 

We also experimented with undersampling and           
oversampling to boost performance. For given           
training data of ~1,500  OFFENSE + 3,000  OTHER               
tweets, we either removed 1,500  OTHER tweets             
(= undersampled 1500/1500) or trained  OFFENSE           
tweets twice (= oversampled 3000/3000).  

Table 2 provides an overview of performance             
(F 1 ) for the imbalanced and balanced classifiers,             
with or without feature selection (100 vs 350), on                 
the indomain ( IN ) and crossdomain tests ( OUT             
set of 500 tweets,  CROSS set of 800/1600 political                 
tweets). Oversampling combined with feature         
selection works well if there are less  OFFENSE               
than  OTHER tweets. With a 1:4 ratio the F 1 score                   
is about 76% on the  OUT set, and about 70% on                     
the  CROSS set with a 1:2 ratio, which is above the                     
44% majority class baseline. 

Table 3 provides an error analysis with recall               
and precision by class, as measured on the  OUT                 
1:4 (100/400) test set, which we think is the most                   
representative of reallife. Not surprisingly, most           
classification errors occur in the  OFFENSE class.             
The best AUC score (Area Under Curve) is 0.83                 
for the oversampled model with feature selection. 

This is the classifier that we submitted for the                 
Shared Task 1 ( HaUAcoarse ). 

7 Discussion 

Our tests with domain adaptation highlight the             
importance of clearly defining what exactly we             
are detecting. To illustrate this: There is overlap               
between the task’s training data and the  CROSS               
data we used. Looking at retweeted usernames,             
both sets appear to draw from the same sources,                 
but where the  CROSS data focuses on politically               
motivated hate speech grounded in racism, the             
task’s data focuses on disrespect and contempt of               
individuals and groups (who are not necessarily             
refugees or political factions). The difference is             

30



subtle, and there is some overlap in performance,               
however it is not a perfect fit. The divergence is                   
in part due to different views of what constitutes                 
offensive language online. Profanity like  Scheiße           
is unacceptable by Ruppenhofer et al. (2018: 2)               
while the  CROSS data focuses more exclusively             
on ideologically disparaging language. 

This stresses the need to discuss how we will                 
operationalize regulations on a linguistic level.           
Which “bad content” should AI be detecting? Do               
we train systems according to society’s norms of               
what is inappropriate, or legal definitions? This             
means that the challenge is not purely linguistic               
but also societal and political (cf. Ruppenhofer et               
al., 2018: 4). What language can we ethically and                 
legally justify to remove from the internet? 

There is little doubt that content classified as               
illegal by the German Strafgesetzbuch should be             
removed, justifying the need for AI tools. People               
who criticize NetzDG claim that it infringes on               
freedom of speech, which is anchored in German               
Grundgesetz, but they forget that these freedoms             
are also limited by StGB. Apart from such cases,                 
there is admittedly a grey area between offensive               
language and freedom of speech. For example,             
what is the line between an expressed opinion of                 
a foreign culture and incitement to hatred? To               
avoid the shadow of censorship, policy makers             
should not be satisfied with the current legal               
situation, but strive to continue the discussion             
about the boundaries of freedom of speech and               
the measures to take against offensive behavior             
on social media.  

Acknowledgements 

The authors wish to thank “Schmutzi” for giving               
insight into profanity, slurs and slang language in               
online social media.  

References 

Jannis Brühl and Caspar van Au. 2018. Was das Netz                   
DG mit Deutschland macht.  Süddeutsche Zeitung .  
https://www.sueddeutsche.de/digital/bi
lanzwasdasnetzdgmitdeutschlandma
cht1.4072480

Nitesh Chawla, Nathalie Japkowicz, and Aleksander           
Kotcz. 2004. Special issue on learning from im               
balanced data sets.  ACM SIGKDD , 6(1):1–6. 

ChihChung Chang and ChihJen Lin. 2011.  LIBSVM :             
a library for support vector machines.  ACM TIST ,               
2(3), 27. 

Tom De Smedt and Walter Daelemans. 2012. Pattern               
for Python.  JMLR , 13:2063–2067. 

Tom De Smedt, Guy De Pauw, and Pieter Van                 
Ostaeyen. 2018. Automatic detection of online           
jihadist hate speech.  CLiPS CTRS , 7:1–30.  

Tom De Smedt and Sylvia Jaki. 2018. The Polly                 
corpus: online political debate in Germany. In             
Proceedings of CMC and Social Media Corpora . 

Douglas M. Hawkins. 2004. The problem of over               
fitting.  ACS JCIM , 44(1):1–12. 

Sylvia Jaki and Tom De Smedt. 2018, submitted.               
Rightwing German hate speech on Twitter:           
analysis and automatic detection.  

European Commission. 2018. Data protection. 
https://ec.europa.eu/info/law/lawtopi
c/dataprotection_en

Zachary C. Lipton. 2018. The mythos of model inter                 
pretability.  Queue , 16(3). 

Human Rights Watch. 2018. Germany: flawed social             
media law. 
https://www.hrw.org/news/2018/02/14/ge
rmanyflawedsocialmedialaw

Huan Liu and Hiroshi Motoda (eds.). 2007.  Com               
putational methods of feature selection . Chapman           
& Hall/CRC, Boca Raton. 

Bo Pang and Lillian Lee. 2008. Opinion mining and                 
sentiment analysis.  Foundations and Trends® in           
Information Retrieval , 2(1/2):1–135. 

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey               
Dean. 2013. Efficient estimation of word repre             
sentations in vector space.  arXiv:1301.3781

Netzpolitik. 2017. Datenrecherche: offizielle AfD         
Accounts retweeten NeonaziKanal auf   Twitter. 
https://netzpolitik.org/2017/datenrech
ercheoffizielleafdaccountsretweete
nneonazikanalauftwitter/

Josef Ruppenhofer. 2018. German Twitter em           
beddings. 
http://www.cl.uniheidelberg.de/englis
h/research/downloads/resource_pages/Ge
rmanTwitterEmbeddings/GermanTwitterEmb
eddings_data.shtml

Josef Ruppenhofer, Melanie Siegel, and Michael           
Wiegand. 2018. Guidelines for IGGSA Shared           
Task on the Identification of Offensive Language.             
http://www.coli.unisaarland.de/~miwie
g/Germeval/guidelinesiggsashared.pdf 

31



C1  C3  C5  W1  W2  W3  UP  !!  O?  O+  O%  :(  FSEL  F1 
✓                          59.1% 
✓  ✓                        68.4% 
✓  ✓  ✓                      72.5% 
✓  ✓  ✓  ✓                    73.3% 
✓  ✓  ✓  ✓  ✓                  73.1% 
✓  ✓  ✓  ✓  ✓  ✓                73.4% 
✓  ✓  ✓  ✓  ✓  ✓  ✓              73.8% 
✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓            74.0% 
✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓          74.9% 
✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓        76.2% 
✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓      77.2% 
✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓    ✓  88.9% 
✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓    76.6% 
            ✓  ✓  ✓  ✓  ✓      74.5% 

Table 1 : Performance ( F1 ) for 10fold cv on 1,500  OFFENSE  + 3,000  OTHER  tweets represented as 
character ngrams ( C ), word ngrams ( W ), offensive words ( O ), and after feature selection ( FSEL ). 

Model  # features  IN 
10fold cv 

OUT  CROSS 
1:1  1:2  1:4  1:2 

imbalanced  1500/3000  350  77%  72%  72%  70%  63% 
balanced  1500/1500  350  76%  77%  73%  69%  64% 
balanced  3000/3000  350  91%  72%  71%  70%  64% 

imbalanced  1500/3000  100  89%  72%  73%  73%  70% 
balanced  1500/1500  100  88%  77%  75%  71%  70% 
balanced  3000/3000  100  96%  73%  75%  76%  70% 

baseline        33%  40%  44%  44% 

Table 2 : Performance ( F1 ) for balanced/imbalanced classifiers using 10fold cv ( IN ), on holdout sets 
with different  OFFENSE / OTHER  distributions ( OUT ), and on a set labeled by other authors ( CROSS ). 

Model  # features 
OUT 1:4 

AUC OFFENSE  OTHER 
P  R  P  R 

imbalanced  1500/3000  350  49%  57%  89%  85%  0.77 
balanced  1500/1500  350  42%  69%  90%  76%  0.74 
balanced  3000/3000  350  49%  57%  89%  85%  0.77 

imbalanced  1500/3000  100  57%  56%  89%  89%  0.80 
balanced  1500/1500  100  45%  71%  92%  78%  0.76 
balanced  3000/3000  100  62%  60%  90%  91%  0.83 

baseline      0%  0%  80%  100%  0.50 

Table 3 . Precision and Recall by class label and  AUC  score for balanced/imbalanced classifiers, 
as measured on the holdout set with 1:4 ratio of 100  OFFENSE  + 400  OTHER  tweets.

32



KAUSTmine - Offensive Comment Classification on German Language
Microposts

Matthias Bachfischer∗ Uchenna Akujuobi † Xiangliang Zhang‡

Computer, Electrical and Mathematical Sciences and Engineering Division
King Abdullah University for Science and Technology (KAUST)

Abstract

In this paper, we present two deep-learning
based classifier systems for the identifica-
tion of offensive comments in German Lan-
guage microposts: A bidirectional LSTM
model and a CNN model. Our objective
is to compare the performance of these
two systems with a traditional, machine-
learning based SVM classifier and to eval-
uate our approach on Task 1 (binary clas-
sification) of the GermEval 2018 shared
task.

1 Introduction

Modern communication devices and social media
play an increasingly important role in our daily
lives and the Internet has created tremendous op-
portunities for exchanging information with people
from all over the globe in real-time. Unfortunately
however, this freedom gets frequently abused, and
hate speech and toxic comments are present in vir-
tually all online communities. A 2017 report by
Pew Research even came to the conclusion that up
to 41% of all adults have personally experienced
online harassment (Duggan, 2017).
Automated detection routines to identify and block
toxic messages have proven to be viable methods
in shielding online communities from harassment
(Wulczyn et al., 2017). Training a computer to un-
derstand the emotions and opinions expressed in
a document is a common task in the area of Nat-
ural Language Processing (NLP), and the results
from previous publications (Georgakopoulos et al.,
2018) as well as a Kaggle competition 1 sponsored
by Google Jigsaw have already shown promising

∗ bachfischer.matthias@googlemail.com
† uchenna.akujuobi@kaust.edu.sa
‡ xiangliang.zhang@kaust.edu.sa

1Toxic Comment Classification Challenge
https://www.kaggle.com/c/jigsaw-toxic-
comment-classification-challenge

results for the identification of toxic content in on-
line messages.
The intention of the paper at hand is to create a
series of deep-learning based neural network mod-
els to compete in Task 1 (binary classification) of
the GermEval 20182 competition. The GermEval
2018 competition is a shared task for the identifi-
cation of offensive comments in German language
microposts. For our research, we choose a simple
Support Vector Machine (SVM) model as a base-
line and compare its performance against our im-
plementations of a bidirectional Long Short-Term
Memory (LSTM) and a Convolutional Neural Net-
work (CNN) model.

2 Related Works

So far, most of the research in the area of toxic
comment classification has been focused on En-
glish language, and a variety of machine-learning
and deep-learning models have been produced to
tackle this problem (Schmidt and Wiegand, 2017).
Amongst others, Georgakopoulos et al. (2018)
used a deep-learning based CNN model to detect
toxic language in online content, while Nobata et al.
(2016) developed a machine-learning model using
a variety of feature classes (N-grams, Syntactic and
Semantic Features etc.) and were able to outper-
form existing deep-learning based approaches. In
another research paper published by Razavi et al.
(2010), multi-level classification was used to detect
offensive comments, mainly in Usenet messages.
The identification of toxicity in German language
messages has received less attention by the re-
search community so far, and comparable research
is sparse. In the related domain of sentiment anal-
ysis for tweets, Cieliebak et al. (2017) created
a corpus consisting of 10.000 tweets in German
language and provided benchmarks for the classi-

2Germeval 2018 - Shared Task on the Identification of
Offensive Language - https://projects.cai.fbi.h-
da.de/iggsa

33



fication of these tweets into sentiment classes of

either positive, negative or neutral using a CNN.

3 Data

Before training our systems, we first obtain the

training set from the GermEval 2018 competition

mailing list. The training set contains a total of

5009 messages which have been labeled either as

OFFENSE or OTHER. A detailed breakdown of

the class distribution in the dataset is presented in

Table 1.

Dataset Offense Other Total

Training set 1688 3321 5009

Table 1: Class distribution - GermEval 2018

dataset

The dataset is imbalanced, and the majority of the

tweets (66%) belong to the neutral class, whereas

the remaining data (34%) belongs to the offensive

class. The microposts within the dataset were ex-

tracted exclusively from Twitter3 because the con-

ference organizers regarded tweets “as a prototypi-

cal type of micropost”2.

4 Experimental Setup

We present two classification systems in our re-

search: a bidirectional LSTM model and a CNN

model. Both models were implemented in Python

and make use of the Keras library (Chollet, 2015)

for training the classifier. In addition to this, we cre-

ate a SVM classifier using Scikit-learn (Pedregosa

et al., 2011) and consider this as a baseline for test-

ing and improving our deep-learning models. The

experiments were performed on a workstation run-

ning Ubuntu 16.04 with 64 cores and 128 GB of

RAM.

We use the word vectors published by Deriu et al.

(2017) for this research. These vectors were trained

on a total of 200 million tweets and have a dimen-

sionality of d = 200.

Preprocessing: Before extracting features, we

first preprocess the data according to the following

procedure:

1. Replace URLs, usernames and retweets with

replacement tokens URLTOK, USRTOK and

rt
2. Convert tweet text to lowercase

3Twitter social network - https://twitter.com

3. Convert categorical classification variables

into an One-Hot encoded vector

4. Tokenize tweets (using Keras’s builtin Tok-

enizer) and create a list of word indexes with

length l = 100 (comments shorter than 100

are padded with 0)

For further reference, a preprocessed tweet is pre-

sented in Example 4.1.

Example 4.1:
Original: @salzmanufaktur @Renft1964 Jetzt

bekommt Merkel noch Grüne Untergangs-

Beschleuniger dabei!

Preprocessed: USRTOK USRTOK jetzt

bekommt merkel noch grüne untergangs-

beschleuniger dabei!

5 System Description

After preprocessing, we feed the data into our clas-

sification models: a bidirectional LSTM and a

CNN model. By using the word vectors from Deriu

et al., we create an embedding matrix where we

randomly initialize the words that are not in the

word embeddings with the arithmetic mean and

standard deviation obtained from the embeddings.

The resulting embedding matrix has the size of

|�w1; ...; �wL| ∈ IRL×200 with L being the number of

unique words in our training set.

While training our models, we try to minimize the

binary cross entropy loss on the training set given

per the formula below:

− 1

N

N

∑
i=1

[yi log(ŷi)+(1− yi) log(1− ŷi)] (1)

The final outputs of the models are connected to

a softmax regression layer which returns the class

ŷ ∈ [1,K] with the largest propability

ŷ = argmax
j

P(y = j | x) =
exTw j

∑K
k=1 exTwk

(2)

where w j denotes the weight vector for class j.
For the optimization step, we choose the Adam
optimizer (Kingma and Ba, 2015) with a learning

rate lr = 0.001, β1 = 0.99, β2 = 0.999 and ε =
1−8.

5.1 SVM Model
As a baseline for the evaluation of our results,

we use a simple SVM classifier trained on Term-

Frequency times Inverse Document-Frequency

(TF-IDF) vectors (Ramos, 2003) of the tweets in

34



the dataset. The TF-IDF scores were calculated
by using the count matrices of 5-grams where the
tweet texts serve as input tokens. The classifier
uses Stochastic Gradient Descent (SGD) with the
logistic regression loss function where we multiply
the regularization term with a constant α = 1−5.
The output of the SVM classifier was submitted to
the GermEval competition under the submission
name KAUSTmine coarse 1.txt.

5.2 LSTM Model

The LSTM model in this research was derived from
the works of Hochreiter and Schmidhuber (1997).
So far, LSTM networks have been successfully ap-
plied in a variety of tasks such as Machine Transla-
tion (Sutskever et al., 2014) and Image Captioning
(Vinyals et al., 2015). Recent research however
shows that LSTM models also perform well when
applied to NLP tasks such as text classification
(Zhang et al., 2015; Zhou et al., 2016).
In this paper, we employ a bidirectional LSTM
model with 64 units. The output is passed to two
fully connected layers with 64 and 2 units respec-
tively. To prevent our model from overfitting, we
apply the early-stopping technique (Prechelt, 1998)
in combination with a dropout of d = 0.5 after the
first dense layer as well as on the recurrent input sig-
nal of the LSTM units (Gal and Ghahramani, 2016).
We furthermore use Rectified Linear Unit (RELU)
as the activation function of the first hidden layer
(Srivastava et al., 2014; Glorot et al., 2011).
The output of the LSTM classifier was submitted
to the GermEval competition under the submission
name KAUSTmine coarse 2.txt.

5.3 CNN Model

The CNN model used in this research builds on
the work of Kim (2014) who proposed to use a 2
layered CNN to perform sentence classification in
NLP tasks. We create our model by using one con-
volutional layer with 64 filters (one layer consists
of a convolution and a pooling layer). The out-
put of the convolutional layers is then fed into one
dense layer of 64 units. As in the previous model,
we again make use of the RELU function for the
activation of the layer and apply early-stopping in
combination with a dropout of d = 0.5.
The output of the CNN classifier was submitted to
the GermEval competition under the submission
name KAUSTmine coarse 3.txt.

6 Results

The models presented in this paper were tested on
the test data provided by the GermEval organiz-
ers. Since the GermEval organizers did not pub-
lish labels for the test data before the submission
deadline, there was no possibility for the authors
of this paper to evaluate the performance of the
proposed systems. To view the results from the
systems proposed in this paper, please refer to the
following submission runs in the evaluation mate-
rial published by the conference organizers:

System Submission Run

SVM KAUSTmine coarse 1.txt
LSTM KAUSTmine coarse 2.txt
CNN KAUSTmine coarse 3.txt

Table 2: Submissions from team KAUSTmine

7 Conclusion

The objective of our participation in the GermEval
2018 shared task was to evaluate the performance
of deep-learning based models on the classification
of offensive language in German microposts. In
the paper at hand, three classification systems were
used to participate in Task 1 of the GermEval com-
petition. Using a SVM classifier as a baseline, we
further developed two deep-learning based systems
in order to compare our results: a bidirectional
LSTM model and a CNN model.
We hope that online social network platforms can
use our results to build systems that can success-
fully detect and combat toxicity in online conversa-
tions. Services such as Perspective API 4 are taking
a step into the right direction, and we expect to see
more fascinating research for making the Internet
a friendlier and more welcoming place.

References
François Chollet. 2015. Keras library. https://
keras.io (accessed June 19, 2018).

Mark Cieliebak, Jan Milan Deriu, Dominic Egger, and
Fatih Uzdilli. 2017. A twitter corpus and bench-
mark resources for german sentiment analysis. In
Proceedings of the Fifth International Workshop on

4Perspective API - https://
www.perspectiveapi.com/

35



Natural Language Processing for Social Media, Va-
lencia, Spain, April 3-7, 2017, pages 45–51. Associ-
ation for Computational Linguistics.

Jan Deriu, Aurelien Lucchi, Valeria De Luca, Aliak-
sei Severyn, Simon Müller, Mark Cieliebak, Thomas
Hofmann, and Martin Jaggi. 2017. Leveraging
large amounts of weakly supervised data for multi-
language sentiment classification. In Proceedings
of the 26th International Conference on World Wide
Web, Perth, Australia, April 3–7, 2017, pages 1045–
1052. International World Wide Web Conferences
Steering Committee.

Maeve Duggan. 2017. Online harassement 2017. Re-
port, Pew Research Center.

Yarin Gal and Zoubin Ghahramani. 2016. Dropout
as a bayesian approximation: Representing model
uncertainty in deep learning. In Proceedings of the
33rd International Conference on International Con-
ference on Machine Learning - Volume 48, New
York, USA, June 19 - 24, 2016, pages 1050–1059.
JMLR.org.

Spiros V. Georgakopoulos, Sotiris K. Tasoulis, Aris-
tidis G. Vrahatis, and Vassilis P. Plagianakos. 2018.
Convolutional neural networks for toxic comment
classification. arXiv preprint arXiv:1802.09957.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Deep sparse rectifier neural networks. In Pro-
ceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, Fort Laud-
erdale, USA, April 11-13 2011, volume 15 of Pro-
ceedings of Machine Learning Research, pages 315–
323.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Lstm
can solve hard long time lag problems. Neural Com-
putation, 9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Doha, Qatar, Octo-
ber 25-29, 2014, pages 1746–1751. Association for
Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Inter-
national Conference on Learning Representations
(ICLR), San Diego, USA, May 7-9, 2015.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web, Montreal, Quebec, Canada, April 11-
15 2016, pages 145–153. International World Wide
Web Conferences Steering Committee.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Lutz Prechelt. 1998. Early stopping-but when? Neu-
ral Networks: Tricks of the trade. Springer.

Juan Ramos. 2003. Using tf-idf to determine word rel-
evance in document queries. In Proceedings of the
First instructional Conference on Machine Learning,
Piscataway, USA, December 3-8, 2003, volume 242,
pages 133–142.

Amir H. Razavi, Diana Inkpen, Sasha Uritsky, and Stan
Matwin. 2010. Offensive language detection using
multi-level classification. In Proceedings of the 23rd
Canadian Conference on Advances in Artificial Intel-
ligence, Ottawa, Canada, May 31 - June 02, 2010,
pages 16–27. Springer.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, Valencia, Spain, April 3-7, 2017, pages
1–10.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume
2, Montreal, Canada, December 8-13, 2014, pages
3104–3112.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural
image caption generator. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
Boston, USA, June 7-12, 2018, pages 3156–3164.
IEEE.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex machina: Personal attacks seen at scale. In
Proceedings of the 26th International Conference on
World Wide Web, Perth, Australia, April 3-7, 2017,
pages 1391–1399. International World Wide Web
Conferences Steering Committee.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of the 28th International
Conference on Neural Information Processing Sys-
tems - Volume 1, Montreal Canada, December 7-12,
2015, pages 649–657.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classi-
fication improved by integrating bidirectional lstm
with two-dimensional max pooling. In Proceedings

36



of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers, Osaka, Japan, December 11-17, 2016, page
3485–3495.

37



Fine-Grained Classification of Offensive Language

Julian Risch1, Eva Krebs2, Alexander Löser2, Alexander Riese2 and Ralf Krestel1

Hasso Plattner Institute, University of Potsdam
1firstname.lastname@hpi.de

2firstname.lastname@student.hpi.de

Abstract

Social media platforms receive massive
amounts of user-generated content that may
include offensive text messages. In the con-
text of the GermEval task 2018, we propose
an approach for fine-grained classification
of offensive language. Our approach com-
prises a Naive Bayes classifier, a neural
network, and a rule-based approach that
categorize tweets. In addition, we com-
bine the approaches in an ensemble to over-
come weaknesses of the single models. We
cross-validate our approaches with regard
to macro-average F1-score on the provided
training dataset.

1 Toxic Comment Classification

With the ever growing popularity of the Internet,
social networks nowadays have large user bases.
The users of those social networks produce huge
amounts of text data in form of posts. As of 2017,
even if we only consider the website Twitter, there
are 500 million Twitter posts (tweets) per day1.
While the majority of those tweets uses appropriate
language, there are also tweets that contain offen-
sive language.

There are different kinds and severity levels of
offensiveness. If a user describes the weather with
profane words, the resulting tweet would be con-
sidered offensive. However, compared to tweets
containing a direct insult or identity hate, which
may even be criminal offenses, the previous exam-
ple is a rather harmless offense.

Regardless of their severity, those offensive posts
need to be found and moderated. Due to the high
number of posts, it is not feasible to manually check
each post for offensiveness. Therefore, we pro-
pose to automatically classify offensive language

1https://www.omnicoreagency.com/twitt
er-statistics/

in tweets. In this paper, we describe a machine-
learning-based approach, using ensembles of dif-
ferent classifiers to detect and classify different
severity levels of offensive language.

2 Related Work

An important issue in the field of online comment
classification is the availability of labeled data.
Thanks to Kaggle’s recent Toxic Comment Clas-
sification Challenge2 there is a publicly available
dataset of more than 150,000 comments. In this
challenge participants classified Wikipedia talk-
page comments at different levels of toxicity but
also distinguished between obscene language, in-
sults, threats, and identity hate. Similarly, the First
Shared Task on Aggression Identification (Kumar
et al., 2018) dealt with the classification of the
aggression level of user posts at Twitter and Face-
book. It was part of the First Workshop on Trolling,
Aggression and Cyberbullying at the 27th Inter-
national Conference of Computational Linguistics
(COLING 2018). The task considered the three
classes “overtly aggressive”, “covertly aggressive”,
and “non-aggressive”. In general, we perceive a
trend towards finer-grained classification of toxic
comments. Thereby the challenge shifts from de-
tecting toxic comments to giving more specific rea-
sons why a particular comment is considered toxic
(on the basis of its subclass).

Previous research agrees that word n-grams
are well-performing features for the detection of
hate speech detection and abusive language (No-
bata et al., 2016; Badjatiya et al., 2017; Warner
and Hirschberg, 2012; Davidson et al., 2017;
Schmidt and Wiegand, 2017). However, ensem-
bles, which combine different, complementing ap-
proaches outperform single approaches and achieve
especially robust results (Risch and Krestel, 2018a).
Word n-grams, character n-grams, and — given a

2https://www.kaggle.com/c/jigsaw-toxic
-comment-classification-challenge

38



large amount of training data — deep learning ap-
proaches perform well in combination.

The task of toxic comment classification is not
only of theoretical significance but also has practi-
cal applications, for example at the moderation of
user-generated content. It has become an industry-
wide, costly challenge for online news providers to
moderate their discussion platforms. To this end,
different approaches have been proposed, which
deal with predicting the moderation effort (Am-
broselli et al., 2018) or semi-automated classifica-
tion (Risch and Krestel, 2018b).

3 GermEval Task 2018

We consider the GermEval task 20183, which is
to classify the offensiveness of German-language
tweets. The provided training dataset consists
of 5009 categorized tweets and the provided test
dataset consists of 3532 uncategorized tweets.
There are two tasks: (1) a coarse-grained binary
classification with the categories OFFENSIVE
and OTHER and (2) a fine-grained classification
with the four categories PROFANITY, INSULT,
ABUSE and OTHER. Both tasks are multi-class
classification tasks (as opposed to multi-label clas-
sification), because the classes are mutually exclu-
sive. In this paper, we focus on the more challeng-
ing, fine-grained classification task.

While the training data contains examples from
all categories, the categories are not uniformly dis-
tributed: The majority of tweets (66.3%) is la-
beled OTHER, while ABUSE (20.4%) and INSULT
(11.9%) also occur relatively often. The category
PROFANITY is underrepresented and constitutes
only 71 of the 5009 tweets (1.4%).

The category PROFANITY, consists of all
tweets that include profane words that are not di-
rected towards a person or group, see Figure 1a.
The category INSULT includes tweets with neg-
ative content directed towards individuals, see
Figure 1b. In contrast to the INSULT category,
ABUSE encompasses negative sentiments towards
social groups or their members, because of traits
associated with that group, see Figure 1c. The last
category, OTHER, contains every tweet that is not
covered by the previous categories. The GermEval
task is evaluated with regard to macro-average F1-
score, which is the unweighted mean of the F1-
scores of each individual category.

3https://projects.fzai.h-da.de/iggsa/

@anna IIna Kann man diesen
ganzen Scheiß noch glauben..?

(a) Training sample categorized as PROFANITY

@AchimSpiegel ”Sigmar Dumpf-
backe Gabriel” gefällt mir richtig
gut

(b) Training sample categorized as INSULT

@diMGiulia1 Araber haben schon
ekelhafte Fressen....!!

(c) Training sample categorized as ABUSE

Figure 1: Example tweets from the training dataset
and their fine-grained labels.

4 Fine-Grained Classification of
Offensive Language

We propose different approaches for the task of fine-
grained classification of offensive language. These
approaches are tailored to have different strengths
and weaknesses. In an ensemble, we leverage that
the approaches complement each other. To this end,
we propose diverse approaches, such as a Naive
Bayes classifier, Sentiment Polarity Lexicons, and
Deep Neural Networks.

4.1 Naive Bayes Classifier
Our first approach uses a Naive Bayes classifier
with logistic regression to categorize the tweets.
Thereby the logistic regression is trained with the
log-count ratios of the Naive Bayes model. Wang
and Manning proved that this kind of model works
very well as a baseline (Wang and Manning, 2012).
Because of the underlying bag of words model,
it works well with texts that contain words, more
specifically bigrams, that are strong indicators for
one of the categories. On the downside, it does not
work well with test data that contains many unseen
words.

4.2 Neural Network Classifier
Neural networks achieved state of the art results
in different classification tasks, including Natural
Language Processing centered tasks such as senti-
ment analysis (Zhang et al., 2018). Our network
is based on an Long Short-Term Memory (LSTM)
layer and a Global Maximum Pooling layer. For

39



the final classification, we use a Dense layer with
softmax activation. The given dataset in our task is
relatively small with about 5000 samples and there-
fore does not work well with typical deep neural
networks. To solve this problem, we make use of
transfer learning.

Transfer Learning Instead of training the net-
work with the limited training data of the task, we
pre-train the network on a related task with a larger
amount of data. We use a dataset of more than
150,000 German, machine-translated from English,
Wikipedia talk page comments. This dataset origi-
nates from the Kaggle Toxic Comment Classifica-
tion challenge and is human-labeled with several
toxicity categories. After this training phase, the
weights in the neural network are adjusted to the
GermEval task. Because the Kaggle challenge is
similar to the GermEval task, we kept the first lay-
ers with the corresponding weights and added a
shallow network of Dense layers on top of them.
Afterwards, the modified network is trained on the
GermEval data, whereby only the newly added
Dense layers get adjusted by the backpropagation.
The other weights remain unaffected with the in-
tent to include general representations (learned on
a larger dataset) in the first layers.

Imbalanced Classes Besides the small size of
the training dataset, the distribution of the differ-
ent categories is challenging in combination with
the evaluation metric. In many cases, OTHER is
wrongly predicted instead of the correct category
(false positives), because this is by far the largest
fraction of the training dataset and therefore often
the correct result. However, the macro-average F1-
score takes the F1-score of each category uniformly
into account. This evaluation measure results in
an overall bad performance if there are many false
positives for the majority class.

To address this concern, we consider two ap-
proaches: class weights and generating synthetic
training data with the synthetic minority over-
sampling technique (SMOTE) (Chawla et al.,
2002). The class weights add a factor to the loss
function dependent on the predicted class. In our
case, this parameter was set to ‘balanced’ to use
class weights that are inversely proportional to the
class sizes and therefore increase the penalty for
misclassifying minority category examples.

The SMOTE algorithm operates on the input
data and generates additional samples of the mi-

nority classes in order to balance the data. This
is achieved by repetitively taking samples and a
number of nearest neighbors in the feature space
and randomly interpolating between them. The re-
sulting interpolation point corresponds to the newly
created, additional data point for the appropriate
minority class. This procedure is executed for each
minority class.

4.3 Rule-based Classifier

The small amount of provided training data moti-
vates to develop classifiers based on specific rules
tailored to the GermEval task. For example, a tweet
in the category PROFANITYwill definitely contain
a profane word, but likely not a person or group.

We collected several word lists for the rules.
Some are from external sources, such as an ex-
haustive list of profane or insulting words, a list of
German politicians and political parties, and words
that are usually used in a negative context. In ad-
dition, we manually created lists with words that
appeared very often in a specific context. For ex-
ample, words related to the refugee crisis appeared
more frequently in tweets classified as ABUSE.

The classifier has scores for all categories,
OTHER being the default. The rules check for word
occurrences. Each time a word is found, scores of
categories related to the rule are increased. The
highest score determines the predicted category.

4.4 Ensemble Classifier

Table 1 lists the Pearson correlation of the differ-
ent classifiers’ out-of-fold predictions on the train-
ing dataset. The correlation is very small, which
shows that the classifiers have different strengths
and weaknesses. As a consequence, they provide
the opportunity to combine the individual results
with an ensemble classifier, which potentially fur-
ther improves predictions. We discuss two ensem-
bling methods: logistic regression and gradient
boosting trees.

Logistic Regression and Gradient Boosting En-
sembles Due to the imbalanced class labels in the
training dataset, the learning uses balancing class
weights. The logistic regression approach takes
only the final results of the classifiers into account.
In contrast, our gradient boosting approach also
considers features of the text. These features are
the text length, the ratio of exclamation marks and
the ratio of uppercase characters. We use a gradi-
ent boosting ensemble, in form of a light gradient

40



NB - NN NN - RB NB - RB

Profanity 0.0037 0.0604 -0.0052
Insult 0.0723 0.0235 0.1154
Abuse -0.0015 0.0809 0.2278
Other 0.1185 0.0778 0.2434

Table 1: The Pearson correlation values for each
label with pairwise comparisons for Naive Bayes
(NB), the neural network (NN), and the rule-based
approach (RB)

boosting machine classifier (Ke et al., 2017).

4.5 Sentiment Polarity Lexicons

In addition to the previously described approaches,
we investigate sentiment polarity lexicons, which
provide a large knowledge base of word-polarity
pairs. This external knowledge can potentially com-
pensate for the relatively small amount of provided
training data. Given a tweet, we infer the senti-
ment of each contained verb. For the classification,
we consider the presence or absence of verbs with
negative polarity. Further, we consider whether
the negative verb refers to an entity, such as a
particular person or group. Thereby, we aim to
distinguish insult and abuse from profanity. We
incorporate sentiment scores obtained from a vari-
ety of external sources, such as “German Polarity
Cues” (Waltinger, 2010), “German Sentiment Lex-
icon” (Clematide and Klenner, 2010), and “Sen-
tiWS”(Remus et al., 2010). Further, we extract
character n-grams and word unigrams as features
for profane language based on a list of swear words.

5 Evaluation

As of writing this paper, the test dataset of the
GermEval task is published, but not its ground truth
labels. To this end, we analyze only the predicted
class distribution on the test dataset. We evaluate
our approaches on the provided training dataset
with cross-validation.

5.1 Evaluation Measures

The GermEval task defines the macro-average F1-
score as its evaluation measure. With the measure
given, we still need a set of labeled test data to
evaluate our classifiers. As of writing this paper,
the test dataset of the GermEval task is published,
but not its labels. As a result, we can use only
the training dataset as evaluation data. Since the

training dataset is rather small with only 5009 la-
bels, we decided against splitting it up in a disjoint
training and test set for the evaluation. Instead, we
use 5-fold cross-validation and analyze out-of-fold
predictions. To this end, we split our training set
into five equally sized folds. Then we choose one
fold as the test set that we want to predict, and train
on all other folds. We repeat this step until each
fold was the test set, and thus predicted, once. This
way we can predict labels for the whole test set,
without ever seeing the tweets we make predictions
for in the training set.

5.2 Discussion of the Results

Table 2 lists the evaluation results for our individ-
ual classifiers. The Naive Bayes classifier iden-
tifies most of the tweets that should be labeled
OTHER, nearly none that are PROFANITY and a
small amount with a relatively high precision that
should be in category INSULT or OTHER. The re-
call of category PROFANITY might be especially
low because this category is represented the least in
the training dataset and the classifier only learns on
words found in the training dataset. The opposite
may be true for OTHER, which is the most often oc-
curring category. In total the Naive Bayes classifier
achieved an F1-score of 0.366.

In comparison to the Naive Bayes classifier, the
neural network detects considerably less OTHER,
but it detects a certain amount of PROFANITY.
The recall values for INSULT and ABUSE are also
higher, but similar to PROFANITY they have a rel-
atively low precision. The neural network achieved
a total F1-score of 0.261. This evaluation already
considers our approaches against class imbalance.
Both approaches, SMOTE and class weights, in-
creased the F1-score from about 0.22 to about 0.26,
while the SMOTE approach performs slightly bet-
ter than the class weights.

The rule-based classifier finds slightly less
OTHER than the Naive Bayes classifier, but has
a higher recall and lower precision on the other
three categories. Since the rules work with very
specific word lists, the classifier may be able to
detect more tweets that fit the rules, but cannot dif-
ferentiate them from non-offensive texts that also
contain those words. The rule-based approach is
the best individual classifier with an F1-score of
0.390.

Our ensemble classifiers performed better than
the individual classifiers: the gradient boosting ap-

41



Naive Bayes Neural Network Rule-based

precision recall F1 precision recall F1 precision recall F1

Profanity 0.20 0.01 0.03 0.02 0.25 0.04 0.15 0.28 0.20
Insult 0.49 0.13 0.20 0.17 0.32 0.22 0.23 0.21 0.22
Abuse 0.70 0.29 0.41 0.22 0.32 0.26 0.46 0.32 0.37
Other 0.73 0.97 0.83 0.78 0.39 0.52 0.73 0.81 0.77

Table 2: The F1-scores for each category predicted by the Naive Bayes classifier, the neural network, and
the rule-based classifier

Gradient Boosting Ensemble Logistic Regression Ensemble Sentiment Lexicons

precision recall F1 precision recall F1 precision recall F1

Profanity 0.12 0.51 0.19 0.17 0.44 0.25 1.00 0.03 0.05
Insult 0.30 0.43 0.36 0.43 0.30 0.35 0.44 0.29 0.35
Abuse 0.47 0.51 0.49 0.57 0.43 0.49 0.56 0.39 0.46
Other 0.85 0.70 0.77 0.80 0.87 0.83 0.77 0.90 0.83

Table 3: The F1-scores for each category predicted by the gradient boosting ensemble, the logistic
regression ensemble classifier, and the sentiment lexicon approach for comparison

proach reached a score of 0.450 and the logistic
regression ensemble achieved a score of 0.480. No-
tice that no individual classifier exceeds a macro-
average F1-score of 0.4. The detailed results can
be seen in Table3. The gradient boosting classi-
fier has higher recall values for the three offensive
categories, but a lower precision. In contrast, the
logistic regression ensemble classifier has lower
recall values, except for OTHER, but a higher pre-
cision and total score.

In context of the GermEval task 2018, the logis-
tic regression ensemble classifier provides the best
result, as it has the highest total F1-score. However,
if the classifiers were to be used for a real-world
application (e.g. helping Twitter moderators to find
tweets that they should assess), the gradient boost-
ing approach may be better suited. The gradient
boosting approach has the highest combined re-
call values for the three offensive labels of all our
classifiers, which means that more offensive tweets
would be found. In a second step, the false posi-
tives could be removed by another algorithm or a
human worker.

While we cannot provide an F1-score for the test
set, we still use the ensemble classifiers to predict
its labels. We also use out-of-fold predictions, but
instead of predicting for the remaining fold, we pre-
dict the entire test set. The result of this procedure
are five complete prediction files, which are later

combined into a final prediction by calculating the
average.

The gradient boosting ensemble predicts more
tweets to be in the three offensive categories. In
contrast, the logistic regression approach classi-
fies more tweets as OTHER. We assume that the
samples’ ground truth categories follow the same
frequency distribution in the training set and the
test set. The general category distribution of both
classifiers’ predictions is similar to the distribution
of the categories in the training data. The OTHER
category occurs the most often and PROFANITY
the least often, which is shown in Figure 2. How-
ever, the distribution of the training set and the
predictions for test set do not match exactly. This
discrepancy is an opportunity for more optimiza-
tion, which goes beyond this paper.

5.3 Test Dataset Submission
We submitted prediction files for the two tasks of
fine-grained and coarse-grained classification. The
logistic regression ensemble, the sentiment polarity
lexicons, and a combination of both approaches
comprise our final submission. The combination
is the mean of the predicted probabilities of both
approaches. The files correspond to our previously
described approaches as follows:

• hpiTM fine 1.txt: logistic regression
ensemble

42



Profanity Insult Abuse Other

0

0.2

0.4

0.6

0.8

d
is

tr
ib

u
ti

o
n

o
f

p
re

d
ic

ti
o
n
s

training dataset

test dataset LRE

test dataset GBE

Figure 2: Category distribution predicted by the

logistic regression ensemble (LRE) and gradient

boosting ensemble (GBE) for the 3532 tweets in the

test dataset compared with the training distribution

of 5009 tweets

• hpiTM fine 2.txt: sentiment polarity

lexicons

• hpiTM fine 3.txt: sentiment polarity

lexicons and logistic regression ensemble

combined

• hpiTM coarse 1.txt: logistic regres-

sion ensemble

6 Conclusion

In this paper we considered the problem of classify-

ing German tweets into four different categories of

offensive language in context of the GermEval task

2018. This task uses the macro-average F1-score

as evaluation measure. In order to maximize this

score, we proposed different classifiers, such as

a Naive Bayes classifier, a neural network, and a

rule-based approach. The results of these classifiers

were combined in two different ensemble methods

to achieve a higher score. This ensemble achieves a

macro-average F1-score of 0.48 at cross-validation

on the provided training dataset. We provide our

source code online4.

An interesting path for future work is to provide

fine-grained classification labels to content moder-

ation teams at online platforms. The fine-grained

labels can provide an explanation for why a partic-

ular user comment is considered toxic and may be

deleted by the moderation team. To this end, even

finer-grained labels that describe the target group

of an insult, such as a particular religion, ethnic

minority or nationality are needed. Based on such

labels, also an analysis of offensive language could

4https://hpi.de/naumann/projects/repe
atability/text-mining.html

go into more detail and shine a light on reasons for

and intentions of toxic comments.

Acknowledgments

We thank Samuele Garda for his help with this

project and for his valuable feedback.

References

Carl Ambroselli, Julian Risch, Ralf Krestel, and An-
dreas Loos. 2018. Prediction for the newsroom:
Which articles will get the most comments? In Pro-
ceedings of the 16th Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL), pages 193–199. ACL,
June 1–6.

Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the In-
ternational Conference on World Wide Web (WWW),
pages 759–760. International World Wide Web Con-
ferences Steering Committee.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,
and W Philip Kegelmeyer. 2002. Smote: synthetic
minority over-sampling technique. Journal of artifi-
cial intelligence research, 16:321–357.

Simon Clematide and Manfred Klenner. 2010. Eval-
uation and extension of a polarity lexicon for ger-
man. In Proceedings of the First Workshop on Com-
putational Approaches to Subjectivity and Sentiment
Analysis, pages 7–13.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language. In
Proceedings of the International Conference on Web
and Social Media (ICWSM), pages 512–515.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu.
2017. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Informa-
tion Processing Systems, pages 3146–3154.

Ritesh Kumar, Atul Kr. Ojha, Shervin Malmasi, and
Marcos Zampieri. 2018. Benchmarking Aggression
Identification in Social Media. In Proceedings of the
Workshop on Trolling, Aggression and Cyberbulling
(TRAC).

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive Lan-
guage Detection in Online User Content. In Pro-
ceedings of the International Conference on World
Wide Web (WWW), pages 145–153. International
World Wide Web Conferences Steering Committee.

43



Robert Remus, Uwe Quasthoff, and Gerhard Heyer.
2010. Sentiws - a publicly available german-
language resource for sentiment analysis. In Pro-
ceedings of the Conference on International Lan-
guage Resources and Evaluation (LREC). European
Languages Resources Association.

Julian Risch and Ralf Krestel. 2018a. Aggression
identification using deep learning and data augmen-
tation. In Proceedings of the First Workshop on
Trolling, Aggression and Cyberbullying (co-located
with COLING), pages 150–158, August.

Julian Risch and Ralf Krestel. 2018b. Delete or not
delete? semi-automatic comment moderation for the
newsroom. In Proceedings of the First Workshop on
Trolling, Aggression and Cyberbullying (co-located
with COLING), pages 166–176, August.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection Using Natural Lan-
guage Processing. In Proceedings of the Interna-
tional Workshop on Natural Language Processing
for Social Media (SocialNLP), pages 1–10. ACL.

Ulli Waltinger. 2010. Germanpolarityclues: A lexical
resource for german sentiment analysis. In Proceed-
ings of the Conference on International Language
Resources and Evaluation (LREC). European Lan-
guage Resources Association.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics: Short Papers-Volume 2, pages 90–94. As-
sociation for Computational Linguistics.

William Warner and Julia Hirschberg. 2012. Detect-
ing hate speech on the world wide web. In Proceed-
ings of the Workshop on Language in Social Media
(LSM), pages 19–26. ACL.

Lei Zhang, Shuai Wang, and Bing Liu. 2018. Deep
learning for sentiment analysis: A survey. Wiley
Interdisciplinary Reviews: Data Mining and Knowl-
edge Discovery, page e1253.

44



TUWienKBS at GermEval 2018: German Abusive Tweet Detection

Joaquı́n Padilla Montani
TU Wien

Institut für Logic and Computation
Favoritenstraße 9-11, 1040 Austria
jpadillamontani@gmail.com

Peter Schüller
TU Wien

Institut für Logic and Computation
Favoritenstraße 9-11, 1040 Austria

ps@kr.tuwien.ac.at

Abstract

The TUWienKBS system for abusive tweet
detection in the GermEval 2018 competi-
tion is a stacked classifier. Five disjoint
sets of features are used: token and charac-
ter n-grams, relatedness to the, according
to TFIDF, most important tokens and char-
acter n-grams within each class, and the
average of the embedding vectors of all
tokens in a tweet. Three base classifiers
(maximum entropy and two random forest
ensembles) are trained independently on
each of these features, which yields 15 pre-
dictions for the type and/or level of abusive-
ness of the given tweets. One maximum
entropy meta-level classifier performs the
final classification. As word embedding
fallback for out-of-vocabulary tokens we
use the embeddings of the largest prefix
and suffix of the token, if such embeddings
can be found.

1 Introduction

We describe the TUWienKBS system that partici-
pated in the GermEval 2018 competition for abu-
sive tweet detection.

This task is relevant for supporting humans
when they moderate online content. In the pseudo-
anonymous environment of microposts, abusive
language is easily produced by users and it is an
important objective to prevent that such content is
broadcast to a large number of readers.

Our system is based on a stacked architecture
where a set of three types of classifiers is trained
on a set of five feature groups, and the resulting fif-
teen trained models are forwarded to a meta-level
classifier that decides the final outcome of the pre-
diction. This architecture and its training method
is inspired by the EELECTION system (Eger et
al., 2017) however our features and classifiers are
different.

In particular we produce features based on a
per-class selection of, according to TFIDF, most
important characteristics of tokens and character n-
grams. For each class we create the same number of
features in this feature category and we found that
this helps with the imbalanced training set of 5009
tweets where one of four classes to be predicted
contains only 71 samples.

This paper is organized as follows. In Section 2
we give details about the competition tasks and
evaluation metrics. In Section 3 we describe tweet
preprocessing and the features we use. In Section 4
we describe the machine learning model we use and
the stacked predictor model and we describe how
we train this architecture. Section 5 describes our
submission files and provides an evaluation of our
model and features on training data. In Section 6
we describe additional experiments we performed
that did not yield improvements of scores. We
conclude the paper in Section 7.

2 Competition Tasks

The GermEval 2018 Shared Task on the Identifica-
tion of Offensive Language1 solicited the submis-
sion of systems that classify German microposts
(in a Twitter dataset) with respect to their offen-
siveness. Such predictions are a valuable tool for
assisting human moderators with the job of reduc-
ing the amount of hurtful, derogatory or obscene
online content.

The competition contained two tasks:

• Task 1: coarse-grained classification into the
two classes “OFFENSIVE” and “OTHER”
(where “OTHER” means non-offensive), and

• Task 2: fine-grained classification into the
four classes “PROFANITY”, “INSULT”,
“ABUSE”, and “OTHER”.

1https://projects.fzai.h-da.de/iggsa/

45



Each micropost is tagged with exactly one class of
Task 1 and with exactly one class of Task 2. The
classes are mutually exclusive, in particular, the
“PROFANITY” class does not contain any insults,
“ABUSE” does not insult a single concrete person
but a whole group of people and is also abusive in a
way that is not simply “PROFANITY”, see also the
annotation guidelines (Ruppenhofer et al., 2018).

The competition evaluation uses macro-
averaging of the F1-score of the predictions as final
score, i.e., each class contributes equally to the fi-
nal score independent from the number of samples
in the class. The training set contains 5009 tweets
where 3321 are marked as “OTHER” and the
remaining ones as “OFFENSE” in Task 1. Of the
offensive tweets, 1022 are marked as “ABUSE”,
595 as “INSULT”, and 71 as “PROFANITY”.

This imbalance in the training set gave rise to
several decisions we made while creating our sys-
tem, we discuss these in particular in Sections 3.4,
6.3, and 7.

3 Features

We implemented feature computation using the li-
braries Scikit-learn (Pedregosa et al., 2011) for
TFIDF computations, NLTK (Bird et al., 2009) for
tokenization and stemming, and GenSim (Řehůřek
and Sojka, 2010) for managing precomputed word
embeddings.

3.1 Preprocessing

Tweet preprocessing removes all handles (@user-
name) and replaces the characters “#- ,;:/+)<>&”
and line break characters by spaces and we replace
the substring “’s” (as in “geht’s”) by a space.

We use NLTK’s TweekTokenizer with
reduceLen=True. That means repetitions of
the same character are shortened to at most three
letters (e.g., “cooool” is normalized to “coool”).

For features with stemming we use the German
stemmer of NLTK.

Table 1 gives an overview of the groups of fea-
tures we use. We describe these in the following.

Special Preprocessing indicates which additional
preprocessing is done beyond handle removal and
tokenization. For creating character-level features
we concatenate (Join in Table 1) the resulting to-
kens with spaces into one string for extracting
character-level n-grams. We always use the tok-
enizer (even for character-level features) to make
use of its reduceLen feature.

3.2 Character and Token N-Gram Features
The feature groups CNGR and TNGR are similar
so we describe them together. Both operate on a
lowercased version of the input, and TNGR addi-
tionally performs stemming on each token.

CNGR extracts all character-level n-grams of
length 3 to 7, while TNGR extracts all stemmed-
token-level n-grams of length 1 to 3. In both cases,
we perform TFIDF over all extracted n-grams, keep
only those with a document frequency between 0.01
and 0.0002 (i.e., those that are rare enough to carry
some signal, but frequent enough to have a poten-
tial to generalize over unseen data). The document
frequency thresholds were tuned by means of a
grid search on a 90%/10% split of the training data,
with the aim to maximize prediction scores of the
base classifiers (see Section 4).

We use the TFIDF score of the rele-
vant n-grams as input features (realized with
TfidfVectorizer).

3.3 Word Embedding Features
We use the pretrained word2vec model
twitter-de d100 w5 min10.bin with 100
dimensions and window size 5, created from
Twitter data of 2013–2017 by Josef Ruppenhofer.2

For each tweet, we create 100 real-valued fea-
tures by taking the average embedding of all tokens
in the tweet, normalized to unit length with L2
norm.

Whenever a word embedding is required, i.e., for
feature groups TIMP and EMB, and whenever the
token is not in the vocabulary of the pretrained list
of word embeddings, we perform a fallback opera-
tion. We search for the largest prefix and the largest
suffix of the token of length 3 or greater where we
know a word embedding. If we find such affixes
with embeddings, we use the embeddings of these
affixes as if they were separate tokens in the tweet.
As an example, the word “Nichtdeutsche” (non-
Germans) in the dataset does not exist in some pre-
trained word embedding models so we encounter
an OOV exception. Our method would use as a
fallback two word embeddings for affixes “Nicht”
(not) and “deutsche” (German+Adj) because both
affixes are present in the word embedding model.
This fallback reduces the number of OOV excep-
tions in the training set from 1903 to 90 and in the

2http://www.cl.uni-heidelberg.de/
english/research/downloads/resource_
pages/GermanTwitterEmbeddings/
GermanTwitterEmbeddings_data.shtml

46



Symbol Name Level Special Preprocessing Word Embeddings

CNGR Character N-Grams C Lowercase + Join -
CIMP Important N-Grams C Join -
TNGR Token N-Grams T Lowercase + Stemming -
TIMP Important Tokens T - min/max cos distance
EMB Word Embeddings T - average

Table 1: Groups of features used for classification. Handle removal and tokenization is used for all
features. C and T stand for character and token level, respectively.

Task m Feature k

Task 1 2 CIMP 3200
Task 1 2 TIMP 1250
Task 2 4 CIMP 370
Task 2 4 TIMP 170

Table 2: Number of important types selected for
each task and feature group.

testing set from 1069 to 51.
We also experimented with other pretrained

word embedding models but none of them achieved
a comparable performance. Combining above men-
tioned word embeddings with other embeddings
increased performance in single classifiers, how-
ever it decreased performance when these models
were used as part of the ensemble described in Sec-
tion 4.

3.4 Important N-Gram and Token Features

These two groups of features are based on the same
idea: to perform TFIDF over the whole dataset,
select the k most important types relative to each
of the m classes (m = 2 in Task 1, m = 4 in Task 2).
We determine importance by ranking features ac-
cording to their average TFIDF value in all docu-
ments in the respective class. Based on the resulting
list of k ·m most important type/class combinations
we create a feature for each k ·m combination.

For CIMP each type is a character n-gram, while
for TIMP each type is a token. Intuitively this
selects the most distinguishing types per category, a
related analysis is described in the blog of Thomas
Buhrman.3

Table 2 shows the number of important types
selected for each task and each feature group.
These values were adjusted with a grid search on

3https://buhrmann.github.io/
tfidf-analysis.html

a 90%/10% split of the training data in order to
maximize prediction scores of the base classifiers
(see next section).

So far we have only discussed how important
types are selected. We next describe which features
are generated from these important types.

For TIMP, for each important type t in a tweet
we obtain its word embedding~t and compute the
maximum and the minimum cosine distance from~t
to all other embeddings of other types in the same
tweet. We use the same OOV-fallback described
in Section 3.3. This yields a minimum and a maxi-
mum feature for each important type and each class:
2 · k ·m real features for each tweet.

For CIMP we have no embedding information,
therefore we create for each important type t a
Boolean feature that indicates whether t is con-
tained in the tweet or not. This yields a feature for
each important type and each class: k ·m Boolean
features for each tweet.

By creating a set of features for each class, we
increase the signal that can be learned for the “PRO-
FANITY” class in Task 2 which contains a small
set of samples.

4 Classification

Our system is a stacked ensemble system inspired
by the EELECTION system of Eger et al. (2017).

We implemented most the classification using
the library Scikit-learn (Pedregosa et al., 2011) and
refer to class and function names of Scikit-learn in
the following (unless explicitly stated otherwise).

4.1 Base Classifiers

For each of the 5 feature groups discussed in Sec-
tion 3, we train three independent classifiers:

• a MaxEnt model with balanced class weight
(class LogisticRegression),

47



• an ensemble of random forests trained
on samples of the training set (Geurts
et al., 2006) using information gain as
criterion for scoring the sample splits
(class ExtraTreesClassifier with
criterion=entropy), and

• another ensemble of random forests trained
using Gini impurity for scoring sample splits
(criterion=gini).

For ExtraTreesClassifier we use 100 and
150 estimators for Task 1 and Task 2, respectively.
This yields 5 · 3 distinct base classifiers, i.e., fea-
ture/classifier combinations.

We train each base classifier on 90% of the train-
ing data and perform predictions on the remain-
ing 10%. We perform this process 10 times in a
cross-validation manner to obtain predictions for
the whole training data. To obtain more reliable
results we repeat the whole process 10 times with
different random seeds for determining the cross-
validation folds. At that point we have 15 base
classifiers and their predictions for each tweet and
each class in the training data.

4.2 Meta Classifier
Using predictions of 15 base classifiers for each
class, we create 30 meta level features per tweet
for Task 1 (two classes) and 60 meta level features
per tweet for Task 2 (four classes).

On these features and the known true
classes we train a maximum entropy model
(LogisticRegression). We use one-vs-rest
classification, balanced class weights, and tuned
parameter C = 0.17 for Task 1 and C = 0.2 for
Task 2.

5 Submission and Pre-Competition
Evaluation

We submitted a single run for Task 1 and
a single run for Task 2 to the competi-
tion, named TUWienKBS coarse 1.txt and
TUWienKBS fine 1.txt, respectively.

The source code of our system, i.e., feature com-
putation, training, and classification, is available
online.4

Based on 10-fold cross-validation with stratified
folds (i.e., ensuring stable class ratios in each fold)
we performed a pre-competition evaluation of our

4https://github.com/jpadillamontani/
germeval2018

Features F1 score F1 reduction

ALL 81.72
without TIMP 79.92 1.80
without CNGR 81.14 0.58
without CIMP 81.15 0.57
without TNGR 81.43 0.29
without EMB 81.69 0.03

Table 3: Evaluation on training set (Task 1).

Features F1 score F1 reduction

ALL 61.89
without TIMP 59.77 2.12
without CNGR 60.24 1.65
without CIMP 60.43 1.46
without EMB 61.61 0.28
without TNGR 61.67 0.22

Table 4: Evaluation on training set (Task 2).

system and its features on the training data. Table 3
shows that the ensemble achieves a macro-averaged
F1 score of 81.72 on the training data for coarse-
grained prediction (Task 1), where the most im-
portant feature in the ensemble is TIMP, followed
by CNGR. Table 4 shows results for fine-grained
prediction (Task 2) where the ensemble obtains a
score of 61.89, again with TIMP and CNGR as
most important feature groups in the ensemble.

Across both tasks we can say that CNGR fea-
tures are more useful than TNGR features, how-
ever with TIMP and CIMP the situation is reversed:
TIMP is the most important feature group in both
tasks. The reason is that TIMP uses word embed-
dings and min/max cosine distances from important
types to tokens in the tweet at hand, while CIMP
only uses membership in the tweet. This makes
TIMP a more powerful feature than CIMP.

EMB and TNGR features contribute only little
to the overall ensemble score. If we would use
only EMB features to predict the class this would
yield reasonable results even without an ensemble,
while we would obtain worse results when using
only TNGR features (these results are not shown
in tables).

Altogether, word embeddings are a crucial com-
ponent of our system and we use them in different
ways in TIMP and EMB feature groups.

48



6 What did not work?

While creating our submission for the competition
we experimented with several methods that did not
improve the system score.

6.1 Feature Selection for Character N-grams

Generating n-grams of length 3–7 at the char-
acter level yields more than 200.000 fea-
tures. We tried to reduce this with sev-
eral feature selection functionalities implemented
in feature selection.SelectKBest in
Scikit-learn (Pedregosa et al., 2011) with χ2

(chi2) or ANOVA (f classif) as feature scor-
ing functions. Any reduction in the dimensionality
impacted the score negatively.

6.2 Stop Word Removal

We removed stop words from the German stop
word list of NLTK (“stopwords corpus”) and from
another list of publicly available German stop-
words.5

Stop word removal impacted the score nega-
tively, when applying stop word removal before
computing token n-grams as well as when applying
stop word removal before the computation of tweet
embeddings.

6.3 Under- and Oversampling

To overcome the imbalance in the training set (see
also Section 2) we tried several sampling methods
for re-balancing the dataset.

We used the imblearn package6 (Lemaı̂tre
et al., 2017) in particular the classes Random-
UnderSampler and RandomOverSampler
to undersample the largest class (OTHER) and to
oversample the smallest class (PROFANITY), re-
spectively.

This decreased evaluation scores.

6.4 Deep Learning

To our ensemble we added three architectures based
on Keras and TensorFlow.7 These experiments
replicated successful approaches for tweet classifi-
cation and applied them to the GermEval dataset.

5https://github.com/stopwords-iso/
stopwords-de/blob/master/stopwords-de.
txt

6http://contrib.scikit-learn.org/
imbalanced-learn/stable/index.html

7https://www.tensorflow.org/guide/
keras

In particular we tried the LSTM and CNN meth-
ods8 of Badjatiya et al. (2017) and the Convolu-
tion+GRU method9 of Zhang et al. (2018).

We trained these models, evaluated them individ-
ually and also integrated them into the ensemble
(we trained the probabilities as we did for the other
classifiers).

All three architectures performed similarly to
the other, classical, classifiers, reaching F1 scores
around 76 for Task 1 and around 55 for Task 2.
Adding these deep learning classifiers to the en-
semble decreased its overall score, so in the end we
excluded them from the ensemble.

6.5 Using sent2vec instead of word2vec
Instead of using word2vec pretrained word embed-
dings, we experimented with sent2vec10 models of
Lee et al. (2017).

The features generated this way scored sig-
nificantly worse than the normal averaging of
word2vec embeddings. We also tried combining
both word2vec and sent2vec features by simply
concatenating their vectors, but this still performed
worse than the averaging approach we used in the
final submission.

7 Conclusion

Our system combines existing approaches that have
been reported to work and includes a group of fea-
tures that is, to the best of our knowledge, novel:
the group of “Important N-Gram and Token Fea-
tures” (Section 3.4). These features (TIMP and
CIMP) are generated from the most important (ac-
cording to the average of their TFIDF scores) to-
kens (respectively, character n-grams) and this im-
portance is computed within each class that we aim
to predict. Essentially, we identify features that are
most suitable for distinguishing documents within
each class and not across classes. Our experiments
showed that these features on their own already
obtain high prediction scores on both tasks. In the
ensemble, feature group TIMP causes the largest
drop in prediction score when removed, making it
an important component of the prediction.

A major challenge in this competition was the
evaluation mode in combination with the class im-
balance in the training data. The competition evalu-

8https://github.com/pinkeshbadjatiya/
twitter-hatespeech/

9https://github.com/ziqizhang/chase
10https://github.com/UKPLab/

germeval2017-sentiment-detection

49



ation uses macro-averaging, i.e., each class counts
the same. At the same time, in Task 2, there is
one class (“PROFANITY”) with only 72 tweets as
samples within a training set which contains 5009
tweets. Due to this imbalance, making mistakes in
this one class has a higher weight on the result than
making mistakes in other classes, and we focused
our tuning efforts on managing this class imbalance
(partially, but not exclusively, by creating the above
mentioned class-wise important features).

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760.

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python: analyz-
ing text with the natural language toolkit. O’Reilly.

Steffen Eger, Erik-Ln Do Dinh, Ilia Kutsnezov, Ma-
soud Kiaeeha, and Iryna Gurevych. 2017. EELEC-
TION at SemEval-2017 Task 10: Ensemble of nEu-
ral Learners for kEyphrase ClassificaTION. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval 2017), pages 942–946.

Pierre Geurts, Damien Ernst, and Louis Wehenkel.
2006. Extremely randomized trees. Machine learn-
ing, 63(1):3–42.

Ji-Ung Lee, Steffen Eger, Johannes Daxenberger, and
Iryna Gurevych. 2017. UKP TU-DA at GermEval
2017: Deep learning for aspect based sentiment de-
tection. In Proceedings of the GSCL GermEval
Shared Task on Aspect-based Sentiment in Social
Media Customer Feedback, pages 22–29.

Guillaume Lemaı̂tre, Fernando Nogueira, and Chris-
tos K. Aridas. 2017. Imbalanced-learn: A python
toolbox to tackle the curse of imbalanced datasets
in machine learning. Journal of Machine Learning
Research, 18(17):1–5.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50.

Josef Ruppenhofer, Melanie Siegel, and Michael
Wiegand. 2018. Guidelines for IGGSA
Shared Task on the identification of of-
fensive language. http://www.coli.
uni-saarland.de/˜miwieg/Germeval/
guidelines-iggsa-shared.pdf.

Ziqi Zhang, David Robinson, and Jonathan Tepper.
2018. Detecting hate speech on twitter using a
convolution-GRU based deep neural network. In
The Semantic Web, pages 745–760.

50



Feature Explorations for Hate Speech Classification

Tatjana Scheffler Erik Haegert Santichai Pornavalai Mino Lee Sasse
Linguistics Department

Research Focus Cognitive Sciences
University of Potsdam, Germany

tatjana.scheffler@uni-potsdam.de

Abstract

In this work, we present a hate speech
classifier for German tweets for the Ger-
mEval2018 Shared Task. Our best models
are Linear SVM classifiers using character
ngrams as well as additional textual fea-
tures. We achieve a macro F1-score of 0.77
(95% confidence interval: ±0.04) in cross
validation. We also present an ensemble
classifier based on majority voting of the
three component models.

1 Introduction

Social media contains large amounts of user-
generated text. Unfortunately, a portion of these
user comments are hurtful to other people, incite
aggression or violence, or contain offensive content.
This kind of material is known as “hate speech” on
the internet and termed “offensive language” in the
GermEval2018 Shared Task1. Detecting offensive
language automatically is important for moderating
online discussions and in order to identify trolls.

In this work, we present a hate speech classifier
for German tweets based on the GermEval2018
Shared Task. Our best models are Linear SVM
classifiers using character ngrams as well as addi-
tional features. We achieve a macro F1-score of
0.77 (95% confidence interval: ±0.04) in cross
validation. In the following, we describe our ex-
ploration of the data, the models trained, and some
pointers for future research.

2 Related Work

Hate speech detection has received quite a bit of
attention recently, in particular for English social
media data. Waseem has worked on hate speech
classification of tweets, and has shown that the cate-
gories are often hard to define and the classification
of a tweet as offensive or not depends on features

1https://projects.fzai.h-da.de/iggsa/

of the recipient as well as of the sender (Waseem,
2016). This indicates that it would be very difficult
to detect hate speech only based on the text of a
social media comment, since important context is
missing, such as who the conversation participants
are (Are they themselves part of a marginalized
group?), how they usually communicate, and what
the surrounding discourse context is. Ross et al.
(2017) agree that hate speech annotations are a
very subjective task, with low agreement among
humans. In other work, Waseem and Hovy iden-
tify character ngrams as good predictive features
for identifying hate speech from English tweets
(Waseem and Hovy, 2016), since they are some-
what robust to misspellings and other variants.

Work by Wulczyn et al. (2017) on attacks in
Wikipedia shows that the necessarily subjective
judgments about offensive language by annotators
can be used to inform a classifier. In their work,
they combine many human judgments to build a
system that approximates the performance of sev-
eral naive judges.

For German, Bretschneider et al. (2014) present
an early pattern-based hate speech classifier for
tweets. They extend this pattern-based approach
towards detecting hate speech specifically directed
at foreigners in Facebook data (Bretschneider and
Peters, 2017).

So while there is some previous work and some
discussion on the types of classifiers and even data
to use, this is by no means a solved problem and
one that is receiving lots of attention. Concurrently
to this German Shared Task, the 1st Workshop on
Trolling, Agression, and Cyberbullying (TRAC)2 is
taking place, colocated with Coling, which includes
a Shared Task on identifying hate speech in English
and Hindi.

2https://sites.google.com/view/trac1

51



Figure 1: Distribution of “binary” (COARSE) and FINE labels in the training data.

3 Data

The training data for this task consisted of 5009
German tweets provided by the task organizers.
The tweets were annotated as specified in the an-
notation guidelines3 in two levels: in a COARSE

classification into OFFENSE and OTHER, and in a
FINE grained classification, further subdividing of-
fensive tweets as PROFANITY, INSULT, or ABUSE.
The distribution of labels in the training data is
shown in Figure 1. It is obvious that the data is
quite unbalanced, in particular for the FINE classifi-
cation, which contains only 71 cases of PROFAN-
ITY. In the following, we concentrate on Task1,
the COARSE/binary classification into offensive or
non-offensive speech.

3.1 Preprocessing

For preprocessing the data, we use different pre-
existing packages. For the data exploration re-
ported in this section, we use the SoMaJo4 social
media tokenizer (Proisl and Uhrig, 2016) and the
SoMeWeTa5 part of speech tagger for social media
data (Proisl, 2018). These two packages show the
best performance for German social media data
(for example, with regard to special tokens such as
hashtags and emoji). The tokenizer is also able to
output token types, which are useful in the com-
putation of further features (e.g., the frequency of
emoticons, etc.). The frequency of different token
types in the training data is listed in Table 1.

We conjecture that special tokens such as @-
mentions and URLs can lead to overfitting in word

3http://www.coli.uni-saarland.de/
˜miwieg/Germeval/guidelines-iggsa-shared.
pdf

4https://github.com/tsproisl/SoMaJo
5https://github.com/tsproisl/SoMeWeTa

token type f(OFFENSE) f(OTHER)

URL 1 4
XML entity 57 135
abbreviation 191 384
action word 12 3
date 3 33
email address 1 3
emoticon 590 997
hashtag 414 1183
measurement 6 8
mention 2321 5693
number 175 509
numb. comp. 55 42
ordinal 15 57
regular 31227 57837
symbol 5060 10095
time 4 15

total 40132 76998

Table 1: Frequency of token types in the training
data.

52



or character ngram models, since the test set may
not exactly match the training set. For this rea-
son, we experimented with replacing @-mentions
and URLs/email addresses by passepartout-tokens
(“*A*” and “*U*”, respectively). In addition, we
experimented with stemming using the Snowball
stemmer.

In some runs described below, we used alter-
native preprocessors (indicated in the model de-
scription). Model 1 employed the TreeTagger6 and
a stop word list from NLTK7. Model 2 used the
spaCy8 NLP package for tokenization, lemmatiza-
tion, and POS tagging. The German spaCy model
was computed on the Tiger and WikiNER corpora.
This model further removed the 232 stop words
from the Python stop-words package.

3.2 Data Exploration
In previous work, character ngrams have proven
very successful in supervised classification of
hate speech, since they are able to capture both
profanities and insults, as well as the fact that
hate speech often contains misspellings, disguised
words (“A***”), or other symbol combinations. In
order to see whether these predictions from English
surveys of hate speech are mirrored in the German
Shared Task data, we analyzed the occurrences of
slurs, OOV items, and other special tokens in the
offensive and non-offensive tweets.

Slurs. The annotation guidelines focus in part
on the person-directed nature of offensive speech.
Therefore, we analyze whether offensive tweets
contain more slurs than non-offensive tweets. We
use three lists to detect slurs: (i) the German insult
lexicon9 linked on the Shared Task site, (2) a manu-
ally compiled list of 8 items such as “Lügenpresse”
and “Vasall”, and the list of words classified as
SWEAR words (category 66) or ANGER (category
18) from the German LIWC dictionary (Wolf et
al., 2008), including 242 items. We used LIWC
because the insult lexicon contains only nouns that
can be used to refer to people, excluding many of-
fensive terms such as “verdammt”. In Figure 2,
we show the number of tweets that contain 0, 1,. . .
swear words in the training corpus, computed on
stemmed tokens (see “Preprocessing” above).

6http://www.cis.uni-muenchen.de/
˜schmid/tools/TreeTagger/

7https://www.nltk.org/
8https://spacy.io/
9http://www.hyperhero.com/de/insults.

htm

Figure 2: Histogram of the number of insult words
per tweet. Top panel = offensive tweets, bottom
panel = non-offensive tweets.

It is obvious that offensive tweets (shown in the
top panel) contain relatively more slurs than non-
offensive tweets (bottom panel). More than half
of offensive tweets contain at least one slur, while
non-offensive tweets rarely contain any. In fact,
this feature alone can be used to classify the tweets
for the binary task. Taking the presence of any slurs
to indicate an offensive tweet, we reach a macro
F1-score of 0.67 on the training set.

Figure 3: Histogram of OOV tokens per tweet.

Misspellings. Previous research has shown that
hate speech is more likely to contain misspellings
and alternative spellings (including lengthenings or
words disguised by asterisks) than non-hate speech.
In Figure 3 we plot frequency counts of out of
vocabulary (OOV) items per offensive (top) vs.
non-offensive (bottom) tweet in the training data.
We use the vocabulary provided by Spacy. The
data confirms that offensive German tweets con-
tain slightly more OOV tokens than non-offensive
tweets (mode = 7 vs. mode = 5).

53



Figure 4: Histogram of the number of symbols per
tweet.

Figure 5: Distribution of tweet lengths in offensive
and non-offensive tweets.

Special items. We also analyzed the frequency
of special items such as user mentions, hashtags,
and symbols in the two subcorpora. However, no
significant differences were found, indicating that
the mere occurrence of these types of items would
not make for very good features for classification.
For example, the frequency of punctuation symbols
is shown in Figure 4.

Length. Finally, we plot the length of the tweets
(in characters) in Figure 5. It can be seen that
non-offensive tweets (bottom) are more likely to
be shorter (under 140 characters) than offensive
tweets. We therefore consider this feature in some
of our models.

4 Models

In this work, we report on three supervised clas-
sification models for Task1, the binary classifica-
tion task as offensive/non-offensive tweets. The
three models were developed relatively indepen-
dently and show similar performance, but dif-
ferent classification decisions. In order to com-

bine the information from all models, we cre-
ated a simple ensemble model of the three clas-
sifiers by employing majority voting on the in-
dividual systems. We submitted this ensemble
prediction as Potsdam_coarse_3.txt. Note
that this ensemble model could not be evaluated
by cross-validation, since the component mod-
els were trained on the entire training set. Its
performance is therefore unknown at the time of
writing. In the remainder of this section, we de-
scribe the three component models. The first two
were submitted as Potsdam_coarse_1.txt
and Potsdam_coarse_2.txt, but the third
one was not individually submitted. Its output on
the test set can be provided upon request.

4.1 Model 1: Potsdam_coarse_1.txt

We trained a Linear Support Vector Machine us-
ing character n-gram features combined with word
embeddings.

Feature extraction and preprocessing. We pre-
process and extract the word-vectors of both the
training and test data offline for ease of develop-
ment. However we could also implement an online
version. Most of the preprocessing time is con-
sumed by loading the Word2Vec model.

We perform the following steps:

• The raw text data is used to extract character
n-grams. We have found 4-5-grams as the
most optimal.

• We compute pre-trained word embeddings
trained on German Twitter data from spin-
ningbytes10. We use only the most frequent 1
million words due to space issues.

• The tweet is lemmatized and filtered through
a stopword list using TreeTagger and NLTK.

• Each word in the tweet is then fitted in the
word2vec model to yield a vector with 200
floats. The vectors are weighted with tfidf
scores and averaged to create a feature vec-
tor for the tweet. Although both character
ngram and word2vec features perform well
independently (vanilla character ngrams scor-
ing slightly better), improvements on the com-
bined model are seemingly minute.

10https://www.spinningbytes.com/

54



• We add other textual features such as BOW,
number of words with all caps, tweets con-
taining insults, and punctuation. However,
they don’t offer much improvement to word
embeddings and character n-grams (but see
below).

• Sentiment analysis is added to the feature vec-
tor as (polarity, subjectivity). Both are floats
between -1/1. The sentiment analyzer used
here is the default from TextBlob11. This is
not state of the art and better SA might yield
better results.

• Grid search showed that feature selection of
only the 5000 best features leads to the best
performance in cross validation (parameters
tested: n ∈ {5k,10k,50k,100k}). Due to time
constraints, we were not able to do a thorough
analysis of which features were selected in
this step.

Classifier and crossvalidation. We compared 3
different classifiers for this task: Logistic Regres-
sion, SVM, and Adaboost. In our experiments,
SVM performed consistently better than the other
two but not by much. We performed a grid search
over 10-fold cross validation over SVM and found
the loss penalty C = 0.1 to be optimal. We evalu-
ate the results using 10-fold cross validation and
F1-macro as metric. The model consistently scores
F1 = 0.77± 0.04 and is thus our best individual
model.

4.2 Model 2: Potsdam_coarse_2.txt
Model 2 also trains a Linear Support Vector Ma-
chine, but uses the PassiveAggressiveClassifier
package from Python’s Scikit-Learn to do it. Its
cross validation results are F1 = 0.74±0.05.

Feature extraction and preprocessing. In this
model, we use the spaCy NLP toolkit for prepro-
cessing. We perform the following steps:

• Sentences are tokenized, lemmatized and
tagged using spaCy.

• Stop words and punctuation are excluded.

• If a word is found in the list of insults (insult
dictionary as linked from the Shared Task), a
special character “I” is added to the end of it.

11https://textblob.readthedocs.io/en/
dev/

• Finally, part of speech tags are added behind
their words in the list of tokens.

• The token-pos list is recombined with spaces
and we compute character ngrams in the range
of (1,5) on this combined lemma-pos string.

• The features are transformed using tfidf and
fed into the classifier.

4.3 Model 3
The third model is based on the analysis of the
training data presented in Section 3.2.

Feature extraction and preprocessing. We use
three kinds of features:

• POS ngrams: uni-, bi- and trigrams, based on
the SoMaJo tokenizer and SoMeWeTa tagger.

• Character ngrams in the range (3,5) based on
the tokenized text. This text keeps idiosyn-
crasies of the original tweet and does not ex-
clude stop words or punctuation, as they may
turn out significant for classification. The only
normalization done here is tokenization and
the replacement of @-mentions and URLs by
passepartout-tokens, in order to avoid overfit-
ting.

• Other textual features. These include the num-
ber of insults based on the extended slur lex-
icon we created, the number of OOV tokens,
and the length of the tweet. These features
were normalized to standard mean and vari-
ance.

• Again, we select the 5000 best features before
feeding them to the classifier.

Classifier and crossvalidation. We evaluated
different classifiers such as Logistic Regression,
Decision Trees, and SVM. Logistic Regression and
SVM perform consistently better than the others,
with SVM a little bit better on some runs. Our
further experiments thus concentrated on Linear
SVMs. On 10-fold cross validation, the model’s
score was F1 = 0.76± 0.05. We performed fea-
ture ablation between the 3 feature groups, which
showed that the performance is mainly carried by
the character ngrams (see Table 2). Note that the
textual features are only three features in total (in
the “text only” condition, there was no feature se-
lection). The ablation also shows that POS ngrams
might hurt the performance ever so slightly, which
might suggest excluding them in future work.

55



configuration F1-macro

char only 0.755±0.051
pos only 0.608±0.038
text only 0.664±0.045

char + pos 0.752±0.044
char + text 0.757±0.049
pos + text 0.656±0.037

all 0.756±0.052

Table 2: Feature ablation for model 3. Feature
types are character ngrams (char), pos ngrams
(pos), or the three textual features (text).

model 1 model 2 model 3

430 OFFENSE OFFENSE OFFENSE

80 OFFENSE OFFENSE OTHER
185 OFFENSE OTHER OFFENSE

88 OTHER OFFENSE OFFENSE

101 OFFENSE OTHER OTHER
245 OTHER OFFENSE OTHER
166 OTHER OTHER OFFENSE

2237 OTHER OTHER OTHER

Table 3: Confusion matrix of the three component
models on the test set.

4.4 Ensemble: Potsdam_coarse_3.txt

Model 3’s prediction was not submitted individ-
ually. Instead, it was used as the tie-breaker in
the majority voting ensemble classifier combin-
ing all three individual models. The ensemble’s
output was submitted as Run 3. The overlap and
differences in classification decisions between the
component models is shown in Table 3.

In the majority of cases, all models agree (top
and bottom sections). In addition, models 1 and 3
agree more often than they each agree with model
2 (which is different wrt. the kind of preprocessing
performed). The final ensemble classifier differs in
its classification decision from model 1 189 times,
from model 2 431 times, and from model 3 247
times. We therefore expect its performance to be
similar to the performance of model 1.

5 Results and Discussion

In this work, we present a hate speech classifier
for German tweets for the GermEval2018 Shared
Task. Our best models are Linear SVM classifiers

model F1-macro

insult words 0.67
model 1 0.77 ±0.04
model 2 0.74 ±0.05
model 3 0.76 ±0.05

Table 4: Cross validation performance of the three
models.

using character ngrams as well as additional tex-
tual features. We achieve a macro F1-score of 0.77
(95% confidence interval: ±0.04) in cross valida-
tion. We also present an ensemble classifier based
on majority voting of the three component models.
The cross validation performance of our models is
summarized in Table 4, but note that the ensemble
classifier cannot be included here.

In our experiments, as in previous work, charac-
ter ngrams were the most useful features for clas-
sification (outperforming word-based lexical fea-
tures but also manually specified features). The
best ngrams at the character level are 4- and 5-
grams, which can capture most of a word or even
the boundary between two words. It is hard to im-
prove over a character ngram baseline by feature
design, but our analysis identified a few phenom-
ena where offensive and non-offensive tweets show
significant differences: the presence of slurs (in-
cluding aggressive words), the frequency of OOV
tokens, and the length of the tweets.

In future work, of course a larger amount of data
may be helpful for training classification systems.
This would be particularly helpful for the second,
fine-grained task, where our classifiers showed re-
ally poor performance. In addition, we’d like to
explore linguistic approaches such as pattern-based
approaches, which have been useful for similarly
difficult tasks such as sarcasm detection (Davidov
et al., 2010). It is also clear that the annotations are
difficult even for humans, and thus multiply anno-
tated data would both be more fair to the data, as
well as might turn out helpful for classifiers (which
could use human (dis)agreements as indicators of
high or low label confidence). Finally, we are cer-
tain that the discourse context and other metadata
could hugely improve performance, and would thus
like to explore hate speech classification on data
sets that include such metadata, instead of just on
isolated tweet texts.

56



Acknowledgments

We would like to thank Daniela Feinhals for an
analysis of the annotation guidelines.

References
Uwe Bretschneider and Ralf Peters. 2017. Detecting

offensive statements towards foreigners in social me-
dia. In Proceedings of the 50th Hawaii International
Conference on System Sciences.

Uwe Bretschneider, Thomas Wöhner, and Ralf Peters.
2014. Detecting online harassment in social net-
works.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the four-
teenth conference on computational natural lan-
guage learning, pages 107–116. Association for
Computational Linguistics.

Thomas Proisl and Peter Uhrig. 2016. Somajo: State-
of-the-art tokenization for german web and social
media texts. In Proceedings of the 10th Web as Cor-
pus Workshop, pages 57–62.

Thomas Proisl. 2018. Someweta: A part-of-speech
tagger for german social media and web texts. In
Proceedings of LREC.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2017. Measuring the reliability of hate
speech annotations: The case of the european
refugee crisis. arXiv preprint arXiv:1701.08118.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Zeerak Waseem. 2016. Are you a racist or am i seeing
things? annotator influence on hate speech detection
on twitter. In Proceedings of the first workshop on
NLP and computational social science, pages 138–
142.

Markus Wolf, Andrea B Horn, Matthias R Mehl, Sev-
erin Haug, James W Pennebaker, and Hans Kordy.
2008. Computergestützte quantitative textanalyse:
Äquivalenz und robustheit der deutschen version
des linguistic inquiry and word count. Diagnostica,
54(2):85–98.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex machina: Personal attacks seen at scale.
In Proceedings of the 26th International Conference
on World Wide Web, pages 1391–1399. International
World Wide Web Conferences Steering Committee.

57



Offensive Language Detection with Neural Networks
for Germeval Task 2018

Dominik Stammbach
Saarland University

dominiks@coli.uni-saarland.de

Azin Zahraei
Saarland University
azinz@coli.uni-saarland.de

Polina Stadnikova
Saarland University
polinas@coli.uni-saarland.de

Dietrich Klakow
Saarland University

dietrich.klakow@lsv.uni-saarland.de

Abstract

In this paper we describe our submissions
to task I of the GermEval 2018 Shared Task
with the goal of identifying offensive lan-
guage in a set of German tweets. We ex-
periment with two neural architectures and
different features. Our submission consists
of 3 runs using ensembles of different neu-
ral network architectures, each achieving
approximately 78 % macro-F1 measure on
the last 500 tweets from the training set.
The source code for our experiments is pub-
licly available on Github. 1

1 Introduction

In recent years, it has become increasingly impor-
tant to come up with countermeasures to deal with
offensive language in social media. The NetzDG
law which has been in effect since January 1 2018
in Germany requires tech companies like Twitter
to delete obviously illegal content. (Wikipedia con-
tributors, 2018) The huge amount of data posted on
Twitter and the fact that German is in the top 10 lan-
guages of this social media platform (Hong et al.,
2011) makes manually monitoring the data unfeasi-
ble and calls for automatic methods of identifying
offensive language.

The GermEval 2018 Shared Task is focused on
detecting offensive comments in a set of German
tweets in two subtasks. Task I is a binary classifica-
tion of tweets. Task II requires a more fine-grained
classification of the offensive tweets into 3 subcat-
egories, namely profanity, insult and abuse. But
because of the small number of examples for the
profanity class, training a neural network to detect
profanity was infeasible. Because of the nature of
the evaluation metric it was unlikely to get compet-
itive results in task II so we only submit our model
for task I.

1https://github.com/polinastadnikova/-neurohate

For our submission we have used neural net-
works which have become the top-performing tech-
nique for many tasks in the field of natural lan-
guage processing. Convolutional Neural Networks
(CNN), which were initially invented for the com-
puter vision domain, have proven to be effective for
many Natural Language Processing tasks. This ar-
chitecture allows for extraction of local features in
text, e.g. word order. This way, we are able to make
use of combinations of words and use fixed size
regions of text, e.g. bigrams, trigrams and so on as
features. Yoon Kim (2014 ) shows the effectiveness
of using a CNN for text classification by comparing
results on different benchmarks. Recurrent Neural
Networks (RNN), on the other hand, are able to ex-
tract long term dependencies. This is a feature that
is definitely useful in offensive language detection.
RNN-based methods have produced state-of-the-
art scores for offensive language detection in other
languages (Del Vigna et al., 2017). Thus, we have
implemented both a CNN and a RNN model for
this task.

Following many experiments with different ways
of handling the data and different architectures for
our prediction model, we selected our best models
based on their macro-averaged F1 scores. More
specifically, we compared the models based on
their mean F1 score when 10 fold cross-validating
on all the training data. We submit three runs,
where the first, second and third runs are an en-
semble of RNNs, an ensemble of CNNs and an
ensemble of CNNs and RNNs respectively. After
describing the data and how we preprocessed them
in Section 2, we introduce the architectures and hy-
perparameters used in our best models in Section 3.
In Section 4, we talk about our experimental setups
and their results.

2 Data

The training data consists of 5009 tweets in Ger-
man, where some tweets contain different types

58



of hate speech. The data is annotated according
to the tasks: binary and fine-grained classification.
Therefore each tweet has two labels, OFFENSE or
OTHER as the first label and as the second label
one of the following: INSULT, ABUSE, PROFAN-
ITY, OTHER. In our work, we focus on the binary
classification, that means we have 1688 training
examples containing offensive language and 3321
without hate speech. The reason for our decision
not to participate in the fine-grained classification
task is that there are only 71 examples for the PRO-
FANITY label, 1022 examples for ABUSE out of
1688 tweets. We believe it is not enough for neu-
ral network training and furthermore our system
would be biased towards the ABUSE label.

2.1 Preprocessing

For classification, as well as for many other NLP
tasks, preprocessing of the training data has an im-
pact on the system’s performance (Kannan and Gu-
rusamy, 2014; Qu et al., 2015). Since we use neural
networks for our classifier and such approaches are
data-driven, preprocessing becomes a crucial part
of the system.

First of all, we tokenize the data using the two-
kenize package 2 for Python, which was specially
designed for tokenization of tweets. This forms the
basic preprocessing.

For the advanced preprocessing, we continue
working with the tokenized tweets. We re-
move punctuation and words containing non-alpha-
numerical characters (including emojis) and we
lowercase all the words. We consider hashtags,
words with the # sign, as a special case since they
are widely used on Twitter. We do not want to re-
move them because hashtags can be repetitive and
capture some relevant information. For this reason,
we just remove the hash sign. Mentions, denoted by
the @ sign, are also popular on Twitter but they are
often random and we decided that they are not rele-
vant for our classifier. By removing them, we back
down from using implicit information captured in
the word embeddings about specific users.

Since neural networks cannot handle categori-
cal features as input, we need to convert the input
tweets into a numerical representation. Following
convention, we make use of pre-trained word em-
beddings. We use the German Twitter embeddings
collected by the researchers at Heidelberg Univer-

2https://github.com/nryant/twokenize py

sity3. The embeddings are trained using word2vec,
with 100 dimensions for each word, a context win-
dow size of 7 and a minimum occurence of at least
50 times per word in the data. They are also to-
kenized using the twokenize package, hence our
decision to use the same library to tokenize the
tweets.

We vectorize tweets in the following way: each
tweet is a vector with word IDs as its elements.
Word IDs correspond to the row of a word in the
embeddings matrix. For words which occur only in
the training data but not in the embeddings (OOV)
we introduce the label UNKNOWN.

2.2 Features

Features have a large impact on performance, espe-
cially in domain specific tasks (Schmidt and Wie-
gand, 2017). The information, relevant for the
features, is extracted during preprocessing.

• Word embeddings represent one of the most
common features in neural NLP (Ruder et al.,
2017) . As already introduced above, they
are vector-based word representations which
are usually pre-trained on large datasets. The
embeddings which we use perfectly fit our pur-
pose since they are trained on the Twitter data.
It is known that word embeddings trained on
out-of-domain data lower performance of sys-
tems(Qu et al., 2015). Interestingly, words in
the embeddings are true-cased, most nouns ap-
pear twice in the embeddings, once true-cased
and once lowercased. Therefore the question
arises whether we benefit from lowercasing
the data. We design our experiments with re-
gard to this fact.

We also tried out other features like emphasizing
some categories or considering punctuation, all
of which lowered the performance and thus are
not included in our final models. We will briefly
describe them in Section 4.

3 Model

We experimented with two different neural net-
work architectures, namely convolutional neural
networks (CNNs) and recurrent neural networks
(RNNs).

3http://www.cl.uni-heidelberg.de/english/research/downloads/
resource pages/GermanTwitterEmbeddings/
GermanTwitterEmbeddings data.shtml

59



3.1 CNN

When using CNNs in NL, a window size is de-
fined and a shared weight matrix is trained which
is slided along sentences to produce a feature map
for every n-gram in the sentence where n is the win-
dow size. Afterwards, we do max pooling over the
different features generated and use this as a hidden
representation for the sequence. The main benefit
is that it is very fast and has few trainable parame-
ters, but can only consider local information. For
our final CNN model, we use word embeddings
which are initialized with the values from the Hei-
delberg embeddings and can be trained. We max
pool over 1 layer of bi- and trigram features with
64 filters per filter feature. We use a stride of 1 to
extract such features and to do max pooling over all
the resulting feature maps. Then this hidden repre-
sentation is fed into a two-layer deep feed-forward
network with the first layer having 128 hidden units
and the second layer with only two units to perform
classification. These parameters were chosen by
grid searching over a number of different settings.

3.2 RNN

While using RNNs, one can encode the sequence
in a very intuitive way, namely as word represen-
tations for every word. In this case, a recurrent
neural network starts at the beginning of the se-
quence and computes a hidden state given the in-
put. This hidden state is propagated through the
sequence and updated at each timestep given the
current input. The hidden state can also be thought
of as the memory of the network and thus is able
to capture global information from the sentence.
The downsides consist of having more trainable
parameters to be optimized using a limited amount
of training data. For our final RNN model, we use
bidirectional gated recurrent units (GRUs) (Cho et
al., 2014) with 50 hidden units for each direction.
We also experimented using LSTMs but they per-
form worse. We think this is explainable by the
lower numbers of trainable parameters in the GRU-
case which performs better on the small number of
training examples we actually have. We performed
a max-pool operation over the hidden timesteps
because important features at a given timestep may
be forgotten towards the end of the sequence and
this is a straight-forward way to keep such features.
The resulting hidden representation of the sequence
(output of the GRUs) is fed into a 4-layer deep feed-
forward neural network with 100 hidden units for

the first three layers and two neurons in the final
layer to perform classification.

Both architectures share some common settings
which we describe here: All the layers in the feed-
forward neural networks use a dropout-rate of 0.2,
a ReLU-activation and L2-regularization with λ
0.0001. We also apply the same dropout to the
input sequence and the output representation of the
CNN/RNN respectively. We used cross-entropy as
a loss function and optimized it using the Adam
optimizer with default parameters. Additionally,
we weighted offensive tweets twice as much as the
non-offensive ones to overcome the imbalance with
respect to the number of training examples in the
data.

The training was completed using a batch size of
64 examples per batch, with the data shuffled after
every epoch and early stopping on a development
set with a patience of 4. We selected all the pa-
rameters described above by peforming grid search
over the training set in a 10-fold cross-validating
fashion. The two configurations described above
turned out to be the ones yielding the highest aver-
age macro F1 measure on different parts of the data.
The ensemble method is a loose version of bagging
which furthermore increases the robustness and ac-
curacy of the classification. We decided to use it
since the high fluctuations in the results were ob-
served when running the same configuration mul-
tiple times. A possible reason for this might be
the random parameter initialization. Moreover, the
problem of finding the right seed in training neural
networks also plays an important role here (Bajgar
et al., 2018). To counter such behaviour while grid
searching, we use 10-fold cross-validation. Finally,
using an ensemble of 9 identical models trained
on different parts of the data 4, we do predictions
based on the majority vote from these models and
observe an increase of approximately 2% F1 mea-
sure compared to when only one model was used.
Our final macro-F1 scores are discussed in the next
section.

4 Experiments and Discussion

In Table 1 we show our results with different ex-
periments. All experiments (except the Character
CNN) are conducted using the GRU-architecture
described above. For each experiment, we use 10-
fold cross-validation and in each fold, we split the

4one part of training data is reserved for performing early
stopping

60



data in three parts: a training set, a validation set
for early stopping and a testset to evaluate. We
report the average macro-F1 score over all the ten
folds. Our system is optimized for the F1-measure
and not for precision and recall, for this reason we
report only the first one. Throughout the experi-
ments, we fixed the different splits so that we do
not evaluate every experiment on different parts of
the data.

In the first row, we just looked up the true-cased
version of a word in our embeddings vocabulary.
In case we cannot find it there, we try to back off to
the lowercased version of the word and otherwise,
we just use the UNKNOWN token.

In the second row, we report the results for re-
placing tokens which appear in a swear word dictio-
nary5 by a special SWEAR token. The motivation
for this feature was the fact that offensive tweets
tend to contain some swear words. Interestingly,
compared to true-cased data, this significantly im-
proves performance, but by just lowercasing all the
words, we get even better results(row 3). This can
be justified by the fact that for most nouns, two
versions, one true-cased and one lowercased copy,
exist in the embeddings and words are not always
accurately true-cased in tweets. Thus, by lowercas-
ing all words, we avoid confusing the network with
inconsistently true-cased words.

In row 5, we run the model without excluding
non-alphanumerical tokens, punctuation and emo-
jis. This again decreases the system’s performance.
Another issue we tried to overcome here is the out-
of-vocabulary (OOV) words treatment, which is
common in NLP, especially with small datasets
like ours. For this, we use hunspell spellchecker 6.
Many tweets contain spelling errors, therefore the
spellchecker helps to reduce the number of OOVs:
from 2511 OOV tokens to 91. The only problem
here is that the spellchecker generates words which
are correct but do not occur in the embeddings and
therefore are not very useful7. This might be an
explanation for the slightly worse model perfor-
mance.

Row 7 shows the results from running our RNN
model using LSTMs instead of GRUs. We spec-
ulate that since LSTMs have a larger number of
trainable parameters, training them on our small
training data is producing worse results than GRUs.

5https://www.schimpfwoerter.de/
6https://pypi.org/project/hunspell/
7For instance, SPDler is corrected to Spieler, and Antifan-

tenbrut to quantifizieren.

In row 8, we see the results when using our
CNN model with character embeddings. We grid-
searched over a number of settings and our best
result was a setting with 50 hidden units, a dropout
of 0.1 and a batch size of 256. Despite the fact
that using character embeddings solves the OOV
issue, the model still fails to capture lots of the
more broad-scale features in a sentence and there-
fore yielded very low results compared to our other
runs.

Table 2 summarizes the runs which we submit
for task I. For each run, we evaluated our system
on the last 500 tweets from the training set. The
last run consists of an ensemble of 18 models, 9
RNN GRUs and 9 CNNs. We expect that this might
slightly boost the performance. We combined the
predictions from the two sets of models on the test
set and predicted offense tags if at least half the
models predicted a tweet as offensive.

Note that the results from Table 1 and 2 are not
directly comparable since we evaluate the features
using 10-fold cross-validation and the submission
runs using the last 500 examples which we ex-
cluded during the training time. For the final sub-
mission, we retrained the ensembles including the
last 500 tweets as additional training material.

Method F1(%)
True-cased 61.6
True-cased + swear word dictionary 74.2
Lowercased 75.9
Lowercased + swear-word dictionary 74.9
Lowercased + non-alpha numerical tokens 72.6
Spellchecker for OOVs 69.7
Using LSTM instead of GRU 68.3
Character embeddings 49

Table 1: Results for different experiments

Submission File Ensemble F1(%)
SaarOffDe coarse 1.txt RNN 77.7
SaarOffDe coarse 2.txt CNN 78.6
SaarOffDe coarse 3.txt CNN + RNN 77.6

Table 2: Submitted runs

5 Conclusion

In this paper, as part of the Germeval 2018 shared
task, task I, we implemented neural networks for

61



the Identification of Offensive Language in Ger-
man.

We evaluated the two most common neural net-
work approaches for sequence classification on a
new German dataset and reported different prepro-
cessing techniques and their impact on the final
classification. The most surprising fact seems to be
that the best models rely on lowercased words even
though the word embeddings we use are true-cased.
The overall best performance was achieved with a
CNN model with a bi- and trigram filter.

We submit three runs for task I consisting of an
ensemble of RNNs8, CNNs9 and a combination of
both RNNs and CNNs together10.

References
Lichan Hong, Gregorio Convertino, and Ed Chi. 2011.

Language matters in Twitter: A large scale study In
International AAAI Conference on Weblogs and So-
cial Media.

Wikipedia contributors. The Free Encyclopedia, 30 Jul.
2018. Web. 3 Aug. 2018. Netzwerkdurchsetzungsge-
setz. Wikipedia, The Free Encyclopedia. Wikipedia.
American Psychological Association, Washington,
DC.

Anna Schmidt and Michael Wiegand. 2017. A Sur-
vey on Hate Speech Detection using Natural Lan-
guage Processing In: Proceedings of the Fifth Inter-
national Workshop on Natural Language Processing
for Social Media.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio 2014. Learning Phrase Represen-
tations using RNN Encoder-Decoder for Statistical
Machine Translation

Ondrej Bajgar, Rudolf Kadlec, Jan Kleindienst 2018.
A Boo(n) for Evaluating Architecture Performance
In: Proceedings of the 35th International Conference
on Machine Learning, PMLR 80:344-352, 2018.

Yoon Kim 2014. Convolutional Neural Networks for
Sentence Classification CoRR abs/1408.5882

Fabio Del Vigna, Andrea Cimino, Felice Dell’Orletta,
Marinella Petrocchi, and Maurizio Tesconi . 2017.
Hate me, hate me not: Hate speech detection on
Facebook. In: Proceedings of ITASEC.

Subbu Kannan and Vairaprakash Gurusamy. 2014.
Preprocessing Techniques for Text Mining. In: Pro-
ceedings of RTRICS.

8corresponds to the run SaarOffDe coarse 1.txt from our
submission.

9corresponds to SaarOffDe coarse 2.txt.
10corresponds to SaarOffDe coarse 3.txt.

Sebastian Ruder, Ivan Vulić and Anders Sogaard. 2017.
A Survey of Cross-lingual Embedding Models.

Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Wei-
wei Hou, Nathan Schneider, and Timothy Baldwin.
2015. Big Data Small Data, In Domain Out-of Do-
main, Known Word Unknown Word: The Impact of
Word Representation on Sequence Labelling Tasks .
In: Proceedings of the 19th Conference on Compu-
tational Language Learning.

62



RuG at GermEval: Detecting Offensive Speech in German Social Media

Xiaoyu Bai∗, Flavio Merenda∗∓, Claudia Zaghi∗, Tommaso Caselli∗, Malvina Nissim∗
∗ Rikjuniversiteit Groningen, Groningen, The Netherlands

∓ Università degli Studi di Salerno, Salerno, Italy
f.merenda|t.caselli|m.nissim@rug.nl x.bai.5|c.zaghi@student.rug.nl

Abstract

This paper reports on the systems the RuG
Team submitted to the GermEval 2018 -
Shared Task on the Identification of Offen-
sive Language in German tweets. We sub-
mitted three systems to Task 1, targeting
the problem as a binary classification task,
and only one system for Task 2, address-
ing a fine-grained classification of offen-
sive tweets in different categories. Prelim-
inary evaluation of the systems has been
conducted on a fixed validation set from
the training data. The best macro-F1 score
for Task 1, binary classification, is 75.45,
obtained by an ensemble model composed
by a Linear SVM, a CNN, and a Logistic
Regressor as a meta-classifier. As for Task
2, multi-class classification, we obtained
a macro-F1 of 40.75 using a multi-class
Linear SVM.

1 Introduction

The spread of Social Media, and especially of
micro-blog platforms such as Facebook and Twit-
ter, has been accompanied by a growth in on-line
hate speech. Several countries, including the EU,
use this expression as a legal term. For instance, the
EU Council Framework Decision 2008/913/JHA1

specifically defines hate speech as “the public in-
citement to violence or hatred directed to groups
or individuals on the basis of certain characteris-
tics, including race, colour, religion, descent and
national or ethnic origin”. In this work, follow-
ing (Schmidt and Wiegand, 2017), hate speech is
used as an umbrella term to cover a variety of user-
generated content phenomena, such as abusive or
hostile messages (Nobata et al., 2016), offensive

1https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=LEGISSUM:
l33178

language, cyberbullying (Reynolds et al., 2011; Xu
et al., 2012; Zhong et al., 2016), profanity, insults,
toxic conversations (Wulczyn et al., 2017), among
others.

Although the EU code of conduct on illegal on-
line hate speech forces companies to actively re-
move hate speech messages in their platforms, the
phenomenon is so widespread that ways for the
automatic classification of on-line content are ad-
vocated and necessary (Bleich, 2014; Nobata et al.,
2016; Kennedy et al., 2017). The growing inter-
est in this topic is also shown by recent dedicated
workshops (e.g. the Abusive Language Workshop
(AWL)2, now at its second edition), datasets in
English and other languages3, and evaluation ex-
ercises, such as the Hate Speech Detection task4

at the EVALITA 2018 Evaluation Campaign for
Italian.

The GermEval 2018 - Shared Task focuses on
the automatic identification of offensive language
in German tweets. In the task setting, offensive
language is defined as “hurtful, derogatory or ob-
scene comments made by one person to another
person”. The task is organized into two sub-tasks:
i.) Task 1, formulated as a binary classification
problem, where each tweet has to be classified ei-
ther as OFFENSIVE or as OTHER; and ii.) Task
2, formulated as multi-class classification prob-
lem, addressing a fine-grained distinction of the
offensive tweets, labeled as INSULT, ABUSE, and
PROFANITY, as well as the OTHER category. Ac-
cording to the Annotation Guidelines (Ruppenhofer
et al., 2018), the OTHER category is defined as any
utterance either having a positive or neutral polar-
ity, or having a negative polarity but not expressing
any of the target categories of INSULT, ABUSE,
and PROFANITY. Notice also that the category

2https://sites.google.com/view/alw2018
3https://sites.google.com/view/

alw2018/resources?authuser=0
4http://di.unito.it/haspeedeevalita18

63



PROFANITY is used to mark utterances that ex-
press non-acceptable language (e.g. swearwords)
without targeting (an) individual(s), thus basically
not expressing hate speech.

This paper illustrates the settings of our partic-
ipating systems. Although we mainly focused on
Task 1, to which we submitted three different runs,
we also participated to Task 2 with only one run.
Code and outputs are publicly available 5. In the
remainder of the paper, we first discuss some of
the resources we used, including additional pub-
licly available data we obtained (Section 2), then
describe each of our submitted system runs, includ-
ing their results on a validation set (Section 3 and
Section 4). We also present a discussion on what
we tried but did not work during system develop-
ment (Section 5). We then conclude with a quick
overview of previous works in this topic (Section 6)
and reflections on future directions (Section 7).

2 Data and Resources

All of our runs, both for Task 1 and for Task 2, are
based on supervised approaches, where data (and
features) play a major role for the final results of
a system. This section illustrates the datasets and
language resources used in the final submissions.

2.1 Resources Provided by Organizers

We have been provided with 5009 labeled German
tweets as training data. Table 1 illustrates the dis-
tribution of the classes for each of the subtask.

Class Samples
Task 1: Binary task
OFFENSE 1,688
OTHER 3,321
Task 2: Multi-class task
ABUSE 1,022
INSULT 595
PROFANITY 71
OTHER 3,321

Table 1: Class distribution in the share task training
data for Task 1 and Task 2.

We also experimented with the following re-
sources made available by the organizers:

• German word embeddings pre-trained on ei-
ther Twitter or Wikipedia data (Cieliebak et
al., 2017; Deriu et al., 2017) available from

5https://github.com/malvinanissim/
germeval-rug

SpinningBytes6. Embeddings of sizes 200,
100 and 52 dimensions are available. We used
the 52 dimension embeddings.

• A comprehensive list of offensive words
in German, obtained from the website
http://www.hyperhero.com/de/
insults.htm.

2.2 Additional Resources
Source-driven Embeddings A major focus of
our contribution is the development of offense-rich,
or highly polarized, word embedding representa-
tions. To build them, we scraped data from so-
cial media communities on Facebook pages. The
working hypothesis, grounded on previous stud-
ies on on-line communities (Pariser, 2011; Bozdag
and van den Hoven, 2015; Seargeant and Tagg,
2018), is that each on-line community represents
a different source of data, and consequently, their
user-generated contents can be used as proxies for
specialized information. We thus acquired source-
driven embeddings by extracting publicly available
comments from a set of German-language Face-
book communities that are likely to contain offen-
sive language, and induce word embeddings on
the data extracted. The idea is that the embed-
dings obtained in this manner will be more sensi-
tive to offensive language, with similarly offensive
terms being placed closer to each other in the vector
space. Table 2 shows the Facebook pages we used
(which largely relate to right-wing populist politi-
cal groups) and the respective number of comments
we extracted from each page.

Page Name Comments
AfD-Fraktion AGH 6,933
Alice Weidel 279,435
Asylflut stoppen 3,461
NPD - Die soziale heimatpartei 138,611
Total 428,440

Table 2: List of public Facebook pages from which
we obtained comments and number of extracted
comments per page.

The embeddings were randomly initialized
and generated with the word2vec skip-gram
model (Mikolov et al., 2013), using a context win-
dow of 5, and minimum frequency 1. The final
vocabulary amounts to 313,443 words. These em-
beddings, referred to as “hate embeddings” here-

6https://www.spinningbytes.com/
resources/wordembeddings/

64



after, were induced as vectors of 300 dimensions
in one setting and of 52 dimensions in another.

We also trained 52 dimensional word embed-
dings on the shared task training data, using our
52 dimension hate embeddings to initialize the pro-
cess instead of random initialization. We refer to
this further set of embeddings as “hate-oriented
embeddings”.

To summarize, we generated three sets of word
embeddings:

• 300 dimension hate embeddings based on
Facebook comments;

• 52 dimension hate embeddings based on Face-
book comments;

• 52 dimension hate-oriented embeddings, that
incorporate information from the hate embed-
dings plus the shared task training data.

Extra Training Data Given the dimension of the
training data, and especially the lower number of
“offensive” tweets, we found an additional dataset
of social media messages annotated for offensive
language and hate speech, the Political Speech
Project (Bröckling et al., 2018). The dataset is
part of a journalistic initiative to chart the quality
of on-line political discourse in the EU. Almost 40
thousands Facebook comments and tweets between
February 21 and March 21, 2018, were collected
and manually annotated by an international team
of journalists from four countries (France, Italy,
Germany, and Switzerland) for level and category
of offense. Out of a total of 9,861 utterances from
Germany, we extracted and used as extra-training
data 549 utterances that were labeled as offensive.
We will refer to this extra dataset henceforth as PSP
data.

3 Our Submissions

We detail in this section our final submissions to the
task, three of which address Task 1, binary classifi-
cation, and one Task 2, multi-class classification.

3.1 Submission 1: Binary Model with SVM
Our first submission, named
rug coarse 1.txt, contains the predic-
tions for the binary task made by an SVM model
using various linguistic features.7 The system was

7In all of our submissions we use the string XXX as the
dummy label for the task not worked on.

implemented using the Scikit-Learn Python toolkit
(Pedregosa et al., 2011).

We performed minimal pre-processing by:

• replacing all mentions/usernames with the
generic form User;

• removing the line break characters |LBR|;

• removing the hash character from all hashtags;

• removing stop words using the Python module
stop-words8

We used two groups of surface features, namely:
i.) unigrams and bigrams; and ii.) character n-
grams in the range between 3 and 7.

The resulting sparse vector representation of
each (training) sample is concatenated with its
dense vector representation. The dense vector rep-
resentation for each tweet is obtained as follows:
for every word w in a tweet t, we derived a 52 di-
mension representation, ~w, by means of a look-up
in the 52 dimension hate-oriented embeddings. We
then performed max pooling over all these word
embeddings, ~w, to obtain a 52 dimension embed-
ding representation of the full tweet,~t. Words not
covered in the hate-oriented embeddings were ig-
nored.

The classifier is a linear SVM with unbalanced
class weights. Since the training data is unbal-
anced and the class OFFENSE under-represented,
we chose to specify the SVM class weights for
OTHER and OFFENSE as 1 and 3, respectively. We
used default values for the other hyper-parameters.

3.2 Submission 2: Binary Model with CNN
Our second submission, rug coarse 2.txt, is
based on a Convolutional Neural Network (CNN)
architecture for sentence classification (Kim, 2014;
Zhang and Wallace, 2015) using Keras (Chollet
and others, 2015). The architecture of the model is
composed of the following layers:

• A word embeddings input layer using the 300
dimension hate word embeddings (see 2.2);

• A convolution layer;

• A max-pooling layer;

• A fully-connected layer;

• A sigmoid output layer.
8https://pypi.org/project/stop-words/

65



This is a simple architecture with one convo-
lutional layer built on top of a word embedding
layer. The embedding layer output corresponds to
a tensor of shape three: instances, sequence length
and embedding dimension. Later, this output is
connected to the convolution layer.

The max-pooling layer output is flattened,
concatenated, and fed to the fully-connected
layer composed of of 50 hidden-units with the
ReLU activation function. The final output layer
with the sigmoid activation function computes
the probabilistic distribution over the two la-
bels (other network hyperparameters: Number
of filters: 6; Filter sizes: 3, 5, 8;
Strides: 1; Activation function: Rec-
tifier; Padding: valid). For our model we chose
the binary cross-entropy loss function. As optimiza-
tion function we employed the Adaptive Moment
Estimation (Adam). To train our system, we set a
batch size of 64 and we ran it for 10 epochs. To
reduce risks of overfitting, we applied two dropout
values, 0.6 and 0.8 We added the first dropout layer
between the embeddings and the convolution layer,
and the second one between the max-pooling and
the fully-concatenated layer.

Finally, for this system, the original training data
was extended with the 549 PSP data labeled as
offensive, thus yielding a new class distribution as
shown in Table 3.

Class Samples
OFFENSE 2,237
OTHER 3,321
Total 5,558

Table 3: Class distribution in the training data ex-
tended with PSP

3.3 Submission 3: Binary Ensemble Model

Our third submission, named
rug coarse 3.txt, is an ensemble model that
combines the SVM and CNN models described
in Submissions 1 and 2 (Sections 3.1 and 3.2) and
a meta-classifier based on a Logistic Regressor
classifier.

Each message is composed by 2 groups of sur-
face features, namely, the length of the tweet in
terms of number of characters (tweet length), and
the number of times an offensive term from the
above-mentioned list of offensive German terms
(Section 2.1) occurs in the tweet, normalized by the
tweet’s length (offensive terms), plus the predic-

Figure 1: Feature representation of each sample fed
to the ensemble model. On top, the representation
of a training sample, on bottom, the representation
of a test sample.

tions from the Linear SVM and the CNN models.
Figure 1 graphically illustrates the representation
of each message. The top part illustrates a training
sample, while the bottom part a test sample. Such
representations are fed as features to the Logistic
Regressor, implemented using Scikit-Learn using
the default parameters.9

The predictions outputted by the SVM are in
the form of the complementary probabilities for
either of the two classes, those by the CNN are
in form of the probability of the class OFFENSE.
The predictions of the SVM and the CNN for the
5009 training samples which we need to feed to the
meta-classifier at training time were obtained via 5-
fold cross validation. At test time, each system was
trained on the full training dataset and produced
predictions for each of the test samples, which are
then fed as features to the meta-classifier.

Notice that, as described in the previous sec-
tions, the CNN was trained on a dataset which
featured the addition of the PSP data, while the
SVM did not, as this did not prove useful at de-
velopment time (see Section 5). Thus, in the case
of the CNN system, 5-fold cross validation in fact
yielded predictions for each of the 5009 training
samples, plus the 549 added samples from the PSP
data, which were then discarded when training the
meta-classifier.

3.4 Submission 4: Multi-Class with SVM
The file named rug fine 1.txt is our only sub-
mission to the fine-grained/multi-class task (Task
2), containing predictions by an SVM model. The
system and features used are identical to those
used in Submission 1 (Section 3.1), except that
the SVM class weights for the four classes OTHER,
ABUSE, INSULT and PROFANITY were set as
0.5, 3, 3 and 4, respectively. PROFANITY was

9http://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.
LogisticRegression.html

66



given the highest weight since it is a severely under-
represented class.

4 Preliminary Results

Table 4 gives an overview of the preliminary results
of our systems in terms of accuracy and macro-
F1 score. The systems’ results are also compared
against two naive baseline models based on the ma-
jority class (i.e. OTHER). All scores were obtained
by training on 80% of the 5009-sample training
data and testing on a fixed development set of 20%.

Accuracy F1 (macro)
Task 1: Binary task

Baseline 65.27 39.49
SVM binary 76.25 71.90
CNN binary 76.85 73.05

Ensemble binary 78.34 74.45
Task 2: Multi-class task

Baseline 65.27 19.75
SVM multi-class 71.66 40.75

Table 4: Results of our submitted systems and
majority-class baselines in terms of accuracy and
macro-average F1 training on 80% of the training
set provided, and testing on the remaining 20%.

5 Methods Not Adopted

When developing our system we experimented with
a series of additions and variations aimed at improv-
ing performance. Not everything worked or made
a difference either using cross-validation or ran-
domly picked development sets, but we deem it
interesting to report on such attempts in this paper.

Data Given the significant under-representation
of the classes INSULT and PROFANITY in the
multi-class setting, we experimented with upsam-
pling them by duplicating the samples from these
two classes. However, this did not yield any gains
in performance. With respect to the additional PSP
dataset, we found that unlike the CNN, the SVM
did not benefit from the addition of the 549 addi-
tional offensive samples and therefore did not adopt
this for the final submissions. Moreover, we also ex-
perimented with the extension of the training data
with all samples from the PSP dataset (9,312 neu-
tral/other, 549 offensive), instead of only adding the
549 samples annotated as offensive. However, both
the CNN and the SVM suffered from this, likely
due to the resulting inflation of the class OTHER.

Representations For the SVM we experimented
with different sets of word embeddings which
were used to obtain dense-vector representations
of full samples in the manner described in Section
3.1. The 52 dimension Twitter and Wikipedia em-
beddings from SpinningBytes performed similarly.
Furthermore, we also tried to join them by con-
catenating their representations for each word and
tested different methods of dealing with the words
that are covered by one set of embeddings only. In
one setting, we left the embeddings of these words
unchanged and used Principle Component Analysis
to reduce the dimensions of all other word vectors
back to 52. Thus, all embeddings were of 52 dimen-
sions, but those words covered by both sets of em-
beddings incorporated distributional information
from both Twitter and Wikipedia in their represen-
tations. In another setting, we obtained unreduced,
concatenated embeddings of 104 dimensions, us-
ing padding for words which only occur in either
the Twitter or the Wikipedia embeddings. Our ex-
periments showed, however, that these alternative
word embeddings performed worse than those we
used in our final submissions.

Algorithms In the ensemble system we also ex-
perimented with using another Linear SVM as the
meta-classifier. However, its performance in this
capacity was inferior to that of our final choice, i.e.
a Logistic Regressor.

6 Related Work

Several models have been presented in the litera-
ture to detect hate speech and its related concepts
(offensive language, cyberbullying and profanity
among others).

The task has been mainly addressed by means of
rule-based methods or supervised classifiers. Rule-
based methods (De Marneffe and Manning, 2008;
Mondal et al., 2017; Pelosi et al., 2017; Xu and Zhu,
2010; Su et al., 2017; Palmer et al., 2017) heav-
ily rely on lexical resources such as dictionaries,
thesauri, sentiment lexicons, as well as syntactic
patterns and POS relations.

Supervised approaches have shown to obtain
good results, although they suffer from limitations
as far as the size and domain of the training data
is concerned. Support Vector Machine and Convo-
lutional Neural Network classifiers turned out to
be efficient algorithms for this task. Simple SVM
models with word embeddings (Del Vigna et al.,
2017) and TF-IDF n-grams (Davidson et al., 2017)

67



showed competitive performances. On the other
hand, CNN architectures are initialized with word
embeddings that can be obtained “on the fly” using
the training data or from some pre-trained repre-
sentations (Badjatiya et al., 2017; Gambäck and
Sikdar, 2017; Park and Fung, 2017; Badjatiya et
al., 2017). Other classifiers widely employed in
literature are LSTMs (Del Vigna et al., 2017; Bad-
jatiya et al., 2017; Gao and Huang, 2017; Chu et al.,
2016), and Logistic Regressors (Djuric et al., 2015;
Davidson et al., 2017; Gao and Huang, 2017).

A remarkable experiment developed an ensem-
ble classifier combining the predictions of a logistic
regression model with the ones obtained with an
LSTM neural network (Gao and Huang, 2017).

7 Conclusions and Future Work

This paper reports on the RuG Team submissions to
Task 1 and 2 of the GermEval 2018 - Shared Task
on the Identification of Offensive Language. Our
team focused mainly on Task 1, a binary classifica-
tion task aiming at classifying German tweets either
as OFFENSIVE or OTHER. In the development of
our systems, we put our efforts on the development
of embedding representations that could reduce the
dependence of the models on the training data, ex-
ploiting Facebook on-line communities to generate
such data (source-based embeddings). The results
on a fixed validation set composed by 20% of the
training data have shown that the use of these “hate
embeddings” is beneficial. Of the three systems we
submitted for Task 1 (a linear SVM, a CNN, and
an ensemble model based on the SVM and CNN
predictions and extended with basic surface fea-
tures), the ensemble model obtains the best results
(macro-F1 74.45), followed by the CNN (macro-F1
73.05), and, finally, the SVM (macro-F1 71.90).

Task 2, fine-grained classification, was ad-
dressed with a simple Linear SVM, using as fea-
tures word and characters n-grams. The fine-
grained classification proved harder than the binary
one, also for the limited amount of the training data.
The system has a macro-F1 of 40.75 on the same
validation set as the binary task.

We are planning to conduct a deep error analysis
once the official scores and gold test data will be
made available, so as to have a better understanding
of the limitations of our models. Furthermore, we
also plan to extend the source-based approach to
collect polarized embeddings and to test it on other
languages as well.

Acknowledgments

The authors want to thank Angelo Basile for his
feedback in the early stages of this work. A special
thank goes to Rania Wazir for her help in obtaining
the PSP data.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate
speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, pages 759–760. International World
Wide Web Conferences Steering Committee.

Erik Bleich. 2014. Freedom of expression versus racist
hate speech: Explaining differences between high
court regulations in the usa and europe. Journal of
Ethnic and Migration Studies, 40(2):283–300.

Engin Bozdag and Jeroen van den Hoven. 2015.
Breaking the filter bubble: democracy and design.
Ethics and Information Technology, 17(4):249–265.

Marie Bröckling, Vincent Coquaz, Alexander
Fanta, Alison Langley, Mauro Munafò, Julian
Pütz, Francesca Sironi, Leo Thüer, and Ra-
nia Wazir. 2018. Political Speech Project.
https://rania.shinyapps.io/PoliticalSpeechProject/,
May.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Theodora Chu, Kylie Jue, and Max Wang.
2016. Comment abuse classification with
deep learning. Von https://web. stanford.
edu/class/cs224n/reports/2762092. pdf abgerufen.

Mark Cieliebak, Jan Milan Deriu, Dominic Egger, and
Fatih Uzdilli. 2017. A twitter corpus and bench-
mark resources for german sentiment analysis. In
5th International Workshop on Natural Language
Processing for Social Media, Boston, MA, USA,
December 11, 2017, pages 45–51. Association for
Computational Linguistics.

Thomas Davidson, Dana Warmsley, Michael Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
arXiv preprint arXiv:1703.04009.

Marie-Catherine De Marneffe and Christopher D Man-
ning. 2008. Stanford typed dependencies manual.
Technical report, Technical report, Stanford Univer-
sity.

Fabio Del Vigna, Andrea Cimino, Felice DellOrletta,
Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate me, hate me not: Hate speech detection on face-
book. In Proceedings of the First Italian Conference
on Cybersecurity (ITASEC17), Venice, Italy.

68



Jan Deriu, Aurelien Lucchi, Valeria De Luca, Aliak-
sei Severyn, Simon Müller, Mark Cieliebak, Thomas
Hofmann, and Martin Jaggi. 2017. Leveraging
large amounts of weakly supervised data for multi-
language sentiment classification. In Proceedings
of the 26th international conference on world wide
web, pages 1045–1052. International World Wide
Web Conferences Steering Committee.

Nemanja Djuric, Jing Zhou, Robin Morris, Mihajlo Gr-
bovic, Vladan Radosavljevic, and Narayan Bhamidi-
pati. 2015. Hate speech detection with comment
embeddings. In Proceedings of the 24th interna-
tional conference on world wide web, pages 29–30.
ACM.

Björn Gambäck and Utpal Kumar Sikdar. 2017. Us-
ing convolutional neural networks to classify hate-
speech. In Proceedings of the First Workshop on
Abusive Language Online, pages 85–90.

Lei Gao and Ruihong Huang. 2017. Detecting on-
line hate speech using context aware models. arXiv
preprint arXiv:1710.07395.

George Kennedy, Andrew McCollough, Edward Dixon,
Alexei Bastidas, John Ryan, Chris Loo, and Saurav
Sahay. 2017. Technology solutions to combat on-
line harassment. In Proceedings of the First Work-
shop on Abusive Language Online, pages 73–77.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Mainack Mondal, Leandro Araujo Silva, and Fabricio
Benevenuto. 2017. A measurement study of hate
speech in social media. In Proceedings of the 28th
ACM Conference on Hypertext and Social Media,
pages 85–94. ACM.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web, pages 145–153. International World Wide
Web Conferences Steering Committee.

Alexis Palmer, Melissa Robinson, and Kristy K
Phillips. 2017. Illegal is not a noun: Linguistic form
for detection of pejorative nominalizations. In Pro-
ceedings of the First Workshop on Abusive Language
Online, pages 91–100.

Eli Pariser. 2011. The filter bubble: What the Internet
is hiding from you. Penguin UK.

Ji Ho Park and Pascale Fung. 2017. One-step and two-
step classification for abusive language detection on
twitter. arXiv preprint arXiv:1706.01206.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in python. Journal of machine
learning research, 12(Oct):2825–2830.

Serena Pelosi, Alessandro Maisto, Pierluigi Vitale, and
Simonetta Vietri. 2017. Mining offensive language
on social media. In CLiC-it.

Kelly Reynolds, April Kontostathis, and Lynne Ed-
wards. 2011. Using machine learning to detect cy-
berbullying. In Machine learning and applications
and workshops (ICMLA), 2011 10th International
Conference on, volume 2, pages 241–244. IEEE.

Josef Ruppenhofer, Melanie Siegel, and Michael
Wiegand. 2018. Guidelines for IGGSA
Shared Task on the Identification of Of-
fensive Language. http://www.coli.uni-
saarland.de/ miwieg/Germeval/guidelines-iggsa-
shared.pdf, March.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media. Association for Computational Linguis-
tics, Valencia, Spain, pages 1–10.

Philip Seargeant and Caroline Tagg. 2018. Social me-
dia and the future of open debate: A user-oriented
approach to Facebook’s filter bubble conundrum.
Discourse, Context & Media.

Hui-Po Su, Zhen-Jie Huang, Hao-Tsung Chang, and
Chuan-Jie Lin. 2017. Rephrasing profanity in chi-
nese text. In Proceedings of the First Workshop on
Abusive Language Online, pages 18–24.

Ellery Wulczyn, Nithum Thain, and Lucas Dixon.
2017. Ex machina: Personal attacks seen at scale.
In Proceedings of the 26th International Conference
on World Wide Web, pages 1391–1399. International
World Wide Web Conferences Steering Committee.

Zhi Xu and Sencun Zhu. 2010. Filtering offensive lan-
guage in online communities using grammatical re-
lations. In Proceedings of the Seventh Annual Col-
laboration, Electronic Messaging, Anti-Abuse and
Spam Conference, pages 1–10.

Jun-Ming Xu, Kwang-Sung Jun, Xiaojin Zhu, and Amy
Bellmore. 2012. Learning from bullying traces in
social media. In Proceedings of the 2012 confer-
ence of the North American chapter of the associa-
tion for computational linguistics: Human language
technologies, pages 656–666. Association for Com-
putational Linguistics.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

69



Haoti Zhong, Hao Li, Anna Cinzia Squicciarini,
Sarah Michele Rajtmajer, Christopher Griffin,
David J Miller, and Cornelia Caragea. 2016.
Content-driven detection of cyberbullying on the in-
stagram social network. In IJCAI, pages 3952–
3958.

70



upInf - Offensive Language Detection in German Tweets

Bastian Birkeneder1, Jelena Mitrović2, Julia Niemeier3, Leon Teubert4, and Siegfried Handschuh5

1,2,3,4,5Department of Computer Science and Mathematics, University of Passau
5Chair of Data Science, University of St. Gallen

birkeneder | niemeier | teubert @fim.uni-passau.de
jelena.mitrovic | siegfried.handschuh @uni-passau.de

Abstract
As part of the shared task of GermEval
2018 we developed a system that is able to
detect offensive speech in German tweets.
To increase the size of the existing training
set we made an application for gathering
trending tweets in Germany. This applica-
tion also assists in manual annotation of
those tweets. The main part of the train-
ing data consists of the set provided by the
organizers of the shared task. We imple-
ment three different models. The first one
follows the n-gram approach. The second
model utilizes word vectors to create word
clusters which contributes to a new array of
features. Our last model is a composition
of a recurrent and a convolutional neural
network. We evaluate our approaches by
splitting the given data into train, validation
and test sets. The final evaluation is done
by the organizers of the task who compare
our predicted results with the unpublished
ground truth.

1 Introduction

According to Domo (2018), in June 2018, Twitter
users generated 473,400 tweets per minute. Due
to this enormous amount of data it is reasonable to
assume that many offensive micro-posts are pub-
lished on a daily basis. The goal of the shared task
of IGGSA (2018), which we participate in, is to
find and evaluate approaches for classifying those
tweets. We contribute to the coarse task which con-
sists of the binary classification problem whether
a tweet is considered offensive or not. The second
task includes a fine-grained differentiation in the
four classes: profanity, insult, abuse and other.
An important task in social media and natural lan-
guage processing is to detect offensive speech and

profanity. The concrete challenge of this assign-
ment is that most papers discuss this topic for En-
glish language and regard semantic and syntactic
differences of other languages. In addition, only
a limited amount of data is publicly available for
examples in German. In this paper we try to over-
come this impediment by extracting trending Ger-
man tweets over a time period of three months. We
annotated part of this data and combined these with
the provided training data of the shared task to train
our three models. Our collected data is publicly
available in our GitHub repository1.
Our paper is divided as follows. First we give a
short overview of work done in the field of offen-
sive language detection as well as the analysis of
German tweets. The next section describes the
data we have used and acquired. In section 4, we
describe our three approaches and evaluate their
performance in section 5. Lastly, we conclude our
results and describe possible future work in this
field of research.

2 Related Work

Nobata et al. (2016) describe an approach to detect
abusive language in English comments of ‘Yahoo!
Finance and News’. They combine lexical features
like n-gram, as well as linguistic and syntactic fea-
tures with distributional semantics and evaluate
their data using four datasets. The resulting f1-
score on the Yahoo comments totals 83.6%. To
compare the approach to other models they also
predicted on the ‘WWW2015’ dataset were they
reached an f1-score of 78.3%.
In Razavi et al. (2010), two data sets are used: log
files of the ‘Natural Semantic Module’ that contain
questions of users and ‘Usenet newsgroup’ mes-
sages that have already been annotated. The two

1https://github.com/upInf/germeval2018

71



data sets are combined to get short sentences with
abusive language as well as long sentences with
sarcasm and irony. They used a three-level classi-
fication system and created a dictionary of flame
patterns containing weights from one to five. In
the first level, they selected the most discriminative
features using a Complement Naive Bayes clas-
sifier. The result of this phase was subsequently
analyzed using a Multinomial Updateable Naive
Bayes classifier. The last step utilizes the Deci-
sionTable/Naive Bayes hybrid classifier. Their com-
posite system reached an accuracy of 96.72% on
the test set.
Chen et al. (2012) introduced a framework called
‘Lexical Syntactic Feature’ that combines the offen-
siveness rating of a word and its context. The offen-
siveness rating is determined by two lexicons. The
context is derived by parsing sentences into depen-
dency sets. To get a rating for the whole sentence,
these features are combined linearly. This approach
is compared to standard text mining approaches
like n-grams, bag-of-words and an appraisal ap-
proach using YouTube comments. They conclude
that their self-defined framework performs better
than the compared baseline approaches.
Xiang et al. (2012) describe a method to detect of-
fensive English tweets using topical features. Due
to the colloquial fashion of tweets, they apply a self
designed preprocessing algorithm. To annotate a
topic for each tweet, they create a bootstrapping
algorithm. The classification is done with the La-
tent Dirichlet Allocation described in Blei, Ng, and
Jordan (2003). In addition, they use a keyword
matching technique assigning a binary indicator
whether at least one word is offensive.
Ross et al. (2017) propose a method for annotating
German tweets concerning the European refugee
crisis. They aim to measure the reliability of given
ratings and observe a very low agreement. Tweets
were processed by three pairs of annotators. The
data set is divided into six equal parts, so the pairs
could be rotated after each step. The first annotator
is asked to decide whether the tweet is offensive or
not. The second one additionally provides a rating
on a 6-point Likert scale from one (not offensive
at all) to six (very offensive). They conclude that
offensive language detection should be considered
a regression problem rather than a binary classifi-
cation.
In the work of Davidson et al. (2017) an approach
to classifying English text into three different cate-

gories is presented. They distinguish between hate
speech, offensiveness and other texts. Based on a
hate speech lexicon generated from user ratings, a
Twitter corpus of 25,000 tweets has been compiled
and manually labeled. Zhou, Sun, Liu, and F. C. M.
Lau (2015) proposed a combination of a recurrent
and a convolutional neural network for sentence
representation and text classification. The convo-
lutional layer extracts n-gram features that are fed
forward towards a Long Short-Term Memory to
capture long term dependencies. For evaluation
they used the Stanford Sentiment Treebank to clas-
sify movie reviews. In the binary classification task
they accomplished an accuracy of 87.8% and for
the fine-grained five-class classification 49.2%.

3 Corpus

Our training corpus is composed of different
sources.

3.1 Data Acquisition
The initial training data is provided by the organiz-
ers of the shared task. We initially started with a
set of approximately 5,000 German tweets labeled
either offensive or other. In order to increase the
size of our training data, we acquired additional
tweets and labeled them manually.
Compiling our own data set has several advantages.
Having a broader spectrum of learning data could
lead to improved results and finer tuned models.
As stated by Ross et al. (2017), the agreement on
whether a tweet is perceived as offensive or not
can depend on personal opinions. Additionally, the
empirical analysis of the agreement between two or
more annotators can be used to evaluate the validity
of the trained model. A data set labeled by only
one person may tend to reflect their personal mind-
set, since for example tweets can be ambiguous or
opinions can diverge.

Gathering tweets More than 750,000 tweets
were gathered during a time interval of three
months, to collect a large enough spectrum of cur-
rent trends and topics. Therefore, tweets of the
top 50 German Twitter trends were fetched every
15 minutes, amounting to an average of 11,000
tweets per day. The data was stored in a mysql
database. Duplicates are avoided by a unique index
constraint on the text column. In contrast to the
training data we anonymized usernames. There-
fore, any occurence of a tagged username is re-
placed by @name. All hyperlinks in posts were

72



Figure 1: Distribution of offensive tweets per data set

shortened to http://. Hence it is recognizable that
a link is posted, but the content of the link is not
evaluated.

Annotating tweets A supplementary goal is to
calculate the agreement between multiple annota-
tors as illustrated by Ross et al. (2017). Therefore, a
database relation for multiple ratings was installed.
To assign values of offensiveness to the tweets
stored in the database, an annotation client was de-
veloped. This software can be used in two different
modes: the first one is used to annotate new tweets
and hereby extend the Twitter corpus. As at least
two annotations for one tweet are needed to calcu-
late an agreement score, the second mode of the
program displays tweets that have already been an-
notated by exactly one person. In total, about 4,000
tweets were annotated containing about 1,000 of-
fensive tweets.

3.2 Data Composition

In the following sections three different data sets
are used:

GermEval Training Tweets
This data set was provided by the organizers
of the shared task. It contains about 5,000
tweets that are divided into offensive and non
offensive. Subsequently, this data set is abbre-
viated by GETT.

Self-labeled Tweets
The data collected using the procedure as de-
scribed in section 3.1 Data Acquisition was
combined with GETT. A tweet is marked as
offensive if at least one annotator labeled it
that way. We refer to this data set in the fol-
lowing by SLT

Tweets by Davidson
For comparison we used the tweets provided
by Davidson et al. (2017) 2. These are about

25,000 English tweets divided in 19,200 offen-
sive, 1,500 hatespeech and 4,200 other tweets.
For our binary classification task, we merged
the classes offensive and hatespeech into one
class. This set is from now on abbreviated as
TD.

Our data sets were split into training (80%), valida-
tion (10%), and test (10%) set respectively.
Figure 1 shows the arrangement of offensive vs.
non-offensive tweets. In both training sets, the
amount of non-offensive tweets exceeds the offen-
sive ones. Caused by this imbalanced distribution,
the accuracy measure would be ambiguous, so we
choose the harmonic mean of precision and recall,
known as f1-score.

4 System

We implemented three different models. Therefore,
we use the modules NLTK from Loper and Bird
(2002), scikit-learn from Pedregosa et al. (2011),
Keras from Chollet et al. (2015) and Gensim from
Řehůřek and Sojka (2010).

4.1 N-gram Model

We choose the n-gram model as our baseline ap-
proach, because this basic approach is able to reach
good results in text classification tasks. This en-
ables us to evaluate the performance of our other
models.
We start by tokenizing and stemming all words in a
tweet. Furthermore, we remove the # sign from all
hashtags, because these hashtags used in the con-
text of a sentence can often be replaced by the topic-
keyword alone, for example “Schon merkwürdig,
dass #Oezil von der Politik des #Erdogan-Fotos

2https://github.com/t-davidson/
hate-speech-and-offensive-language

73



Figure 2: 30 word clusters with k-means

nichts wissen will [...]”. In the next step, we re-
move all usernames and hyperlinks.
We use the TF-IDF-Vectorizer from sklearn to
retrieve our word counts weighted by the term
frequency-inverse document frequency of all uni-,
bi- and trigrams.
For this model we compare several classifiers, a
Support Vector Machine (SVM), Naive Bayes clas-
sifier, and a Decision Tree. We implement these
models with sklearn, namely the classes SGDClas-
sifier, BernoulliNB, DecisionTreeClassifier. Our
SVM reaches the highest f1-score. We conduct a
grid search on the validation set to fine tune our
hyper-parameters and obtain the best estimator.
The submission file is named upInf coarse 1.txt.

4.2 Word Clustering

Mikolov et al. (2013) proposed a vector space
model for word embeddings, such that words that
share a similar context in a corpus have related
vectors. Our second approach tries to use the
advantage of these word vectors for binary clas-
sification of tweets. To create those vectors, a
word2vec model based on the SLT vocabulary has
been trained. Since the TD data set is in English, we
acquired an additional corpus of 1.6 million tweets
provided by Go, Bhayani, and Huang (2009) to
train an English word2vec embedding. Best results
were observed without stemming and stop word
removal. We choose a 100-dimensional vector and
a window size of five tokens. Training the model

with 100 epochs turned out to be sufficient.
The goal of this approach is to add some seman-
tic context to the model. The word vectors were
clustered with a k-means algorithm. Baker and Mc-
Callum (1998) state that the clustering of words
can provide several advantages. First of all, it can
generate semantic word groups. Furthermore, clus-
tering can lead to higher classification accuracy.
One drawback of n-gram models is the curse of di-
mensionality. The semantic word clustering offers
a highly reduced dimensional representation.
A sample implementation has been done by Duarte
(2018). After a parameter search, we set the num-
ber of clusters to 1,000. After the computation
of our clusters, every word is related to a nearest
centroid. Thus a 1,000 dimensional vector for ev-
ery sentence can be determined. Every dimension
represents the accumulated count of words in the
cluster for one tweet. To increase the feature spec-
trum, a standard TF-IDF vector is attached. After-
wards, we reduce the dimensionality by applying a
SelectFromModel feature selection. Subsequently,
several classifiers are tested with cross-validation
and are evaluated against our test sets. The best
results are reached by the Naive Bayes classifier.
In figure 2 a visualization of this approach is pre-
sented. It shows a simple 2D representation of the
50,000 most frequent words of our own Twitter
corpus.
The prediction results can be found in up-
Inf coarse 2.txt.

74



4.3 C-LSTM

One of the main disadvantages of bag-of-words
models is the information loss regarding the word
order. Neural network models have shown to
perform remarkable results in language modeling
tasks. Recurrent neural networks (RNN) are partic-
ularly well-suited to model word sequences, since
they are able to capture long-term dependencies
as described by Sundermeyer, Schlüter, and Ney
(2012). Hochreiter and Schmidhuber (1997) devel-
oped long short-term memory (LSTM) networks
to overcome the vanishing and exploding gradient
problem of RNN.
Convolutional neural networks (CNN), first de-
scribed by Krizhevsky, Sutskever, and Hinton
(2012), are another class of neural networks and
generally used for object recognition and image
classification. CNN can be utilized for sentence
modeling by extracting n-gram features through
convolutional filters. Similar to RNN, CNN can
learn short and long-range relations through pool-
ing operations.
Zhou, Sun, Liu, and F. Lau (2015) suggest a unified
model of CNN and LSTM, called C-LSTM for sen-
tence representation and text classification, where
the CNN is used to extract n-gram features, which
are fed towards an LSTM to capture the sentence
semantics.
This model is the foundation of our third approach.
The C-LSTM is implemented with keras using the
tensorflow backend. Preprocessing is performed
similar to the other implemented models, except we
skip stemming and split hashtags into two tokens,
the actual hashtag sign (#) and the following key-
word. We used our own generated 100-dimensional
Word2Vec model to initialize the embedding layer,
but limit our vocabulary size to the 20,000 most
frequent tokens. Unknown words are initialized
using a random word embedding with values from
the uniform distribution [-0.25, 0.25]. The word
vectors are then fine-tuned during the training of
our model. To fix the input length, each sentence
with a length less than 30 tokens is padded with the
representation of an empty string. Sentences which
exceed this limit are cut off at the end.
The convolution layer of our model consists of
five concatenated one-dimensional convolution lay-
ers. Each layer encloses a filter vector of different
length, sliding over the embedding vectors of a to-
ken sequence. The length n of these vectors range
between one to five tokens and allows the detection

of n-gram features. ReLu is chosen as the nonlin-
ear activation function. The generated feature maps
are then concatenated and fed forward towards the
LSTM layer.
The LSTM, which is used in this layer, uses the
standard architecture, first described by Hochreiter
and Schmidhuber (1997). The memory dimension
of the LSTM layer is set to 100.
As a consequence of the binary classification task,
our output layer consists of a single neuron and we
choose the sigmoid function as activation function.
A value greater or equal than 0.5 indicates the label
‘OFFENSE’, whereas a lower value indicates the
label ‘OTHER’. Furthermore, we implement two
dropout layers with a dropout rate of 0.3 for regular-
ization and to prevent over-fitting. These layers are
applied respectively before the convolution layer
and after the LSTM layer.
Stochastic gradient descent (SGD) with the op-
timizer Adam, as described by Kingma and Ba
(2014), is used to update the model parameters.
Cross-entropy loss is chosen to measure the perfor-
mance of our model.
A model description can be found in figure 4 in the
appendix.
The results of this approach are submitted as up-
Inf coarse 3.txt.

5 Results

Our systems are named according to section 4.
The final results on our test sets are displayed in
figure 3.

5.1 Agreement

As mentioned in section 3.1, about 700 of our
tweets were annotated by at least two annotators
so we are able to calculate an agreement score.
Since we want to compare our results with Ross
et al. (2017), we calculate the Krippendorff
α (Krippendorff, 2004). “This] is a reliability
coefficient developed to measure the agreement
among observers, coders, judges, raters [...]”
(Krippendorff, 2008). Our annotations show a
total agreement accuracy of 84% and a Krippen-
dorff α of 78%. In contrast, Ross et al. (2017)
reach an α of 38% at the annotations of the experts.

75



Figure 3: Results of different systems per data set

5.2 N-gram Model

By tuning our n-gram model we are able to achieve
an accuracy of 77.84% at an f1-score of 63.49%
with the SGDClassifier on the GETT data set. For
the SLT data set, this model performs worse with
the SGDClassifier and just reaches 59.69% f1-
score and an accuracy of 67.73%. For the TD
data set, the best prediction was achieved using
the AdaBoostClassifier with a Decision Tree as
base estimator. The f1-score reaches 96.89% and
the accuracy 94.91%.

5.3 Word Clustering

A final f1-score of 65.55% with an accuracy of
75.44% can be reached with a BernoulliNB on the
GETT data set. As in the first approach the system
performs worse on the SLT data set, where an f1-
score using the Naive Bayes classifier of 61.94%
is accomplished. A prediction f1-score of 97.11%
with the AdaBoostClassifier is the optimal result
that can be achieved on the TD data set.

5.4 C-LSTM

The C-LSTM achieves an accuracy of 74.85% and
an f1-score of 56.25% on the GETT data set. On
the SLT data set, this model reaches an accuracy
of 74.83% and an f1-score of 60.14%. Similar to
our other models, the C-LSTM performs well on
the TD data set with an accuracy of 95.00% and an
f1-score of 96.99%.

6 Discussion

Agreement Our high Krippendorff α can be ex-
plained with our search queries. We tried to avoid
specific keywords, which could by itself indicate
profanity or offensive language. Despite our effort

to search for controversial topics, the majority of
tweets can be considered as objectively not offen-
sive. Nevertheless, we can agree with the observa-
tion of Ross et al. (2017) that a binary classification
for offensiveness is a difficult and subjective task.

Classification Task All of our models perform
similarly and produce comparable results. For the
GETT data set, the n-gram model achieved the best
scores. It has become evident that our initial goal to
improve the classification accuracy by increasing
the size of our training set could not be reached.
The first reason for this could be the differing an-
notations caused by the missing ground truth in the
nature of this task. The offensiveness of a tweet is a
subjective measure that is difficult to quantify. We
tried to annotate according to the provided guide-
lines, but still observed inconsistencies. Another
explanation could be certain characteristics of the
German language especially composite words in
which words are combined to generate new ones.
In our models, a unique word in a vocabulary is
embedded by one specific token. Hence certain
composite words which could be considered as
offensive, like for example “Hurensohnbande”, oc-
cur less frequently in our training data and therefore
affect our results.
Furthermore, it can be difficult to grasp the full con-
text of a random tweet. Tweets are often responses
or comments on other tweets. With only fragments
of a conversation, the true intention of the author is
difficult to determine.

7 Conclusion

Using more than 700,000 tweets crawled from the
top 50 Twitter trends for over three months and
combining them with the training set of GermEval

76



2018, three different models were trained to de-
tect offensive speech. Regarding the labeling of
our own Twitter corpus, we observe an agreement
score of 77.5% measured using Krippendorff α .
The baseline classification approach consists off
an n-gram model using Tfidf-Vectorization and an
SVM. Subsequently, we combined this approach
with a K-Means Word Clustering of a self-trained
word2vec model. The third system was designed
using a C-LSTM.
On the GETT data set, these models reach an f1-
score between 55% and 65%. Most models could
not be improved by extending the data set. The
effectiveness of the classifier is likely to depend on
the quality of annotations and due to the subjec-
tive nature of this task, it is difficult to maintain a
consistent set of training data.

8 Future Work

An issue concerning tweet data is the lack of con-
text. Most tweets refer to external resources like
articles, images or videos. This information is not
available to the classifiers. Tweet meta data like
whether the tweet is a response to another tweet
or if the user was offensive before could represent
useful context and affect the decision-making pro-
cess. Therefore, including this type of information
in the training data could be useful.
Another improvement of our models, which is sug-
gested by Davidson et al. (2017), might be to in-
clude part-of-speech (POS) tagging. Since no suf-
ficient POS-tagger is applicable for German lan-
guage, it is recommended to train a separate classi-
fier. A possible implementation was published by
Konrad (2016).

References

Baker, L. Douglas and Andrew Kachites McCallum
(1998). “Distributional Clustering of Words for
Text Classification”. In: Proceedings of the 21st
Annual International ACM SIGIR Conference on
Research and Development in Information Re-
trieval. SIGIR ’98. Melbourne, Australia: ACM,
pp. 96–103. ISBN: 1-58113-015-5.

Blei, David M., Andrew Y. Ng, and Michael I. Jor-
dan (2003). “Latent Dirichlet Allocation”. In: J.
Mach. Learn. Res. 3, pp. 993–1022. ISSN: 1532-
4435.

Chen, Ying et al. (2012). “Detecting Offensive
Language in Social Media to Protect Adoles-
cent Online Safety”. In: Proceedings of the 2012

ASE/IEEE International Conference on Social
Computing and 2012 ASE/IEEE International
Conference on Privacy, Security, Risk and Trust.
SOCIALCOM-PASSAT ’12. Washington, DC,
USA: IEEE Computer Society, pp. 71–80. ISBN:
978-0-7695-4848-7.

Chollet, François et al. (2015). Keras. https://
keras.io.

Davidson, Thomas et al. (2017). “Automated Hate
Speech Detection and the Problem of Offensive
Language”. In: Proceedings of the 11th Inter-
national AAAI Conference on Web and Social
Media. ICWSM ’17. Montreal, Canada, pp. 512–
515.

Domo, Inc. (2018). Data Never Sleeps 6.0. https:
//www.domo.com/learn/data-never-
sleeps-6. Accessed 29 Jul 2018.

Duarte, Pedro Arthur (2018). Sentiment Analysis
of IMDB Reviews. https://www.kaggle.
com / pedroarthur / sentiment -
analysis - of - imdb - reviews /
notebook. Accessed 30 Jul 2018.

Go, Alec, Richa Bhayani, and Lei Huang (2009).
“Twitter Sentiment Classification using Distant
Supervision”. In: Processing, pp. 1–6.

Hochreiter, Sepp and Jürgen Schmidhuber (1997).
“Long short-term memory”. In: Neural computa-
tion 9.8, pp. 1735–1780.

IGGSA, Interest Group on German Sentiment Anal-
ysis (2018). Germeval Task 2018. https://
projects.fzai.h-da.de/iggsa/. Ac-
cessed 29 Jul 2018.

Kingma, Diederik P and Jimmy Ba (2014). “Adam:
A method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980.

Konrad, Markus (2016). Accurate Part-of-Speech
Tagging of German Texts with NLTK. https:
//datascience.blog.wzb.eu/2016/
07/13/accurate-part-of-speech-
tagging - of - german - texts - with -
nltk/. Accessed 03 Aug 2018.

Krippendorff, Klaus (2004). “Reliability in Content
Analysis: Some Common Misconceptions and
Recommendations”. In: Human Communication
Research 30.3, pp. 411–433.

– (2008). “Computing Krippendorff’s Alpha-
Reliability”.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey
E Hinton (2012). “Imagenet classification with
deep convolutional neural networks”. In: Ad-

77



vances in neural information processing systems,
pp. 1097–1105.

Loper, Edward and Steven Bird (2002). “NLTK:
The Natural Language Toolkit”. In: Proceedings
of the ACL-02 Workshop on Effective Tools and
Methodologies for Teaching Natural Language
Processing and Computational Linguistics - Vol-
ume 1. ETMTNLP ’02. Philadelphia, Pennsylva-
nia: Association for Computational Linguistics,
pp. 63–70.

Mikolov, Tomas et al. (2013). “Distributed repre-
sentations of words and phrases and their compo-
sitionality”. In: Advances in neural information
processing systems, pp. 3111–3119.

Nobata, Chikashi et al. (2016). “Abusive Language
Detection in Online User Content”. In: Proceed-
ings of the 25th International Conference on
World Wide Web. WWW ’16. Montr&#233;al,
Qu&#233;bec, Canada: International World
Wide Web Conferences Steering Committee,
pp. 145–153. ISBN: 978-1-4503-4143-1.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine
Learning in Python”. In: Journal of Machine
Learning Research 12, pp. 2825–2830.

Razavi, Amir H. et al. (2010). “Offensive Language
Detection Using Multi-level Classification”. In:
Advances in Artificial Intelligence. Ed. by Atefeh
Farzindar and Vlado Kešelj. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp. 16–27. ISBN:
978-3-642-13059-5.

Řehůřek, Radim and Petr Sojka (2010). “Software
Framework for Topic Modelling with Large Cor-
pora”. English. In: Proceedings of the LREC
2010 Workshop on New Challenges for NLP
Frameworks. http : / / is . muni . cz /
publication/884893/en. Valletta, Malta:
ELRA, pp. 45–50.

Ross, Björn et al. (2017). “Measuring the Relia-
bility of Hate Speech Annotations: The Case
of the European Refugee Crisis”. In: CoRR
abs/1701.08118.

Sundermeyer, Martin, Ralf Schlüter, and Hermann
Ney (2012). “LSTM neural networks for lan-
guage modeling”. In: Thirteenth annual confer-
ence of the international speech communication
association.

Xiang, Guang et al. (2012). “Detecting Offensive
Tweets via Topical Feature Discovery over a
Large Scale Twitter Corpus”. In: Proceedings
of the 21st ACM International Conference on In-
formation and Knowledge Management. CIKM

’12. Maui, Hawaii, USA: ACM, pp. 1980–1984.
ISBN: 978-1-4503-1156-4.

Zhou, Chunting, Chonglin Sun, Zhiyuan Liu, and
Francis Lau (2015). “A C-LSTM neural net-
work for text classification”. In: arXiv preprint
arXiv:1511.08630.

Zhou, Chunting, Chonglin Sun, Zhiyuan Liu, and
Francis C. M. Lau (2015). “A C-LSTM Neu-
ral Network for Text Classification”. In: CoRR
abs/1511.08630.

78



A C-LSTM Architecture

Fi
gu

re
4:

C
-L

ST
M

A
rc

hi
te

ct
ur

e

79



InriaFBK at Germeval 2018: Identifying Offensive Tweets Using
Recurrent Neural Networks

Michele Corazza†, Stefano Menini‡, Pinar Arslan†, Rachele Sprugnoli‡
Elena Cabrio†, Sara Tonelli‡, Serena Villata†

†Université Côte d’Azur, CNRS, Inria, I3S, France
‡Fondazione Bruno Kessler, Trento, Italy

{michele.corazza,pinar.arslan}@inria.fr
{menini,sprugnoli,satonelli}@fbk.eu
{elena.cabrio,serena.villata}@unice.fr

Abstract

In this paper, we describe two systems
for predicting message-level offensive lan-
guage in German tweets: one discrim-
inates between offensive and not offen-
sive messages, and the second performs
a fine-grained classification by recognizing
also classes of offense. Both systems are
based on the same approach, which builds
upon Recurrent Neural Networks used with
the following features: word embeddings,
emoji embeddings and social-network spe-
cific features. The model is able to combine
word-level information and tweet-level in-
formation in order to perform the classifi-
cation tasks.

1 Introduction

The widespread use of social media platforms such
as Twitter and Facebook yields a huge number of in-
teractions on the Web. Unfortunately, social media
messages are often written to attack specific groups
of users based on their religion, ethnicity or social
status, and they can be particularly threatening to
vulnerable users such as teenagers.

Due to the massive rise of hateful, abusive, offen-
sive messages, social media platforms such as Twit-
ter and Facebook have been searching for solutions
to tackle hate speech (Lomas, 2016). As a conse-
quence, the amount of research targeting the detec-
tion of hate speech, abusive language and cyberbul-
lying also shows an increase (Waseem et al., 2017).
Various (predominantly supervised) classifiers have
been used for hate speech detection (Greevy and
Smeaton, 2004; Warner and Hirschberg, 2012). In
recent research, deep learning approaches with Re-
current Neural Networks were also used (Mehdad
and Tetreault, 2016).

In this paper, we build our model on Recurrent
Neural Networks (RNN) for both binary and fine-

grained classification tasks. We combine recur-
rent layers with feed-forward layers so that we
can combine word embeddings with other features,
i.e., emoji embeddings and social network-specific
features. We also apply some specific dropout tech-
niques not only to recurrent layers but also to feed-
forward layers, aimed at reducing the variance of
our model.

2 Data

Within the Germeval evaluation, two different tasks
were proposed: one for the detection of offensive
messages, and the other for a fine-grained classi-
fication in four classes, namely Profanity, Insult,
Abuse and Other. For both Task I (binary classifi-
cation) and Task II (fine-grained classification), we
used the data provided by the Germeval organizers.
It consists of 5,009 German tweets from Twitter
with a manual annotation at the message level.

Task I - Binary classification: The two labels
are ‘offensive’ and ‘other’. The latter was re-
served for tweets which were not offensive. The
binary classification task involved 1,688 messages
with ‘offensive’ label and 3,321 messages with the
‘other’ label.

Task II - Fine-grained classification: The four
classes annotated are ‘profanity’, ‘insult’, ‘abuse’
and ‘other’. In the corpus, there are 595 messages
for ‘insult’, 71 for ‘profanity’, 1,022 for ‘abuse’,
and 3,321 messages for ‘other’.

3 System Description

Given that the amount of training data is enough
to adopt a supervised approach, we select the best
classifier by using a grid-search approach over dif-
ferent machine learning models, such as Neural
Networks (NN), Support Vector Machines (SVM)
and Logistic Regression (LR). Both ngram-based
models and recurrent models using embeddings

80



were tested, but we will describe in detail only the
model performing best on our validation set, using
Recurrent Neural Networks.

In order to evaluate our system, the training set
was split in three parts: 60% was used for training,
while the remaining 40% was split in half to create
a validation and a test set. This was achieved by
using the train test split function of scikit-
learn. In order to be able to compare the results
of the experiments, a seed value of 42 was used as
input to that function.

3.1 Pre-processing

One of the challenges that arise from working on
social media interactions derives from the specific
language used in posts, including misspelled words,
neologisms and jargon. As a consequence, most
standard models built for news are unsuitable for
tweets. In order to extract as much information as
possible from such interactions and use them for
classification, some pre-processing steps are neces-
sary. The simplest ones involve the normalization
of URLs and ‘@’ mentions, which we performed
using simple regular expressions that replace URLs
with the string ‘URL’ and mentions with the string
‘username’.

Another aspect that is typical of social media
interactions is the presence of hashtags, that some-
times convey a semantic content in a concise way.
It is therefore important to normalize them by split-
ting them in a sequence of meaningful terms, as
some of them are composed of multiple words that
would not be recognized as such if they are not
tokenized correctly. To this purpose, we propose
an extension of the tokenizer presented by Bazio-
tis et al. (2017), which is tailored to social media
messages but is available only for English.

Once a hashtag composed by two or more con-
catenated words (e.g., #StandwithBoris) is found
in a post, the algorithm uses n-grams (both uni-
grams and bigrams) to obtain word probabilities
and identify the most likely way to split the input
string (e.g., ‘Stand with Boris’). In order to adapt
it to German, we use as n-gram model all German
Google n-grams starting from year 2000. We avoid
older n-grams considering them less representative
of the current language.

3.2 Feature description

In order to identify offensive language, a small
set of features was used, that are derived from the

textual information included in the tweets. The
features we used are the following:

• Word Embeddings: we use German fastText
word embeddings (Bojanowski et al., 2016)1,
pre-trained on Wikipedia.

• Emoji Embeddings: the German fastText
embeddings were extracted from Wikipedia,
where there are basically no emojis. How-
ever, emojis are very frequent in social media
data, and are often used to conveyed emo-
tions and feelings associated with offenses
or ironic messages. Therefore, we needed to
add this information for classification, which
we perform in two steps: first, we download
the embeddings trained on 10 millions En-
glish tweets containing also a representation
for emojis (Barbieri et al., 2016). We use this
corpus because no equivalent dataset of this
size is available for German, Then, we fol-
low the approach by Smith et al. (2017) to
align the English vector space containing the
emojis with the German one, using a bilingual
dictionary.

• Social-network specific features: a collec-
tion of features that capture some aspects of
social media interactions is considered. They
include the number of hashtags and men-
tions, the number of exclamation and question
marks, the number of emojis, the number of
words that are written in uppercase.

3.3 The Recurrent Neural Network model

In order to tackle the complexity of offensive mes-
sages in social media, we believe that recurrent
neural networks are a useful tool, as they have an
advantage over the classic feed-forward models:
they consider the data they process in order and
they remember the whole sequence of inputs. In
the context of Natural Language Processing, this al-
lows the network to remember the whole sequence
of words or characters provided as input in the
order in which they appear.

The models were implemented using Keras
(Chollet and others, 2015), a Python library for
deep-learning that makes it easy to prototype differ-
ent models without re-writing the core layers that
are needed. Our models combine both recurrent
layers and feed-forward layers, to combine word

1https://github.com/facebookresearch/fastText

81



embeddings (that have a variable length and encode
each tweet as a sequence) and tweet-level features
such as the number of emojis. To achieve that, we
adopt an asymmetric topology for the model. First,
a recurrent layer is used to process the word em-
bedding sequences. The output that the recurrent
layer produces at the last timestep is then concate-
nated with the other features and passed through
a variable number of hidden feed-forward layers
that use the Rectified Linear Unit (ReLU) as their
activation function.

The output layer of the network varies depend-
ing on the task. We use a sigmoid-activated single
neuron for the coarse classification task, while we
use 4 neurons with a softmax activation function
for the fine-grained classification. For binary clas-
sification, the binary cross-entropy function from
Keras is used, while categorical cross-entropy is
used for the multiclass version of the model.

In order to reduce the variance of the model, dif-
ferent techniques were tested, in particular we have
used various dropout techniques and batch normal-
ization. Specifically, three different dropout meth-
ods have been used: a simple dropout layer (Srivas-
tava et al., 2014) is applied to the output of the feed-
forward layers. Furthermore, to increase the noise
of the input for the recurrent layer, a dropout on the
embeddings input is applied (Gal and Ghahramani,
2016). This technique operates by dropping a sin-
gle embedding at a time, instead of dropping only
part of each embedding. This is motivated by the
fact that for the embeddings input, the whole vector
is important and therefore dropping part of each
embedding would cause some loss of information.
In addition to these techniques, dropout is also ap-
plied to the recurrent layer of the model, using the
approach proposed by Gal and Ghahramani (2016).

As for batch normalization (Ioffe and Szegedy,
2015), from experimental results it was clear that
applying it directly to the output of a recurrent layer
introduces too much noise and results in worse per-
formance. We therefore apply batch normalization
only to the output of the hidden feed-forward lay-
ers.

While evaluating the model’s hyperparameters,
both a Long Short Term Memory (LSTM) (Gers
et al., 1999) layer and a Gated Recurrent Unit
(GRU) (Cho et al., 2014) layer were tested. The
latter is very similar in nature to an LSTM, but it
has the advantage of using a smaller number of
weights, reducing overfitting on the training data.

Details on which configuration was chosen for each
task and the submitted runs are reported below.

3.4 System description - Task 1

For the coarse classification task, the aforemen-
tioned architecture was used. We performed a grid
search to select the best performing parameters on
the validation set. We selected among two different
sets of models, one with two feed-forward layers
and one with one feed-forward layer.

The first submitted run
(InriaFBK coarse 1) is the best perform-
ing one among the models with two hidden
feed-forward layers. We used no dropout on the
embeddings and no dropout on the feed-forward
layers, while the recurrent dropout is set to 0.2.
No batch normalization was applied, and a GRU
layer was used as the recurrent layer. The two
feed-forward layers have 500 neurons each, while
the recurrent layer has size 300.

The second submitted run
(InriaFBK coarse 2) is the best perform-
ing one among the models with one hidden
feed-forward layer. We used no dropout on the
embeddings, a dropout layer on the output of the
hidden layer (dropout value of 0.5), thr recurrent
dropout was set to 0.2. Batch normalization was
used. The recurrent layer is a GRU of size 300,
while the hidden layer has size 200.

The third submitted run
(InriaFBK coarse 3) is derived from
the parameters of the first run, but we reduced the
size of both the hidden and the feed-forward layers.
The dropouts, batch normalization, recurrent layer
type are therefore the same as in the first run. while
the two hidden feed-forward layers have size 200.
The recurrent layer has size 100.

3.5 System description - Task 2

For the fine-grained classification task, an approach
similar to the first task was used. Grid search was
performed over two different sets of models, with
one and two feed-forward layers, respectively.

The first submitted run (InriaFBK fine 1)
is the best performing one among the models with
two hidden feed-forward layers. It uses no batch
normalization and no recurrent dropout. Dropout
was applied on the output of the feed-forward layer,
with value 0.2. The size of the hidden layer is 500,
and the recurrent layer has size 300. We use a GRU
as the recurrent layer.

82



The second submitted run
(InriaFBK fine 2) is the best perform-
ing one among the models with one hidden
feed-forward layer and batch normalization. It
uses recurrent dropout with value 0.2. Dropout
was applied on the output of the feed-forward
layers with value 0.5. The size of the hidden layer
is 500, and the recurrent layer has size 300. We
use a GRU as the recurrent layer.

The third submitted run (InriaFBK fine 3)
is the best performing one among the models with
one hidden feed-forward layer but no batch nor-
malization. It uses recurrent dropout with value
0.2. Dropout was applied on the output of the
feed-forward layer, with value 0.5. The size of the
hidden layer is 500, the recurrent layer has size 300.
We use a GRU as the recurrent layer.

The system developed for the two tasks is avail-
able at https://gitlab.com/ashmikuz/
creep-cyberbullying-classifier.

4 Evaluation

We report in this Section the preliminary results on
the test set, using the splits described in Section 3.

4.1 Preliminary Results - Task 1

Results on Task 1 show that there are only slight
differences among the three runs submitted for the
task. The configuration coarse 1 achieves the best
performance on the ‘Offensive’ class, while on the
‘Other’ class coarse 2 it yields a slightly better
improvement. Overall, it seems that coarse 1 is
less sensitive to the imbalance of the two classes,
since it can classify better the offensive tweets with
less training instances.

Category P R F1 Support
Offensive 0.65 0.72 0.68 333

Other 0.85 0.80 0.83 669
Macro AVG 0.75 0.76 0.75 1002
Micro AVG 0.78 0.78 0.78 1002

Table 1: Results for InriaFBK coarse 1

Category P R F1 Support
Offensive 0.70 0.62 0.65 333

Other 0.82 0.87 0.84 669
Macro AVG 0.76 0.74 0.75 1002
Micro AVG 0.78 0.78 0.78 1002

Table 2: Results for InriaFBK coarse 2

Category P R F1 Support
Offensive 0.67 0.64 0.65 333

Other 0.83 0.84 0.83 669
Macro AVG 0.75 0.74 0.74 1002
Micro AVG 0.77 0.77 0.77 1002

Table 3: Results for InriaFBK coarse 3

4.2 Preliminary Results - Task 2
Results on Task 2 show that the configuration with
one hidden feed-forward layer (fine 2) is gener-
ally best performing on all categories apart from
‘Profanity’, which is outperformed by the model
with two hidden feed-forward layers (fine 1) . The
reason behind this difference will be further inves-
tigated in the future with additional experiments.

Category P R F1 Support
Abuse 0.51 0.51 0.51 210
Insult 0.37 0.44 0.40 111

Profanity 0.43 0.25 0.32 12
Other 0.84 0.82 0.83 669

Macro AVG 0.54 0.51 0.52 1002
Micro AVG 0.71 0.71 0.71 1002

Table 4: Results for InriaFBK fine 1

Category P R F1 Support
Abuse 0.59 0.51 0.55 210
Insult 0.37 0.44 0.40 111

Profanity 0.50 0.17 0.25 12
Other 0.83 0.85 0.84 669

Macro AVG 0.57 0.49 0.51 1002
Micro AVG 0.72 0.72 0.72 1002

Table 5: Results for InriaFBK fine 2

Category P R F1 Support
Abuse 0.60 0.50 0.55 210
Insult 0.38 0.41 0.40 111

Profanity 0.50 0.17 0.25 12
Other 0.82 0.86 0.84 669

Macro AVG 0.58 0.49 0.51 1002
Micro AVG 0.73 0.73 0.73 1002

Table 6: Results for InriaFBK fine 3

The differences between fine 2 and fine 3 are
minimal, with all F1 values being identical between
the two sets of classes (apart from the Micro AVG).

Please note that the three runs submitted to the
shared evaluation for each Task were obtained by

83



re-training the models with the configurations de-
scribed above, keeping the same validation set
(20%) and merging the training and the test in-
troduced in Section 3 to increase the amount of
training data.

5 Conclusions

In this paper, we have described the system sub-
mitted to Germeval 2018 by a team composed of
researchers from INRIA Sophia Antipolis and Fon-
dazione Bruno Kessler in Trento. We adopt an
approach based on Recurrent Neural Networks that
does not require any external lexicon or semantic
resource, and that is based on features extracted
directly from text. It also makes use of the fastText
embeddings and emoji embeddings extracted from
a large English corpus and automatically aligned to
the German ones. We chose this approach because
we want to build a framework able to work on mul-
tiple languages, given a language-specific training
set. Indeed, we plan to participate with the same
system to another task for hate speech detection in
Italian.

Acknowledgments

Part of this work was funded by the CREEP
project (http://creep-project.eu/), a
Digital Wellbeing Activity supported by EIT Digi-
tal in 2018. This research was also supported by the
HATEMETER project (http://hatemeter.
eu/) within the EU Rights, Equality and Citizen-
ship Programme 2014-2020.

References
Francesco Barbieri, Francesco Ronzano, and Horacio

Saggion. 2016. What does this Emoji Mean? A
Vector Space Skip-Gram Model for Twitter Emojis.
In LREC.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. DataStories at SemEval-2017 Task 4:
Deep LSTM with Attention for Message-level and
Topic-based Sentiment Analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada, August. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching Word Vec-
tors with Subword Information. arXiv preprint
arXiv:1607.04606.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

François Chollet et al. 2015. Keras. https://
keras.io.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in neural information
processing systems, pages 1019–1027.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
1999. Learning to forget: Continual prediction with
LSTM.

Edel Greevy and Alan F Smeaton. 2004. Classify-
ing racist texts using a support vector machine. In
Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 468–469. ACM.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

Natasha Lomas. 2016. Facebook, Google, Twitter
commit to hate speech action in Germany.

Yashar Mehdad and Joel Tetreault. 2016. Do Char-
acters Abuse More Than Words? In Proceedings
of the 17th Annual Meeting of the Special Interest
Group on Discourse and Dialogue, pages 299–303.

Samuel L. Smith, David H.P. Turban, Steven Hamblin,
and Nils Y Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. arXiv preprint arXiv:1702.03859.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958.

William Warner and Julia Hirschberg. 2012. Detecting
hate speech on the World Wide Web. In Proceed-
ings of the Second Workshop on Language in Social
Media, pages 19–26. Association for Computational
Linguistics.

Zeerak Waseem, Wendy Hui Kyong Chung, Dirk Hovy,
and Joel Tetreault. 2017. Proceedings of the First
Workshop on Abusive Language Online. In Pro-
ceedings of the First Workshop on Abusive Language
Online. Association for Computational Linguistics.

84



Transfer Learning from LDA to BiLSTM-CNN for
Offensive Language Detection in Twitter

Gregor Wiedemann Eugen Ruppert Raghav Jindal Chris Biemann
Language Technology Group

Department of Informatics
University of Hamburg, Germany

{gwiedemann, ruppert, biemann}@informatik.uni-hamburg.de
raghavjindal2003@gmail.com

Abstract

We investigate different strategies for au-
tomatic offensive language classification
on German Twitter data. For this, we em-
ploy a sequentially combined BiLSTM-
CNN neural network. Based on this model,
three transfer learning tasks to improve
the classification performance with back-
ground knowledge are tested. We compare
1. Supervised category transfer: social me-
dia data annotated with near-offensive lan-
guage categories, 2. Weakly-supervised
category transfer: tweets annotated with
emojis they contain, 3. Unsupervised cate-
gory transfer: tweets annotated with topic
clusters obtained by Latent Dirichlet Allo-
cation (LDA). Further, we investigate the
effect of three different strategies to miti-
gate negative effects of ‘catastrophic forget-
ting’ during transfer learning. Our results
indicate that transfer learning in general im-
proves offensive language detection. Best
results are achieved from pre-training our
model on the unsupervised topic cluster-
ing of tweets in combination with thematic
user cluster information.

1 Introduction

User-generated content in forums, blogs, and so-
cial media not only contributes to a deliberative
exchange of opinions and ideas but is also contami-
nated with offensive language such as threats and
discrimination against people, swear words or blunt
insults. The automatic detection of such content
can be a useful support for moderators of public
platforms as well as for users who could receive
warnings or would be enabled to filter unwanted
content.

Although this topic now has been studied for
more than two decades, so far there has been little

work on offensive language detection for German
social media content. Regarding this, we present
a new approach to detect offensive language as
defined in the shared task of the GermEval 2018
workshop.1 For our contribution to the shared task,
we focus on the question how to apply transfer
learning for neural network-based text classifica-
tion systems.

In Germany, the growing interest in hate speech
analysis and detection is closely related to recent
political developments such as the increase of right-
wing populism, and societal reactions to the ongo-
ing influx of refugees seeking asylum (Ross et al.,
2016). Content analysis studies such as Kreißel
et al. (2018) have shown that a majority of hate
speech comments in German Facebook is authored
by a rather small group of very active users (5% of
all accounts engaging in hate speech). The findings
suggest that already such small groups are able
to severely disturb social media debates for large
audiences.

From the perspective of natural language pro-
cessing, the task of automatic detection of offen-
sive language in social media is complex due to
three major reasons. First, we can expect ‘atypical’
language data due to incorrect spellings, false gram-
mar and non-standard language variations such as
slang terms, intensifiers, or emojis/emoticons. For
the automatic detection of offensive language, it is
not quite clear whether these irregularities should
be treated as ‘noise’ or as a signal. Second, the
task cannot be reduced to an analysis of word-level
semantics only, e.g. spotting offensive keyterms in
the data. Instead, the assessment of whether or not
a post contains offensive language can be highly de-
pendent on sentence and discourse level semantics,
as well as subjective criteria. In a crowd-sourcing
experiment on ‘hate speech’ annotation, Ross et
al. (2016) achieved only very low inter-rater agree-
ment between annotators. Offensive language is

1https://projects.fzai.h-da.de/iggsa

85



probably somewhat easier to achieve agreement
on, but still sentence-level semantics and context
or ‘world knowledge’ remains important. Third,
there is a lack of a common definition of the ac-
tual phenomenon to tackle. Published studies fo-
cus on ‘hostile messages’, ‘flames’, ‘hate speech’,
‘discrimination’, ‘abusive language’, or ‘offensive
language’. Although certainly overlapping, each
of these categories has been operationalized in a
slightly different manner. Since category defini-
tions do not match properly, publicly available an-
notated datasets and language resources for one
task cannot be used directly to train classifiers for
any respective other task.

Contribution: For the offensive language detec-
tion presented in this paper, our approach is to use
semi-supervised text classification to address all
of the three challenges. In order to account for
atypical language, we use sub-word embeddings
to represent word tokens, words unseen during
training, misspelled words and words specifically
used in the context of social media such as emojis.
To represent complex sequence information from
tweets, we use a neural network model combining
recurrent (e.g. Long-Short term memory, LSTM)
(Hochreiter and Schmidhuber, 1997) and convolu-
tional (CNN) layers. Both learning architectures,
LSTM and CNN, have already been employed suc-
cessfully in similar text classification tasks such
as sentiment analysis (Kim, 2014). We expect the
combination of LSTM and CNN to be especially
useful in the context of transfer learning.

The main contribution of this paper is to investi-
gate potential performance contributions of transfer
learning to offensive language detection. For this,
we investigate three different approaches to make
use of knowledge learned by one task to improve
classification for our actual offensive language task.
To pre-train our BiLSTM-CNN network, we em-
ploy 1. Supervised category transfer: social media
data annotated with near-offensive language cat-
egories, 2. Weakly-supervised category transfer:
tweets annotated with emojis they contain, and
3. Unsupervised category transfer: tweets anno-
tated with topic clusters obtained by Latent Dirich-
let Allocation (LDA) (Blei et al., 2003). Further,
we investigate the effect of three different trans-
fer learning strategies on the classification perfor-
mance to mitigate the effect of ‘catastrophic forget-
ting’.2 The results indicate that transfer learning

2Catastrophic forgetting refers to the phenomenon that dur-

on generic topic clusters of tweets derived from an
LDA process of a large Twitter background corpus
significantly improves offensive language detec-
tion.

We present our findings in the following struc-
ture: Section 2 addresses related work to our ap-
proach. In Section 3, we introduce the details of
the GermEval 2018 Shared Task together with our
background corpora for knowledge transfer. In
Section 4, we describe our BiLSTM-CNN model
for text classification. Section 5 introduces the
different transfer learning setups we investigate.
To evaluate these setups, we conduct a number of
experiments for which results are presented in Sec-
tion 6. This section also contains a brief discussion
of errors made by our model. Finally, we give some
concluding remarks.

2 Related Work

Automatic detection of offensive language is a well-
studied phenomenon for the English language. Ini-
tial works on the detection of ‘hostile messages’
have been published already during the 1990s
(Spertus, 1997). An overview of recent approaches
comparing the different task definitions, feature
sets and classification methods is given by Schmidt
and Wiegand (2017). A major step forward to sup-
port the task was the publication of a large publicly
available, manually annotated dataset by Yahoo re-
search (Nobata et al., 2016). They provide a classi-
fication approach for detection of abusive language
in Yahoo user comments using a variety of linguis-
tic features in a linear classification model. One
major result of their work was that learning text fea-
tures from comments which are temporally close
to the to-be-predicted data is more important than
learning features from as much data as possible.
This is especially important for real-life scenarios
of classifying streams of comment data. In addition
to token-based features, Xiang et al. (2012) success-
fully employed topical features to detect offensive
tweets. We will build upon this idea by employing
topical data in our transfer learning setup. Transfer
learning recently has gained a lot of attention since
it can be easily applied to neural network learn-
ing architectures. For instance, Howard and Ruder
(2018) propose a generic transfer learning setup for

ing supervised learning of the actual task in a transfer learning
setup the update of model parameters can overwrite knowl-
edge obtained by the previously conducted training task. This
will eventually eliminate any positive effect of pre-training
and knowledge transfer from background corpora.

86



text classification based on language modeling for
pre-training neural models with large background
corpora. To improve offensive language detection
for English social media texts, a transfer learning
approach was recently introduced by Felbo et al.
(2017). Their ‘deepmoji’ approach relies on the
idea to pre-train a neural network model for an ac-
tual offensive language classification task by using
emojis as weakly supervised training labels. On a
large collection of millions of randomly collected
English tweets containing emojis, they try to pre-
dict the specific emojis from features obtained from
the remaining tweet text. We will follow this idea
of transfer learning to evaluate it for offensive lan-
guage detection in German Twitter data together
with other transfer learning strategies.

3 Data and Tasks

3.1 GermEval 2018 Shared Task

Organizers of GermEval 2018 provide training and
test datasets for two tasks. Task 1 is a binary clas-
sification for deciding whether or not a German
tweet contains offensive language (the respective
category labels are ‘offense’ and ‘other’). Task 2 is
a multi-class classification with more fine-grained
labels sub-categorizing the same tweets into either
‘insult’, ‘profanity’, ‘abuse’, or ‘other’.

The training data contains 5,008 manually la-
beled tweets sampled from Twitter from selected
accounts that are suspected to contain a high share
of offensive language. Manual inspection reveals
a high share of political tweets among those la-
beled as offensive. These tweets range from offend-
ing single Twitter users, politicians and parties to
degradation of whole social groups such as Mus-
lims, migrants or refugees. The test data contains
3,532 tweets. To create a realistic scenario of truly
unseen test data, training and test set are sampled
from disjoint user accounts. No standard validation
set is provided for the task. To optimize hyper-
parameters of our classification models and allow
for early stopping to prevent the neural models
from overfitting, we created our own validation set.
For this, we used the last 808 examples from the
provided training set. The remaining first 4,200
examples were used to train our models.

3.2 Background Knowledge

Since the provided dataset for offensive language
detection is rather small, we investigate the poten-
tial of transfer learning to increase classification

performance. For this, we use the following labeled
as well as unlabeled datasets.

One Million Posts: A recently published re-
source of German language social media data has
been published by Schabus et al. (2017). Among
other things, the dataset contains 11,773 labeled
user comments posted to the Austrian newspaper
website ‘Der Standard’.3 Comments have not been
annotated for offensive language, but for categories
such as positive/negative sentiment, off-topic, inap-
propriate or discriminating.

Twitter: As a second resource, we use a back-
ground corpus of German tweets that were col-
lected using the Twitter streaming API from 2011
to 2017. Since the API provides a random fraction
of all tweets (1%), language identification is per-
formed using ‘langid.py’ (Lui and Baldwin, 2012)
to filter for German tweets. For all years com-
bined, we obtain about 18 million unlabeled Ger-
man tweets from the stream, which can be used as
a large, in-domain background corpus.

4 Text Classification

In the following section, we describe one linear
classification model in combination with specifi-
cally engineered features, which we use as a base-
line for the classification task. We further introduce
a neural network model as a basis for our approach
to transfer learning. This model achieves the high-
est performance for offensive language detection,
as compared to our baseline.

4.1 SVM baseline:

Model: The baseline classifier uses a linear Sup-
port Vector Machine (Fan et al., 2008), which is
suited for a high number of features. We use a
text classification framework for German (Ruppert
et al., 2017) that has been used successfully for
sentiment analysis before.

Features: We induce token features based on the
Twitter background corpus. Because tweets are
usually very short, they are not an optimal source
to obtain good estimates on inverse document fre-
quencies (IDF). To obtain a better feature weight-
ing, we calculate IDF scores based on the Twitter
corpus combined with an in-house product review
dataset (cf. ibid.). From this combined corpus, we
compute the IDF scores and 300-dimensional word

3http://derstandard.at

87



embeddings (Mikolov et al., 2013) for all contained
features. Following Ruppert et al. (2017), we use
the IDF scores to obtain the highest-weighted terms
per category in the training data. Here, we obtain
words like Staatsfunk, Vasall (state media, vassal)
or deutschlandfeindlichen (Germany-opposing) for
the category ‘abuse’ and curse words for ‘insult’.
Further, IDF scores are used to weight the word
vectors of all terms in a tweet. Additionally, we em-
ploy a polarity lexicon and perform lexical expan-
sion on it to obtain new entries from our in-domain
background corpus that are weighted on a ‘positive–
negative’ continuum. Lexical expansion is based
on distributional word similarity as described in
Kumar et al. (2016).

4.2 BiLSTM-CNN for Text Classification
Model: For transfer learning, we rely on a neu-
ral network architecture implemented in the Keras
framework for Python.4 Our model (see Fig. 1)
combines a bi-directional LSTM layer (Hochreiter
and Schmidhuber, 1997) with 100 units followed
by three parallel convolutional layers (CNN), each
with a different kernel size k ∈ 3,4,5, and a filter
size 200. The outputs of the three CNN blocks
are max-pooled globally and concatenated. Finally,
features encoded by the CNN blocks are fed into
a dense layer with 100 units, followed by the pre-
diction layer. Except for this final layer which uses
Softmax activation, we rely on LeakyReLU activa-
tion (Maas et al., 2013) for the other model layers.
For regularization, dropout is applied to the LSTM
layer and to each CNN block after global max-
pooling (dropout rate 0.5). For training, we use the
Nesterov Adam optimization and categorical cross-
entropy loss with a learning rate of 0.002. The
intuition behind this architecture is that the recur-
rent LSTM layer can serve as a feature encoder for
general language characteristics from sequences
of semantic word embeddings. The convolutional
layers on top of this can then encode category re-
lated features delivered by the LSTM while the
last dense layers finally fine-tune highly category-
specific features for the actual classification task.

Features: As input, we feed 300-dimensional
word embeddings obtained from fastText (Bo-
janowski et al., 2017) into our model. Since fast-
Text also makes use of sub-word information (char-
acter n-grams), it has the great advantage that it can
provide semantic embeddings also for words that

4https://keras.io

Figure 1: BiLSTM-CNN model architecture. We
use a combination of recurrent and convolutional
cells for learning. As input, we rely on (sub-)word
embeddings. The final architecture also includes
clustering information obtained from Twitter user
ids. Dotted lines indicate dropout with rate 0.5
between layers. The last dense layer contains n
units for prediction of the probability of each of the
n classification labels per task.

have not been seen during training the embedding
model. We use a model pre-trained with German
language data from Wikipedia and Common Crawl
provided by Mikolov et al. (2018). First, we unify
all Twitter-typical user mentions (‘@username’)
and URLs into a single string representation and
reduce all characters to lower case. Then, we split
tweets into tokens at boundaries of changing char-
acter classes. As an exception, sequences of emoji
characters are split into single character tokens.
Finally, for each token, an embedding vector is
obtained from the fastText model.

For offensive language detection in Twitter, users
addressed in tweets might be an additional relevant
signal. We assume it is more likely that politicians
or news agencies are addressees of offensive lan-
guage than, for instance, musicians or athletes. To
make use of such information, we obtain a cluster-
ing of user ids from our Twitter background corpus.
From all tweets in our stream from 2016 or 2017,
we extract those tweets that have at least two @-
mentions and all of the @-mentions have been seen
at least five times in the background corpus. Based

88



Table 1: Examples of Twitter user clusters

Cluster Accounts

26 breitbartnews, realdonaldtrump, jrch-
eneyjohn, lindasuhler, barbmuenchen

28 dagibee, lilyachty, youngthug, chris-
brown, richthekid

40 bvb, fcbayern, dfb, young, team
44 spdde, cdu, gruenen, martinschulz, fdp,

dielinke
50 tagesschau, spiegelonline, zdf, zeiton-

line, janboehm

on the resulting 1.8 million lists of about 169,000
distinct user ids, we compute a topic model with
K = 50 topics using Latent Dirichlet Allocation
(Blei et al., 2003). For each of the user ids, we
extract the most probable topic from the inferred
user id-topic distribution as cluster id. This results
in a thematic cluster id for most of the user ids in
our background corpus grouping together accounts
such as American or German political actors, musi-
cians, media websites or sports clubs (see Table 1).
For our final classification approach, cluster ids for
users mentioned in tweets are fed as a second input
in addition to (sub-)word embeddings to the penul-
timate dense layer of the neural network model.

5 Transfer Learning

As mentioned earlier, we investigate potential
strategies for transfer learning to achieve optimal
performance. For this, we compare three different
methods to pre-train our model with background
data sets. We also compare three different strategies
to combat ‘catastrophic forgetting’ during training
on the actual target data.

5.1 Background Knowledge

For a transfer learning setup, we need to specify
a task to train the model and prepare the corre-
sponding dataset. We compare the following three
methods.

Supervised near-category transfer: As intro-
duced above, the ‘One Million Post’ corpus pro-
vides annotation labels for more than 11,000 user
comments. Although there is no directly compa-
rable category capturing ‘offensive language’ as
defined in the shared task, there are two closely
related categories. From the resource, we extract
all those comments in which a majority of the anno-

tators agree that they contain either ‘inappropriate’
or ‘discriminating’ content, or none of the afore-
mentioned. We treat the first two cases as exam-
ples of ‘offense’ and the latter case as examples
of ‘other’. This results in 3,599 training examples
(519 offense, 3080 other) from on the ‘One Million
Post’ corpus. We conduct pre-training of the neural
model as a binary classification task (similar to the
Task 1 of GermEval 2018)

Weakly-supervised emoji transfer: Following
the approach of Felbo et al. (2017), we constructed
a weakly-supervised training dataset from our Twit-
ter background corpus. From all tweets posted be-
tween 2013 and 2017, we extract those containing
at least one emoji character. In the case of several
emojis in one tweet, we duplicate the tweet for each
unique emoji type. Emojis are then removed from
the actual tweets and treated as a label to predict
by the neural model. This results in a multi-class
classification task to predict the right emoji out of
1,297 different ones. Our training dataset contains
1,904,330 training examples.

Unsupervised topic transfer: As a final method,
we create a training data set for transfer learning
in a completely unsupervised manner. For this, we
compute an LDA clustering with K = 1,000 topics5

on 10 million tweets sampled from 2016 and 2017
from our Twitter background corpus containing
at least two meaningful words (i.e. alphanumeric
sequences that are not stopwords, URLs or user
mentions). Tweets also have been deduplicated
before sampling. From the topic-document distri-
bution of the resulting LDA model, we determined
the majority topic id for each tweet as a target label
for prediction during pre-training our neural model.
Pre-training of the neural model was conducted on
the 10 million tweets with batch size 128 for 10
epochs.

5.2 Transfer Learning Strategies
Once the neural model has been pre-trained on the
above-specified targets and corresponding datasets,
we can apply it for learning our actual target task.
For this, we need to remove the final prediction
layer of the pre-trained model (i.e. Layer 4 in
Fig. 1), and add a new dense layer for prediction
of one of the actual label sets (two for Task 1, four
for Task 2). The training for the actual GermEval

5For LDA, we used Mallet (http://mallet.cs.
umass.edu) with Gibbs Sampling for 1,000 iterations and
priors α = 10/K and β = 0.01.

89



tasks is conducted with batch size 32 for up to 50
epochs. To prevent the aforementioned effect of
forgetting pre-trained knowledge during this task-
specific model training, we evaluate three different
strategies.

Gradual unfreezing (GU): In Howard and
Ruder (2018), gradual unfreezing of pre-trained
model weights is proposed as one strategy to miti-
gate forgetting. The basic idea is to initially freeze
all pre-trained weights of the neural model and
keep only the newly added last layer trainable (i.e.
Layer 4 in Fig. 1). After training that last layer for
one epoch on the GermEval training data, the next
lower frozen layer is unfrozen and training will be
repeated for another epoch. This will be iterated
until all layers (4 to 1) are unfrozen.

Single bottom-up unfreezing (BU): Following
the approach of Felbo et al. (2017), we do not iter-
atively unfreeze all layers of the model, but only
one at a time. First, the newly added final predic-
tion layer is trained while all other model weights
remain frozen. Training is conducted for up to 50
epochs. The best performing model during these
epochs with respect to our validation set is then
used in the next step of fine-tuning the pre-trained
model layers. For the bottom-up strategy, we un-
freeze the lowest layer (1) containing the most gen-
eral knowledge first, then we continue optimization
with the more specific layers (2 and 3) one after
the other. During fine-tuning of each single layer,
all other layers remain frozen and training is per-
formed for 50 epochs selecting the best performing
model at the end of each layer optimization. In a
final round of fine-tuning, all layers are unfrozen.

Single top-down unfreezing (TU): This pro-
ceeding is similar the one described above, but
inverts the order of unfreezing single layers from
top to bottom sequentially fine-tuning layers 4, 3,
2, 1 individually, and all together in a final round.

Baseline (Pre-train only): All strategies are
compared to the baseline of no freezing of model
weights, but training all layers at once directly after
pre-training with one of the three transfer datasets.

6 Evaluation

Since there is no prior state-of-the-art for the Germ-
Eval Shared Task 2018 dataset, we evaluate the
performance of our neural model compared to the
baseline SVM architecture. We further compare the

Table 2: Transfer learning performance (Task 1)

Transfer Strategy F1 Accuracy

None - 0.709 0.795

Category

Pre-train only 0.712 0.809
GU 0.702 0.796
BU 0.709 0.802
TU 0.711 0.799

Emoji

Pre-train only 0.720 0.811
GU 0.708 0.807
BU 0.739 0.817
TU 0.725 0.814

Topic

Pre-train only 0.733 0.817
GU 0.712 0.801
BU 0.753 0.828
TU 0.732 0.817

different tasks and strategies for transfer learning
introduced above and provide some first insights
on error analysis.

Transfer learning: First, we evaluate the perfor-
mance of different transfer learning datasets and
strategies. Tables 2 and 3 show that we achieve
best performances for both tasks on our validation
set by pre-training our neural model on the large
Twitter datasets.6 The two approaches, emoji and
topic transfer, substantially improve the classifica-
tion performance compared to not using transfer
learning at all (‘None’). In contrast, pre-training
on the annotated dataset from the ‘One Million
Posts’ corpus does only lead to minor improve-
ments. Comparing the three different strategies
to reduce negative effects of forgetting in transfer
learning, the strategy of unfreezing single layers
during training from the lowest layers to the top of
the model architecture (BU) performs best, espe-
cially in conjunction with the pre-training on the
large Twitter datasets. For these setups, the model
can take full advantage of learning language regu-
larities from generic to more task-specific features
in its different layers. The other strategies (GU,
TU) do not perform better than pre-training the

6For the binary classification Task 1, we report precision
(P), recall (R), and F1 for the targeted positive class ‘offense’.
During training, we also optimized for binary F1. For the
multi-class classification Task 2, we report macro-F1 (average
of precision, recall, and F1 of all individual four categories).
During training, we also optimized for macro-F1. All reported
results are average values obtained from 10 repeated runs of
model training.

90



Table 3: Transfer learning performance (Task 2)

Transfer Strategy F1 Accuracy

None - 0.578 0.747

Category

Pre-train only 0.578 0.755
GU 0.560 0.751
BU 0.580 0.750
TU 0.581 0.759

Emoji

Pre-train only 0.572 0.756
GU 0.564 0.756
BU 0.577 0.764
TU 0.592 0.757

Topic

Pre-train only 0.597 0.762
GU 0.590 0.755
BU 0.607 0.764
TU 0.582 0.764

neural model and then immediately training the
entire network on the actual task (‘Pre-train only’).

Final results: Tables 4 and 5 show the final re-
sults for the two offensive language detection tasks
on the official test set. We compare the base-
line SVM model with the BiLSTM-CNN neural
model with the best performing transfer learning
setup (BU). Additionally, we show the results when
adding cluster information from users addressed in
tweets (cf. Section 4). Due to the fact that training
and validation data were sampled from a different
user account population than the test dataset (cf.
Section 3), evaluation scores on the official test
data are drastically lower than scores achieved on
our validation set during model selection.

Compared to the already highly tweaked SVM
baseline, our BiLSTM-CNN model architecture
with topic transfer delivers comparable results for
identifying offensive language in Task 1 and sig-
nificantly improved results for Task 2. The SVM
achieves a high precision but fails to identify many
offensive tweets, which especially in Task 2 nega-
tively affects the recall.

In contrast, topic transfer leads to a significant
improvement, especially for Task 2. Performance
gains mainly stem from increased recall due to
the background knowledge incorporated into the
model. We assume that not only language regu-
larities are learned through pre-training but that
also some aspects relevant for offensive language
already are grouped together by the LDA clusters

used for pre-training.
As a second task-specific extension of our text

classification, we feed cluster information for users
addressed in tweets into the process. Here the re-
sults are mixed. While this information did not lead
to major performance increases on our validation
set (not shown), the improvements for the official
test set are quite significant. For Task 1, the per-
formance score increases several percentage points
up to 75.2% F1 (Accuracy 77.5%). For Task 2,
increases are still quite remarkable, although the
absolute performance of this multi-class problem
with 52.7% F1 (Accuracy 73.7%) is rather mod-
erate. From these results, we infer that thematic
user clusters apparently contribute a lot of informa-
tion to generalize an offensive language detection
model to unseen test data.

Error analysis: Accuracy values for German of-
fensive language detection around 75% signal some
room for improvement in future work. What are
the hard cases for classifying offensive language?
We look at false positive (FP) and false negatives
(FN) for Task 1. In our validation set, the ratio of
FP and FN is about 60:40, which means our classi-
fier slightly more often assumes offensive language
than there is actually in the data compared to cases
in which it misses to recognize offensive tweets.
Looking more qualitatively into FP examples, we
can see a lot of cases which actually express a
very critical opinion and/or use harsh language,
but are not unequivocal insults. Another group of
FP tweets does not express insults directly but for-
mulates offensive content as a question. In other
cases, it is really dependent on context whether a
tweet addressing a specific group uses that group
signifier actually with a derogatory intention (e.g.
calling people ‘Jew’, ‘Muslim’, or ‘Communist’).
For FN tweets, we can identify insults that are
rather subtle. They do not use derogatory vocab-
ulary but express loathing by dehumanizing syn-
tax (e.g. ‘das was uns regiert’ where the definite
gender-neutral article ‘das’ refers to the German
chancellor), metaphor (‘Der ist nicht die hellste
Kerze’, i.e. ‘he is not the brightest light’) or insin-
uating an incestuous relationship of some persons
parents (‘Hier drängt sich der Verdacht auf, das die
Eltern der beiden Geschwister waren’). Another
repeatedly occurring FN case are tweets express-
ing suspicion against the government, democratic
institutions, the media or elections. While those
tweets certainly in most cases origin from a radi-

91



Table 4: Offensive language detection performance % (Task 1)
Model RunID Offense Other Average (official rank score)

P R F1 P R F1 P R F1 Acc.

Baseline SVM coarse 1 71.52 46.17 56.12 76.52 90.52 82.93 74.02 68.34 71.07 75.42
BiLSTM-CNN
+ Topic transfer coarse 2 66.30 49.75 56.84 77.03 86.95 81.69 71.67 68.35 69.97 74.29
+ User-cluster coarse 3 66.29 68.89 67.56 83.62 81.93 82.77 74.96 75.41 75.18 77.49

Table 5: Offensive language detection performance % (Task 2)
Model RunID Abuse Insult Other Profanity Average (official rank score)

F F F F P R F Acc.
Baseline SVM fine 1 46.10 21.12 82.88 3.92 50.92 37.27 43.04 70.44
BiLSTM-CNN
+ Topic transfer fine 2 51.96 40.18 84.26 15.58 51.06 46.07 48.44 72.79
+ User cluster fine 3 53.25 39.46 84.85 29.63 56.85 49.13 52.71 73.67

cal right-wing worldview and can be considered as
abusive against democratic values, their language
is not necessarily offensive per se. This more qual-
itative look into the data opens up some directions
to improve offensive language detection incorporat-
ing technologies that are able to capture such more
subtle insults as well as handling cases of questions
and harsh but still not insulting critique.

7 Conclusion

In this paper, we presented our neural network text
classification approach for offensive language de-
tection on the GermEval 2018 Shared Task dataset.
We used a combination of BiLSTM and CNN archi-
tectures for learning. As task-specific adaptations
of standard text classification, we evaluated dif-
ferent datasets and strategies for transfer learning,
as well as additional features obtained from users
addressed in tweets. The coarse-grained offensive
language detection could be realized to a much
better extent than the fine-grained task of separat-
ing four different categories of insults (accuracy
77.5% vs. 73.7%). From our experiments, four
main messages can be drawn:

1. Transfer learning of neural networks architec-
tures can improve offensive language detec-
tion drastically.

2. Transfer learning should be conducted on as
much data as possible regarding availability
and computational resources. We obtained
best results in a completely unsupervised and
task-agnostic pre-training setup on in-domain

data. During pre-training, we predicted the
primary topics of tweets obtained by an LDA
process, which previously clustered our back-
ground dataset of 10 million tweets into 1,000
topics.

3. To mitigate the effect of ‘catastrophic forget-
ting’ in transfer learning, it is advised to train
and optimize the different layers of the neu-
ral network model separately. In our experi-
ments on models pre-trained on large Twitter
datasets, the bottom-up approach of training
from the lowest to the top layer performed sig-
nificantly better than all other tested strategies
to freeze model weights during learning.

4. User mentions in tweets can contribute a lot
of information to the classifier since some ac-
counts are much more likely to be targeted
by offensive language than others. Clustering
users thematically allows including informa-
tion from users not seen during training.

The fact that our unsupervised, task-agnostic pre-
training by LDA topic transfer performed best sug-
gests that this approach will also contribute ben-
eficially to other text classification tasks such as
sentiment analysis. Thus, in future work, we plan
to evaluate our approach with regard to such other
tasks. We also plan to evaluate more task-agnostic
approaches for transfer learning, for instance em-
ploying language modeling as a pre-training task.

92



Acknowledgements: The paper was supported
by BWFG Hamburg within the “Forum 4.0” project
as part of the ahoi.digital funding line, and by
DAAD via a WISE stipend.

References

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent dirichlet allocation. Journal of Ma-
chine Learning Research, 3:993–1022.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR:
A library for large linear classification. Journal of
Machine Learning Research, 9:1871–1874.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad
Rahwan, and Sune Lehmann. 2017. Using millions
of emoji occurrences to learn any-domain represen-
tations for detecting sentiment, emotion and sarcasm.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1615–1625, Copenhagen, Denmark. ACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
ACL.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1746–1751, Doha, Qatar.
ACL.

Philip Kreißel, Julia Ebner, Alexander Urban, and
Jakob Guhl. 2018. Hass auf Knopfdruck: Recht-
sextreme Trollfabriken und das Ökosystem koor-
dinierter Hasskampagnen im Netz. Institute for
Strategic Dialogue, London, UK.

Ayush Kumar, Sarah Kohail, Amit Kumar, Asif Ekbal,
and Chris Biemann. 2016. IIT-TUDA at SemEval-
2016 Task 5: Beyond sentiment lexicon: Combin-
ing domain dependency and distributional seman-
tics features for aspect based sentiment analysis. In
Proceedings of the 10th International Workshop on
Semantic Evaluation, pages 1129–1135, San Diego,
CA, USA. ACL.

Marco Lui and Timothy Baldwin. 2012. langid.py:
An off-the-shelf language identification tool. In Pro-
ceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics, Demo Session,
pages 25–30, Jeju, Korea. ACL.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng.
2013. Rectifier nonlinearities improve neural net-
work acoustic models. In ICML Workshop on Deep
Learning for Audio, Speech, and Language Process-
ing. Atlanta, GA, USA.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word repre-
sentations in vector space. In Workshop at Inter-
national Conference on Learning Representations
(ICLR), pages 1310–1318, Scottsdale, AZ, USA.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in Pre-Training Distributed Word Represen-
tations. In Proceedings of the 11th International
Conference on Language Resources and Evaluation,
Miyazaki, Japan. ELRA.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web, pages 145–153, Montreal, Canada. In-
ternational World Wide Web Conferences Steering
Committee.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben
Cabrera, Nils Kurowsky, and Michael Wojatzki.
2016. Measuring the reliability of hate speech anno-
tations: The case of the European refugee crisis. In
Proceedings of 3rd Workshop on Natural Language
Processing for Computer-Mediated Communication,
pages 6–9, Bochum, Germany.

Eugen Ruppert, Abhishek Kumar, and Chris Biemann.
2017. LT-ABSA: An extensible open-source system
for document-level and aspect-based sentiment anal-
ysis. In Proceedings of the GSCL GermEval Shared
Task on Aspect-based Sentiment in Social Media
Customer Feedback, pages 55–60, Berlin, Germany.

Dietmar Schabus, Marcin Skowron, and Martin Trapp.
2017. One million posts: A data set of German on-
line discussions. In Proceedings of the 40th Inter-
national Conference on Research and Development
in Information Retrieval, pages 1241–1244, Tokyo,
Japan.

Anna Schmidt and Michael Wiegand. 2017. A sur-
vey on hate speech detection using natural language
processing. In Proceedings of the 5th International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10, Valencia, Spain. ACL.

Ellen Spertus. 1997. Smokey: Automatic recogni-
tion of hostile messages. In Proceedings of the 14th
National Conference on Artificial Intelligence and

93



Ninth Conference on Innovative Applications of Ar-
tificial Intelligence, pages 1058–1065, Providence,
RI, USA. AAAI Press.

Guang Xiang, Bin Fan, Ling Wang, Jason Hong, and
Carolyn Rose. 2012. Detecting offensive tweets
via topical feature discovery over a large scale twit-
ter corpus. In Proceedings of the 21st ACM In-
ternational Conference on Information and Knowl-
edge Management, pages 1980–1984, New York,
NY, USA. ACM.

94



Towards the Automatic Classification of Offensive Language
and Related Phenomena in German Tweets

Julian Moreno Schneider, Roland Roller, Peter Bourgonje, Stefanie Hegele, Georg Rehm
DFKI GmbH, Language Technology Lab, Alt-Moabit 91c, 10559 Berlin, Germany

Corresponding author: julian.moreno_schneider@dfki.de

Abstract

In recent years the automatic detection of
abusive language, offensive language and
hate speech in several different forms of
online communication has received a lot
of attention by the Computational Linguis-
tics and Language Technology community.
While most approaches work on English
data, publications on languages other than
English are rare. This paper, submitted
to the GermEval 2018 Shared Task on the
Identification of Offensive Language, pro-
vides the results of several experiments re-
garding the classification of offensive lan-
guage in German language tweets.

1 Introduction

In recent years the automatic detection of abu-
sive language, offensive language and general hate
speech comments in several different forms of on-
line communication (e. g., Twitter, Facebook, and
other forms of social media or, more generally, user-
generated content) has received a lot of attention
by the Computational Linguistics and Language
Technology community. One of the underlying as-
sumptions of nearly all approaches published so
far is the idea of setting up a watchdog service that
is able to detect instances of offensive language,
abusive language, hate speech, or cyberbullying,
among others, fully automatically – and with high
classification precision – in order to prevent the
specific message or content from being posted or
to flag the respective piece of content to human
experts monitoring the respective system so that
they can initiate corrective actions.

While most approaches towards the automatic
detection of offensive online language work on and
with English data sets, publications on languages
other than English are rare. This article, submitted
to the GermEval 2018 Shared Task on the Identifi-
cation of Offensive Language, provides the results

of several experiments regarding the classification
of offensive language in German language tweets.

The remainder of this article is structured as fol-
lows. First, Section 2 provides an overview of
related work, while Section 3 briefly describes the
data set used in the GermEval 2018 Shared Task
on the Identification of Offensive Language as well
as the two classification tasks and their respective
categories. Section 4 characterises the experiments
we carried out including features and classifiers
used. Section 5 briefly sketches the results of the
experiments, while Section 6 lists the six runs sub-
mitted to the Shared Task. Section 7 discusses our
results and Section 8 concludes the article.

2 Related Work

Recent years have seen an increasing amount of
attention from the NLP community to hateful con-
duct and aggression online. While at first glance
separating constructive, useful content from, for
example, hate speech might seem like a typical text
classification problem, comparable to spam classi-
fication and sentiment analysis where typical text
classification approaches may be well applicable,
the question whether or not certain utterances are
still acceptable within the boundaries of free speech
puts this task in the intersection of several research
areas and disciplines, including linguistics, sociol-
ogy (Jones et al., 2013; Phillips, 2015), psychology
(Kowalski and Limber, 2013; Dreißing et al., 2014),
law (Marwick and Miller, 2014; Banks, 2010; Mas-
saro, 1991) and also common sense. An overview
of current NLP-based approaches is collected and
presented in Schmidt et al. (2017).

The complexity of the task results in a variety of
difficulties that have yet to be solved. What should
be considered as offensive, racist, sexist or profane,
and the extra-linguistic nature of the issue are com-
plicating factors. The nature of an utterance often
depends on factors like context, (ethnicity of the)
author, (ethnicity of the) targeted person or group,

95



whether or not irony is the case, etc. (Nand et al.,
2016; Waseem et al., 2016; Warner et al., 2012).
All of this makes the creation and annotation of cor-
pora a challenging task. Currently there is no large,
universally used data set available. Numerous data
sets have been created for specific tasks differing
in size (from a couple of hundred labelled tweets to
hundred thousands of labelled discussions) as well
as text genres, e.g., Twitter (Burnap et al., 2015;
Waseem, 2016; Waseem et al., 2016; Davidson,
2017), Yahoo! (Djuric et al., 2015; Nobata et al.,
2016) and Wikipedia (Wulczyn et al., 2017).

Most related work on detecting abusive language
has been done for English, focusing on the data set
by Waseem (2016) annotated for the three cate-
gories “Sexism”, “Racism” and “Other”. Many
approaches rely on supervised learning with Sup-
port Vector Machines as the most frequently used
classifier (Davidson, 2017; Bourgonje et al., 2017).
Recent approaches employing deep learning archi-
tectures have shown to compete with or even out-
perform these approaches. For the task on distin-
guishing the three categories named above the best
result (F-score of 0.93) was reached by Badjatiya et
al. (2017) using an LSTM model with features ex-
tracted by character n-grams, and assisted by Gra-
dient Boosted Decision Trees. Park et al. (2017)
implemented three CNN-based models for classifi-
cation. Pitsilis et al. (2018) suggested a detection
scheme consisting of Recurrent Neural Network
(RNN) classifiers.

3 Data Set and Tasks

The GermEval 2018 task focuses on the linguistic
analysis of offensive content in German tweets,
5009 of which were provided as training data.1

A detailed description of the annotation process
along with the annotation guidelines was also made
available. There are two different tasks with the
provided training data annotated as follows. Task
1 is a binary classification task deciding whether
a tweet is offensive or not (labels OFFENSIVE:
1688, OTHER: 3321). Task 2 is a fine-grained
classification task distinguishing four subcategories
(labels PROFANITY: 71, INSULT: 595, ABUSE:
1022 and OTHER: 3321). The data set consists of
tweets only without any kind of meta information
such as the tweet ID etc. The average token size
per tweet is 21,9 and consists of 1,6 sentences.

1https://projects.fzai.h-da.de/iggsa/
projekt/

Related tasks for English such as the Workshop
on Abusive Language Online (ALW)2 have cho-
sen different sets of data labels ranging from bi-
nary classification (e. g., PERSONAL ATTACK
vs. NONE in a Wikipedia corpus (Wulczyn et al.,
2017) to more granular tag sets (e. g., RACISM,
SEXISM and NONE, applied to Twitter data
(Waseem, 2016)). Transparent annotation guide-
lines are not always made publicly available, mak-
ing attempts of leveraging knowledge from related
data sets a formidable challenge (see the experi-
ments on crosslingual embeddings in Section 7).

4 Experiments

We follow the majority of earlier work in this field,
as described in Section 2, that employs neural net-
works to implement classifiers to tackle the chal-
lenge. The data and individual messages in the
GermEval 2018 Shared Task is challenging due
to their short length (i. e., tweets) and due to the
annotated categories that are, conceptually, rela-
tively close to one another. As reflected by rather
low inter-annotator agreement scores reported for
similar annotations on comparable data sets, when
intellectually exploring training data, even for hu-
mans it is challenging to reliably and consistently
assign labels to tweets or, on a more abstract level,
to agree what constitutes “abusive” or “offensive
language”. In an attempt to find the best way of
solving this task using a neural network approach,
we not only experimented with different network
architectures, but also made an effort to obtain and
include additional training data as well as to enrich
the given tweets with additional meta information.

4.1 Data Enrichment
Below we present the various techniques to enrich
tweets by additional information as well as an au-
tomatic generation of further training data.

Gender Information Extra-linguistic informa-
tion about tweets can be decisive when making
a final call on whether or not some piece of content
should be considered insulting, profane, abusive or
non-offensive. Retrieving identity information of
the author would be valuable information to clas-
sify content more reliably. Since getting this type
of metadata in the form of the user ID is typically
not feasible for such data sets, we attempted to clas-
sify for one aspect of user identity, i. e., the gender

2https://sites.google.com/site/
abusivelanguageworkshop2017

96



of the author. We experimented with augmenting
the GermEval tweets with gender information to
establish whether or not this feature would be help-
ful in classification. To obtain gender labels for
the tweets, we scraped the tweets annotated for
the TwiSty corpus (Verhoeven et al., 2016) and
classified this using FastText3 (Joulin et al., 2016),
achieving an accuracy of 79.77 for this binary clas-
sification task. The GermEval tweets were then
labeled using this classifier. The results using this
as an additional feature in the classification of the
test set are included in Tables 1 and 2.

User Profile Information As another piece of
extra-linguistic information, user profile informa-
tion of Twitter users mentioned in tweets were re-
trieved. For example, for the tweet [@Stephan-
JBauer @soskinderdorf Auch in Deutschland
hungern Kinder.], we retrieved the profile descrip-
tions for @StephanJBauer and @soskinderdorf
and added this to the representation of the tweet.
The rationale behind this is that certain users with
a particular (potentially controversial) political pro-
file and high visibility could be more likely to trig-
ger offensive tweets (i. e., we attempt to model the
identity of the target audience, and not that of the
author). The results for this setup are included in
Tables 1 and 2.

Sentiment Another linguistic feature that we
have included is sentiment analysis. This process-
ing step was carried out using a simple dictionary
lookup using the data set published by Waltinger
(2010). According to the largest number of posi-
tive/negative sentiment words found in the tweet,
we assigned the labels POSITIVE, NEGATIVE,
NEUTRAL and POS NEG in case the tweet has as
many positive as negative sentiment words.

Additional User Friend Data Lastly a set of au-
tomatically labelled tweets for Task 1 is generated
in order to increase the size of the data set to train
the classifier. For this purpose, a small subset
of the training data (70 tweets) has been selected
to identify the original source (user) of the tweet.
From this subset 25 different users have been iden-
tified. Most users occurred various times and in
various cases it turned out that a user who posted an
OFFENSE tweet might have also posted OTHER
tweets. However, users who posted an OFFENSE
tweet at least once were assigned to the OFFENSE

3https://fasttext.cc

user group and all others to the OTHER group. Us-
ing this list of users a set of approximately 4,000
tweets could be automatically labelled. Thus, a
tweet from a person of the OFFENSE group was
automatically labelled as OFFENSE and a tweet
from a person of the OTHER group as OTHER.
In order to further increase the data size, the user
list has been extended by taking all twitter friends
into account, assigning each person of the friend
list to the same user group. In this way a list of
25,000 users has been created, resulting in 2 mil-
lion automatically labelled tweets. In order to stick
to a practical and feasible setup, i. e., to be able
to run the experiments on standard hardware, au-
tomatically labelled data was reduced to 50,000
tweets using the same ratio of OTHER/OFFENSE
as in the manually labelled training data. This set
of tweets is not added to each tweet as a feature,
but used as a new training corpus, i. e., the neural
network is first trained with the new corpus of au-
tomatically obtained tweets and then the training is
refined with the training set of GermEval 2018.

4.2 Architecture

To set a baseline performance we use FastText,
which allows for both supervised and unsupervised
text classification combining word embeddings
with character n-grams instead of CBOW (which is
the case for Word2vec). We apply out-of-the-box
supervised classification using Wikipedia embed-
dings to obtain our baseline score. In addition to
that we generate embeddings from a German Twit-
ter snapshot described by Scheffler (2014). Due
to its higher flexibility we use Keras4 for all other
experiments reported on in this paper.

The neural network that we implemented and
tested is based on the architecture by Wang et al.
(2017). Their architecture is composed of three
layers: (i) a convolutional layer; (ii) a MaxPooling
layer; and (iii) a dense layer, that performs the clas-
sification itself. We made minor modifications to
this setup and instead of using one convolutional
layer and one dense layer, we use two convolutional
and two dense layers. Due to the relatively large
number of dimensions (300), any relevant infor-
mation in the input data would be better preserved
with two convolutional layers. The second dense
layer is there to accommodate the more detailed
classification for Task 2, which not only comprises
more classes but also classes that are conceptually

4https://keras.io

97



Start

Tokenization

Preprocess
Data

Prepare
Model

Task1

Gender

Sentiment

…

Dimensions

Word
Embeddings

Additional
Features

Convolutional
Layer 1

Convolutional
Layer 2

Maxpooling
Layer

Output
Layer

Dense
Layer 1

Dense
Layer 2

Figure 1: Architecture of the CNN implemented
for the GermEval 2018 Shared Task.

closer to one another (see Figure 1).
As illustrated in the architectural overview, the

additional features we experimented with are added
to the training data in the pre-processing steps, the
exact shape or form depending on the individual
feature (i. e., binary values for gender or sentiment,
embeddings for user descriptions, etc., see Sec-
tion 4.1 for more details).

5 Results

The results presented below were obtained using
cross-validation5 on the training portion of the data
set provided by the organisers of GermEval 2018.
We compute the average accuracy for the binary
classification (OFFENSE vs. OTHER) for Task 1
(Table 1) and provide accuracy, precision, recall
and f1-score for the individual classes (INSULT,
ABUSE, PROFANITY and OTHER) in Task 2 (Ta-
ble 2). Based on the cross-validation over the train-

5Due to time constraints we performed cross-validation
with one single fold only.

ing data, we consider the Twitter embeddings in
combination with user descriptions to be the best
setup, with an accuracy of 81 for Task 1 and 72.2
for Task 2. However, because this approach is
dependent on the existence of user mentions in
the tweet text, which may be proportionally less
present in the test set, the figures on the test data
may well deviate and show another setup to be the
best performing one.6

6 Runs

We have submitted six runs (three for each task):

1. dfkilt coarse 1.txt: TE+Desc approach in-
cluding twitter embeddings and user mentions
description (Task 1).

2. dfkilt coarse 2.txt: TE+Sent approach in-
cluding twitter embeddings and sentiment
analysis information (Task 1).

3. dfkilt coarse 3.txt: TE+G+D approach in-
cluding twitter embeddings, gender classifica-
tion and mentions descriptions (Task 1).

4. dfkilt fine 1.txt: TE+Desc approach includ-
ing twitter embeddings and mentions descrip-
tion (Task 2).

5. dfkilt fine 2.txt: TE+S+G+D approach in-
cluding twitter embeddings, sentiment anal-
ysis, gender classification and mentions de-
scription (Task 2).

6. dfkilt fine 3.txt: TE+S+D approach includ-
ing twitter embeddings, sentiment analysis
and mentions description (Task 2).

7 Discussion

When dealing with the task of detecting hateful,
aggressive, racist and/or sexist behaviour online, a
lack of high inter-annotator agreement can be an is-
sue and shows the high complexity of the challenge
– even for humans. Ross et al. (2016) for instance in-
troduce a German corpus of hate speech on the Eu-
ropean refugee situation and report very low inter-
annotator agreement scores (Krippendorff’s α be-
tween 0.18 and 0.29). Waseem (2016) investigates
inter-annotator agreement when comparing ama-
teur annotations (generated using CrowdFlower)

6Note that we generated additional training data through
user friends for the classes OFFENSE and OTHER only and,
hence, did not use the data in Task 2.

98

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018



Table 1: Results for Task 1 using different features
Acc OFFENSE OTHER

P R F1 P R F1
Fasttext (FT) 73.9 –
Wikipedia Embeddings (WE) 71.8 69.4 36.9 48.2 72.4 91.1 80.7
Twitter Embeddings (TE) 72.7 62.4 58.1 60.2 77.8 80.8 79.2
TE + Sentiment 78.5 80 52.5 63.4 78 92.8 84.8
TE + Descriptions 81 79 62.3 69.6 81.8 91.1 86.2
TE + Gender Classification 76.3 66.7 66.3 66.5 81.5 81.8 81.6
TE + Sentiment + Gender 75.4 66.2 62.5 64.3 80 82.5 81.2
TE + Sentiment + Descriptions 76.1 67.3 63.1 65.2 80.4 83.2 81.8
TE + Gender + Descriptions 76.9 72.2 56.9 63.6 78.8 88 83.1
TE + Sentiment + Gender + Descriptions 75.6 67.4 60.6 63.8 79.5 83.8 81.6
TE + User Friends Information 77.2 74.4 53.1 62 78.2 90.2 83.8

Table 2: Results for Task 2 using different features. (FT: Fasttext, WE: Wikipedia Embeddings, TE: Twitter
embeddings, S: Sentiment, G: Gender Classification, D: Descriptions, UFI: User friends information)

Acc INSULT ABUSE PROFANITY OTHER
P R F1 P R F1 P R F1 P R F1

FT 68.3 –
WE 67.6 39.5 26.8 31.9 49.1 52 50.5 0 0 0 77.7 81.4 79.5
TE 65.2 27.3 5.4 9 41.3 57.8 48.2 0 0 0 78.1 79.7 79
TE+S 69 33.8 46.4 39.1 54.5 47.1 50.5 0 0 0 82.9 81.4 82.1
TE+D 72.2 38.9 55.2 45.7 62.7 42.4 50.6 0 0 0 83.5 86.8 85.1
TE+G 69.6 37.8 25 30.1 51.5 51 51.2 0 0 0 79.2 85.2 82.1
TE+S+G 70.1 28.6 28.6 28.6 65.7 45.1 53.5 0 0 0 78.2 87.3 82.5
TE+S+D 71.4 33.3 1.8 3.4 51.1 64.7 57.1 0 0 0 79.9 87.6 83.6
TE+G+D 69.2 30.9 44.6 36.5 63.5 32.4 42.9 0 0 0 79.9 87.3 83.4
TE+S+G+D 71.8 38.5 17.9 24.4 70.6 35.3 47.1 0 0 0 74.3 95.5 83.6
TE+UFI —

99



and expert annotations and reports a similarly low
Cohen’s Kappa of 0.14. Van Hee et al. (2015) work
on classification of cyberbullying using a Dutch
corpus and report Kappa scores between 0.19 and
0.69. Kwok and Wang (2013) report an overall
inter-annotator agreement of only 33% when inves-
tigating racist tweets. Nobata et al. (2016) report a
relatively high agreement for binary classification
of clean vs. abusive for social media comments on
Yahoo! (Kappa = 0.843), but this number drops
significantly when different subcategories for the
abusive comments are introduced (such as hate,
derogatory language and profanity, with Kappa
decreasing to 0.456).

Using the basic setup of our network with Twit-
ter embeddings does not improve over the FastText
baseline (with accuracies of 72.2 vs. 73.9 for Task
1 and 65.2 vs. 68.3 for Task 2, respectively). How-
ever, adding additional types of information (or
combinations), we do improve over this baseline,
by 7.1 points in accuracy for Task 1 and 3.9 points
in Task 2 in the best scoring setup.

In addition to different opinions on what consti-
tutes and does not constitute “offensive language”
(in terms of inter-annotator agreement), also the
usage of automatically labelled data has its limita-
tions. While ‘distantly labelled’ data might have a
beneficial effect if manually labelled data is small,
it might lose its effect with increasing gold stan-
dard data. The quality of automatically labelled
data also plays an important role. As mentioned
before, even Twitter users who post large numbers
of offensive tweets do not do so exclusively. In
various cases people might show a radical opinion
without being explicitly offensive, and sometimes
people also just talk about daily life using standard,
acceptable language. Yet other times, they may use
highly offensive language when complaining about
the weather. The same rather high variance can
be observed for people belonging to the OTHER
user group. This means the data contains a large
number of false positives and false negatives. A
method which is able to deal with noisy data more
robustly might have been more suitable.

Adding explicit sentiment information did im-
prove over the setup using only the Twitter em-
beddings. Intuitively, a negative sentiment can be
expected to align with the OFFENSE class for Task
1, and perhaps be less informative for Task 2. This
is in any case reflected by the scores, as there is
an almost 6 point increase in accuracy for Task 1,

but a smaller increase for Task 2 (almost 4 points).
However, a closer analysis shows, that many tweets
might contain negative sentiment words without be-
ing offensive, such as ‘arbeitslos’ (‘unemployed’)
or ‘Flüchtling’ (‘refugee’).

As for the added gender information, doing a
factorized analysis of the different classes (in Task
1 and Task 2) and gender distribution, we did not
see a clear hint that either male or female authors
behave more offensive, profane, abusive or insult-
ing. Yet, this feature improved performance for
both tasks. While perhaps a clear correlation could
not be established, it is possible that by includ-
ing gender information, we are implicitly encoding
certain features of tweets that help the network in
differentiating between the classes.

Adding the descriptions that users publish about
themselves (on their Twitter profile pages) in-
creased the most when cross-validating the training
set, compared to the setup using only embeddings.
As explained in Section 4.1, the idea behind this
feature is that certain users could be more likely
to trigger hateful language. This would be cap-
tured by the classifier without the description as
well (i. e., the user name showing up in the user
mention would be an important feature). How-
ever, since user names are not likely to be present
in the embeddings (hence, they will not have an
informative representation using only the embed-
dings setup), adding the description the users added
themselves, consisting of individual words which
are more likely to be represented in the embed-
dings, will add information. For Task 1, this ad-
ditional information improves just over 8 points
to the embeddings-only setup, and for Task 2 the
improvement is 7 points in accuracy.

Apart from the presented approaches, we made
the first steps towards exploiting available re-
sources in other languages to have at our dis-
posal more training data for the neuronal net-
works. Given that the task is concerned with Ger-
man tweets with limited amounts of German data
available, we experimented with a crosslingual ap-
proach, i. e., expanding on the German language
data by adding English language data. For the first
attempt, we used the NLP+CSS 2017 data set (Jha
et al., 2017).7 The original data set (containing
10,095 unique tweets) was annotated for detecting
benevolent sexism (labels used: BENEVOLENT,

7https://github.com/AkshitaJha/NLP_
CSS_2017

100



HOSTILE, OTHER). Matching the definition of
abusive language according to GermEval’s anno-
tation guidelines all instances of sexism found in
the cleaned corpus (only tweets with a clear inner-
annotator agreement were kept) were tagged as
ABUSE and all remaining tweets were simply clas-
sified as OTHER.

In order to use data sets in different languages,
we mapped the word embeddings of both data sets
(one in English, another in German) onto each
other, both generated from Wikipedia data, using
MUSE.8 Under the assumption that the specific
characteristics (word embeddings) use the same
vector space, the neural network should not explic-
itly register the difference between English and
German training data, and should, hence, produce
better results. This crosslingual approach produces
71.5% average accuracy in Task 1 and 67.9% aver-
age accuracy in Task 2. These preliminary results
demonstrate that the accuracy numbers have not
increased compared to the other approaches. We
will investigate the crosslingual approach in more
detail in follow-up work.

8 Conclusions and Future Work

We have developed a CNN-based approach on Ger-
man Twitter data to predict offensiveness. The data
is annotated at two levels; one coarse level indicat-
ing whether or not the tweet is offensive (Task 1),
and one detailed level indicating whether offensive
tweets are insulting, profane or abusive (Task 2).
We augment the available training data with several
different types of information and in the best scor-
ing setup achieve an accuracy increase of 7.1 points
for Task 1 and 3.9 points for Task 2, comparing to a
baseline implementation using FastText. This sets
the marks of our best attempt at an accuracy of 81
for Task 1 and 72.2 for Task 2.

Various previous studies and also our own experi-
ments demonstrate that the automatic classification
of offensive language, including closely related
linguistic categories, with a very high degree of
accuracy is a very challenging task. The low in-
ter annotator agreement often mentioned above is,
obviously, due to the highly subjective nature of
language perception and interpretation. For some
people certain expressions constitute “offensive lan-
guage”, for others they do not. It is challenging,
maybe even impossible, to break this down into

8https://github.com/facebookresearch/
MUSE

a binary classification task or into a task with a
small number of categories. This socio-technical
challenge notwithstanding, it is surely worthwhile
to continue this line of research to arrive at larger
data sets, better and more adequate categories and
more suitable evaluation procedures. It would also
be interesting to investigate the different ways an
automatic text classification procedure could help
and assist social media users flagging and respond-
ing to, but also composing messages. After all,
maybe many instances of offensive language could
be taken care of by making sure that they never
come into existence. For example, Twitter users
who are writing a tweet or a reply to a certain user
and who use, based on an automatic classifier, of-
fensive language, could be shown an alert window
before posting, reminding them that they are prob-
ably using offensive language and that there is an
actual human being on the other end of the line
who may take offense by language of this nature.

Acknowledgments

This work has been partially funded by the project LYNX.

The project LYNX has received funding from the European

Union’s Horizon 2020 research and innovation programme un-

der grant agreement no. 780602. More information is available

online at http://www.lynx-project.eu.

References
Banks, James. 2010. Regulating hate speech online.

International Review of Law, Computers & Technol-
ogy, 24(3)

Badjatiya, Pinkesh and Gupta, Shashank and Gupta,
Manish and Varma, Vasudeva. 2017. Deep learn-
ing for hate speech detection in tweets Proceedings
of the 26th International Conference on World Wide
Web Companion, 759–760

Bourgonje, Peter and Moreno-Schneider, Julian and
Srivastava, Ankit and Rehm, Georg 2017. Au-
tomatic classification of abusive language and per-
sonal attacks in various forms of online communi-
cation International Conference of the German So-
ciety for Computational Linguistics and Language
Technology, 180–191 Springer.

Burnap, Pete and Williams, Matthew L. 2015. Cyber
hate speech on twitter: An application of machine
classification and statistical modeling for policy and
decision making. Policy & Internet, 223–242 Wiley
Online Library.

Ashok K. Chandra, Dexter C. Kozen, and Larry J.
Stockmeyer. 1981. Alternation. Journal of the As-
sociation for Computing Machinery, 28(1):114–133.

101



Davidson, Thomas and Warmsley, Dana and Macy,
Michael and Weber, Ingmar. 2017. Automated hate
speech detection and the problem of offensive lan-
guage arXiv preprint arXiv:1703.04009

Harald Dreißing and Josef Bailer and Anne Anders and
Henriette Wagner and Christine Gallas. 2014. Cy-
berstalking in a large sample of social network users:
prevalence, characteristics, and impact upon victims.
Cyberpsychology, Behaviour, and Social Network-
ing, 17(2)

Djuric, Nemanja and Zhou, Jing and Morris, Robin and
Grbovic, Mihajlo and Radosavljevic, Vladan and
Bhamidipati, Narayan. 2015. Hate speech detection
with comment embeddings Proceedings of the 24th
international conference on world wide web, 29–30

Dan Gusfield. 1997. Algorithms on Strings, Trees
and Sequences. Cambridge University Press, Cam-
bridge, UK.

Van Hee, Cynthia and Lefever, Els and Verhoeven, Ben
and Mennes, Julie and Desmet, Bart and De Pauw,
Guy and Daelemans, Walter and Hoste, Veronique.
2015. Detection and Fine-Grained Classification of
Cyberbullying Events. Proceedings of the Interna-
tional Conference Recent Advances in Natural Lan-
guage Processing, 672-680

Jha, Akshita and Mamidi, Radhika 2017. When does
a compliment become sexist? analysis and classifi-
cation of ambivalent sexism using twitter data. Pro-
ceedings of the Second Workshop on NLP and Com-
putational Social Science, 7-16

Jones, Lisa M and Mitchell, Kimberly J and Finkelhor,
David. 2013. Online harassment in context: Trends
from three youth internet safety surveys (200, 2005,
2010). Psychology of violence, 3(1):53 Educational
Publishing Foundation.

Joulin, Armand and Grave, Edouard and Bojanowski,
Piotr and Douze, Matthijs and Jgou, Hrve and
Mikolov, Tomas. 2016. FastText.zip: Compressing
text classification models.

Robin M. Kowalski and Susan P. Limber. 2013. Psy-
chological, physical, and academic correlates of cy-
berbullying and traditional bullying. Journal of Ado-
lescent Health, 53(1)

Kwok, Irene and Wang, Yuzhou. 2013. Locate the
Hate: Detecting Tweets Against Blacks. Proceed-
ings of the Twenty-Seventh AAAI Conference on Ar-
tificial Intelligence, 1621-1622

Alice E. Marwick and Ross W. Miller. 2014. On-
line Harassment, Defamation, and Hateful Speech:
A Primer of the Legal Landscape. Fordham Center
on Law and Information Policy Report

Massaro, Toni M. 1991. Equality and Freedom of Ex-
pression: The Hate Speech Dilemma. William &
Mary Law Review, 32(211)

Nand, Parma and Perera, Rivindu and Kasture, Abhi-
jeet. 2016. ”How Bullying is this Message?”: A
Psychometric Thermometer for Bullying Proceed-
ings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical Pa-
pers, 695–706

Nobata, Chikashi and Tetreault, Joel and Thomas,
Achint and Mehdad, Yashar and Chang, Yi. 2016.
Abusive language detection in online user content
Proceedings of the 25th international conference on
world wide web, 145–153

Park, Ji Ho and Fung, Pascale. 2017. One-step and
two-step classification for abusive language detec-
tion on twitter arXiv preprint arXiv:1706.01206

Phillips, Whitney. 2015. This Is Why We Can’t Have
Nice Things: Mapping the Relationship between
Online trolling and Mainstream Culture. The MIT
Press, Cambridge.

Pitsilis, Georgios K and Ramampiaro, Heri and
Langseth, Helge. 2018. Detecting Offensive
Language in Tweets Using Deep Learning arXiv
preprint arXiv:1801.04433

Ross, Björn and Rist, Michael and Carbonell,
Guillermo and Cabrera, Benjamin and Kurowsky,
Nils and Wojatzki, Michael. 2016. Measuring the
Reliability of Hate Speech Annotations: The Case
of the European Refugee Crisis. Proceedings of
NLP4CMC III: 3rd Workshop on Natural Language
Processing for Computer-Mediated Communication,
17:6-9

Tatjana Scheffler 2014. A German Twitter Snapshot
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14)
European Language Resources Association (ELRA).
Reykjavik, Iceland

Schmidt, Anna and Wiegand, Michael. 2017. A sur-
vey on hate speech detection using natural language
processing Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, 1–10

Verhoeven, Ben and Daelemans, Walter and Plank, Bar-
bara. 2016. TwiSty: a multilingual Twitter Sty-
lometry corpus for gender and personality profiling.
Proceedings of the 10th International Conference on
Language Resources and Evaluation (LREC 2016).
Portoro, Slovenia

Jin Wang and Zhongyuan Wang and Dawei Zhang and
Jun Yan 2017. Combining Knowledge with Deep
Convolutional Neural Networks for Short Text Clas-
sification Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-17, 2915–2921

Warner, William and Hirschberg, Julia. 2012. Detect-
ing hate speech on the world wide web Proceedings
of the Second Workshop on Language in Social Me-
dia, 19–26

102



Waseem, Zeerak and Hovy, Dirk. 2016. Hateful
symbols or hateful people? predictive features for
hate speech detection on twitter Proceedings of the
NAACL student research workshop, 88-93

Waseem, Zeerak. 2016. Are You a Racist or Am I
Seeing Things? Annotator Influence on Hate Speech
Detection on Twitter. Proceedings of the First Work-
shop on NLP and Computational Social Science,
138-142 Educational Publishing Foundation.

Waseem, Zeerak and Davidson, Thomas and Warms-
ley, Dana and Weber, Ingmar. 2017. Understanding
abuse: a typology of abusive language detection sub-
tasks arXiv preprint arXiv:1705.09899

Ulli Waltinger 2010. GERMANPOLARITYCLUES:
A Lexical Resource for German Sentiment Analy-
sis Proceedings of the Seventh International Con-
ference on Language Resources and Evaluation
(LREC) electronic proceedings. Valletta, Malta

Wulczyn, Ellery and Thain, Nithum and Dixon, Lucas.
2017. Ex machina: Personal attacks seen at scale
Proceedings of the 26th International Conference on
World Wide Web, 1391–1399

103



HIIwiStJS at GermEval-2018: Integrating Linguistic Features in a Neural
Network for the Identification of Offensive Language in Microposts

Johannes Schäfer
Institute for Information Science and Natural Language Processing

University of Hildesheim, Germany
johannes.schaefer@uni-hildesheim.de

Abstract

This paper describes our submission for the
GermEval-2018 shared task on the iden-
tification of offensive language. We use
neural networks for both subtasks: Task I
— Binary classification and Task II — Fine-
grained classification. We comparatively
evaluate the use of typical textual features
with extensions also considering metadata
and linguistic features on the given set of
German tweets. Our final system reaches
73.69% macro-average F1-score in a cross-
validation evaluation for the binary classi-
fication task. Our best performing model
for the fine-grained classification reaches
an macro-average F1-score of 43.24%. Fur-
thermore, we propose methods to include
linguistic features into the neural network.
Our submitted runs in the shared task are:
HIIwiStJS coarse [1-3].txt for Task I and
HIIwiStJS fine [1-3].txt for Task II.1

1 Introduction

The automatic analysis of social media microposts
such as Twitter2 messages (tweets) gained more
and more interest in recent years due to the neces-
sity to process their increasing amount and variety.
The anonymity of the web allows users to over-
come their inhibitions more quickly which fosters
the use of offensive language. Operators of social
media websites are required to filter overly hurtful,
derogatory or obscene comments and strive to ac-
quire methods to automatically identify potentially
offensive posts.

Schmidt and Wiegand (2017) present a survey
on hate speech detection which is closely related

1The IDs 1-3 correspond to our developed neural network
systems used for the prediction as follows: ID 1 - Baseline
model; ID 2 - Text & Metadata model; ID 3 - Text & Metadata
& POS model.

2https://twitter.com/

to the detection of abusive language. They give an
overview of typically used methods and features for
the task, ranging from surface, sentiment, linguistic
and knowledge-based features to higher-level fea-
tures making use of lexical resources or metadata
information. They especially point out the variety
of the task and the lack of comparability of differ-
ent research systems typically based on supervised
learning, as no benchmark dataset is available.

Abusive language in English online user con-
tent is detected by a system developed by Nobata
et al. (2016). They tackle the problem of nois-
iness of the data in conjunction with a need for
world knowledge by using a feature-rich regression
model. They exploit both character n-gram features
as well as a variety of linguistic features including
automatic syntactic and semantic annotations.

A multi-level classification of abusive language
is given by Razavi et al. (2010). They particularly
focus on flame detection and use a combination of
classifiers supported by a dictionary of insulting
and abusing language.

Most related work operates on English texts for
which also the largest amount of data is available.
One of the few presented research works on Ger-
man data is given by Köffer et al. (2018). They
collected a dataset of user comments on news ar-
ticles from the web with a focus on the refugee
crisis in 2015/16. Additionally, they provide a la-
beled dataset with comments marked as hateful or
non-hateful and demonstrate the transferability of
approaches developed for English data to German.

Neural networks (NNs) have been on the rise
only in recent years as they require vast amounts of
data and processing power which both only became
available recently in the field of natural language
processing. In applications on micropost classi-
fication neural networks also have seen research.
For example, Del Vigna et al. (2017) perform hate
speech detection on Italian user posts in the so-

104



cial network Facebook3 using recurrent neural net-
works (specifically a LSTM network) which they
compare to an approach using support vector ma-
chines.

Twitter data is analyzed by Founta et al. (2018)
in an approach to detect different types of abu-
sive behavior. They analyze both textual and user
properties from different angles of abusive post-
ing behavior in a deep learning architecture. In
their model they consider a variety of metadata and
include it into a NN model which learns text se-
quence features using a recurrent neural network.
They show that training the sub-networks of dif-
ferent input types requires specific attention since
simply training all of them at once in a combined
model leads to unwanted interactions.

In the present paper, we also utilize neural net-
works to train models which identify offensive lan-
guage in microposts from Twitter. Neural networks
have the advantage to work with a high input di-
mensionality where it is not clear which features
might be helpful concerning the prediction task.
Given enough training data, the network is able
to learn a complex, non-linear encoding of the in-
put specifically for the desired classification. A
certain intuition when selecting the features is how-
ever advised, since too many unrelated features can
introduce a high amount of noise to the model.

Our approach shows similarities to the meth-
ods presented by Founta et al. (2018), however,
we adapt the configuration of the network to our
classification task, dataset and to tweets in Ger-
man. Thus, in this work we first present a task,
domain and language adaptation of their methods.
Typically, neural networks are designed to only op-
erate on raw textual input and are then fine-tuned
to be able to learn patterns themselves. In our
work the model is additionally given automatically
pre-computed linguistic annotations. We present
possibilities and early research of including such
annotations into a combined neural network.

In the following sections we introduce our mod-
els in detail (Section 2), describe our dataset and
linguistic processing (Section 3) and finally report
on experiments (Section 4).

2 Methods

We implemented our models in Python using the
module keras with the TensorFlow backend. To
train our NN models we use the Adam optimizer

3https://www.facebook.com/

Figure 1: Baseline neural network, binary classifi-
cation variant.

and as loss function binary cross-entropy for the
binary classification and categorical cross-entropy
for the fine-grained classification respectively. We
train the models on our dataset using a batch size
of 64 which we determined experimentally to be
most suitable.

2.1 Baseline Model: Network Architecture

Our baseline model operates on the raw tweet in-
put with a minimal amount of preprocessing. We
compute word embeddings and feed them into a re-
current layer which is typically applied to sequence
data. Finally, the output prediction is computed by
a fully connected dense network. Figure 1 shows
the overall structure of the baseline neural network
with the specific dimensions4 of the data going
through the respective layers. In the following three
sections we go over the detailed configuration.

2.1.1 Input and Embedding Layer
In the baseline model we use the raw tweet as input
for the neural network in a simple input layer (In-
put Tweet in Figure 1) which instantiates the Keras
tensor.

Next, we decided to use word embeddings5 to
identify offensive language in tweets since we un-
derstand words as linguistically meaningful units
in twitter messages; as these are also sufficiently

4Note that the unspecified (“None”) dimension value in the
figure corresponds to the number of samples which depends
on the batch size (64 in our experiments).

5Brief experiments with character embeddings (also in-
cluding convolutional layers capturing character n-grams) did
not seem to lead to promising results on our dataset.

105



small, they lead to a feature vector of acceptable
length and richness. Additionally, choosing word
embeddings enables us to extract them from any
tweet without relying on linguistic knowledge, only
using a simple tokenizer. As further processing of
our data in the neural network is more efficient
when all input samples are of the same length, we
(pre-) pad the tokenized tweets to sequences of 48
tokens. We determined this value specifically for
our dataset by including the 95th percentile of all
contained tweet lengths. Thus, with this method
only 5% of the tweets are truncated.

As initial weights of the embedding layer we
utilize pre-trained word embeddings which is a
conventional method usually having the effect that
the model converges faster. In our experiments we
use the word embeddings provided by Cieliebak et
al. (2017) which are trained with Word2Vec on 200
million German tweets using 200 dimensions and
are available on the web6.

When the weights of the embedding layer are
set to not trainable, the total number of trainable
parameters in our neural network is substantially
reduced. This allowed us to design the remainder
of the network in a very precise fashion, however,
in this case the model cannot learn from out-of-
vocabulary (OOV) words. In early experiments we
found that only using the pre-trained embeddings
as initial weights and allowing the model to fit
these weights to the data during training leads to
a better performance. Thus, we pre-compute only
an embedding matrix using these weights which
also contains randomized vectors for words in our
dataset which are not contained in the embeddings.
This approach also seems well-grounded since the
used word embeddings are not specifically trained
on abusive language and texts from social media in
general tend to have a high number of OOV words.

Therefore, the output of our embedding layer for
tweets (Word Embedding in Figure 1) has the shape
of: number of sequences, length of sequences (48),
size of word vectors (200).

2.1.2 Recurrent Layer
As main neural network structure to encode the
word sequence of a tweet we use a recurrent layer
which sequentially processes data samples while
constantly updating an internal state. Recurrent
neural networks (RNNs) have proven to be highly
efficient in modeling text since they intrinsically

6https://www.spinningbytes.com/
resources/wordembeddings/

consider context information when learning predic-
tions on word sequences. In early experiments we
achieved the best performance with a RNN con-
taining long short-term memory units (Hochreiter
and Schmidhuber, 1997, LSTM), also known as a
LSTM network which outperformed both a simple
RNN and gated recurrent units (Cho et al., 2014,
GRU). Even though our sequences are of relatively
short length, we assume that the LSTM can track
long-term dependencies nevertheless, for example,
mentions of typical targets of insults at the start of
a tweet with the actually insulting word being at
the end of the tweet.

Experimentally, we determined a number of 128
units to be best performing for our LSTM network
(Encoder Tweet in Figure 1). To avoid overfitting,
we set the recurrent dropout value of 0.5 in this
layer. For further encoding we tested additional
recurrent or fully-connected dense layers, however,
did not achieve performance improvements.

2.1.3 Output Layer

The output layer (Output in Figure 1) of our neural
network consists of a fully-connected dense layer
which maps the output of the recurrent layer to
a probabilistic prediction. To avoid overfitting to
the training data, we apply L2 regularization in the
kernel of this layer (with λ = 0.01).

For the binary classification task we use the sig-
moid activation function and chose a single output
unit which expresses the probability of the sam-
ple containing abusive language. The probabilistic
prediction is transformed into a binary prediction
using a 0.5 threshold.

For the fine-grained prediction we use the soft-
max activation function and as the number of out-
put units the number of labels (4 in our dataset).
The one label with the maximum probability is then
selected as the predicted label for each sample.

2.2 Text & Metadata Model: Network
Architecture

As second model we developed a neural network
which combines textual sequence input in a sub-
network similar to the above-mentioned baseline
model with an additional metadata sub-network.
An overview of the combined network is given in
Figure 2. First, we describe in Section 2.2.1 the
new metadata network and then in Section 2.2.2
we show how we include the metadata sub-network
into the text sequence-based network.

106



Figure 2: Text & metadata neural network, binary classification variant.

2.2.1 Metadata Network

In our setting we understand metadata as numer-

ical data describing features of a single tweet go-

ing beyond its text, possibly with the aid of an

external lexicon; however, not using its word se-

quence structure. For example, we extract the

number of @-marked user name mentions and #-

marked keywords from tweets, count special char-

acters and attempt to match entries of pre-collected

lexicons containing lists of profane words, words

with known sentiment polarity or typical targets of

abusive speech. The list of the 27 types of meta-

data considered in our experiments is given in Sec-

tion 3.1.

The extracted numerical metadata features are

fed into an input layer to instantiate the Keras ten-

sor (Input Meta in Figure 2). Next we apply a

batch normalization layer (Meta BN) transform-

ing the values to a mean and unit variance of zero,

which optimizes the neural network performance.

To automatically compute a high-level encoding

of our metadata features we utilize a technique

known as bottleneck (Tishby and Zaslavsky, 2015;

He et al., 2016) which consists of a sequence

of several differently-sized fully-connected dense

layers. We experimented with various configura-

tions and found a sequence of three dense layers

((Meta Encoder [1-3] in Figure 2 with 128, 64

and 32 neurons respectively) to work best on our

dataset. A forth dense layer (Meta Encoder 4) is

added which transforms the output to a tensor of the

same dimensionality (128) as the output of the text

sequence-based network. This supports the combi-

nation of the two sub-networks to a single neural

network model which operates more efficiently on

sub-networks of the same size.

For all dense layers in this network we use the

tanh activation function as it works efficiently with

standardized numerical data. An L2 regularization

is also applied in all layers to reduce overfitting,

however, with an relatively low λ = 0.0001. This

can be justified since the input dimension of our

metadata features is quite low (27), thus the model

should not be overly complex to still be able to

learn patterns.

2.2.2 Combined Text & Metadata Network
We combine the above-mentioned metadata net-

work with the text sequence-based baseline net-

107



work described in Section 2.1 as follows. In front
of the fully-connected output layer, we insert a con-
catenate layer which appends the output of the text
encoder (Encoder Tweet in Figure 2) to the out-
put of the final layer of our metadata sub-network
(Meta Encoder 4). Finally, to predict the output
probabilities we again use a fully-connected dense
layer (Output in Figure 2 with the output dimension
in the figure given as 1 for the binary classification).
The configuration of this layer is unchanged from
the baseline model with the exception that its input
dimensionality is doubled (256) as we concatenate
two tensors of size 128 (second dimension).

When training this network as a combined model
at once, we struggled to achieve observable im-
provements in comparison to the baseline network.
This is justified by the fact that the two paths might
have a different convergence rate, which we ob-
served in experiments. Thus, one path can domi-
nate in predictions past a certain epoch and prevent
the weights of the other path from getting signifi-
cant updates. To avoid this problem, we use trans-
fer learning. We first train both sub-networks sepa-
rately, then freeze their weights and train the com-
bined model using the pre-trained sub-networks.
When training the sub-networks separately, we first
remove the other respective sub-network and the
concatenate layer as we can compute the output di-
rectly (e. g. when training the text sequence-based
network we exactly train the baseline network as
given in Figure 1). In a second step we remove the
output layer of each sub-network, concatenate the
output tensors and then add an output layer again
to receive the network displayed in Figure 2. In the
combined model, however, only the 257 weights of
the final layer (Output) are trainable.

2.3 Text & Metadata Model extended with
Linguistic Analyses

In this section we describe experimental methods
where we integrate pre-computed linguistic analy-
ses of the given text into our above-mentioned text
& metadata neural network. We make use of the
following three additional systems.

1. Compound splitter COMPOST (Cap, 2014).
2. Part-of-speech (POS) tag sequences of nor-

malized tweets, computed using the Python
module textblob-de7.

3. Dependency parse trees for normalized tweets
using the mate parser (Bohnet, 2010).

7http://textblob-de.readthedocs.io

We use 1. to reduce the number of unknown
words when importing the pre-trained word embed-
dings for our data. We first split all compounds in a
tweet before running the word embedding look-up.
Thus, we reduce the dimensionality of the embed-
ding layer by reducing the number of distinct words
as we consider components instead.

For integrating the POS tag sequences into our
network, we simply add another LSTM-based sub-
network with the same architecture as the text
sequence-based network as described in Section 2.1
to our combined network. This new sub-network
operates on trainable embeddings (initialized ran-
domly) of the POS tag sequence as input.

We integrate the dependency structures with two
different methods into our combined model. First,
we also use the tag sequence similar to the above-
mentioned POS tags in an additional LSTM-based
sub-network. In a second approach we only con-
sider the 1000 most frequent combinations of a
word with its dependency arc label and encode
these in a 1-hot vector for each tweet. This vector
can then be fed into a network of fully-connected
dense layers similarly to the metadata sub-network.

Finally, a top-level model combines the outputs
of the sub-networks in a concatenate layer in the
same fashion as we integrated the metadata sub-
network.

3 Data processing

The training dataset of the GermEval-2018 Shared
Task on the Identification of Offensive Language
consists of 5,009 tweets with two annotation lay-
ers. No user metadata is given. The first annota-
tion layer marks the binary classification of tweets,
i. e. they are either marked when containing of-
fensive language using the label “OFFENSE” or
in any other case using the label “OTHER”. The
second annotation layer is used for the fine-grained
classification tasks where three subcategories of
offensive language are marked. Thus, this layer has
four labels in total: “PROFANITY”, “INSULT”,
“ABUSE” and “OTHER”. Before training the neu-
ral networks on the raw tweets we apply certain
pre-processing techniques which we describe in
this chapter.

To be able to operate on words instead of the
character sequence input, we apply tokenization
using the TweetTokenizer8 implemented in the

8https://www.nltk.org/api/nltk.
tokenize.html

108



nltk.tokenize Python module. This tokenizer is
especially designed to process Twitter-specific ex-
pressions such as emoticons. It is introduced for
English but, according to our observations, it also
works fine on our German data.

We extract Twitter-specific mentions (marked by
@) and #-marked keywords9 from tweets using reg-
ular expressions. These lists are later used during
the metadata extraction process.

To extract rather conventional linguistically
structured sentences we apply a normalization step.
Here, we remove Twitter-specific user name men-
tion (@) and #-markers, line break markers, verti-
cal bars inside words which were used to mark key-
words when word affixes are present and replace
xml-escaped symbols. Furthermore, we add miss-
ing whitespace characters after punctuation marks,
replace ascii-emoticons with the corresponding
Unicode characters and finally remove remaining
special characters.

3.1 Metadata extraction
We extract metadata for each tweet from features
going beyond its text sequence structure, however,
only with the tweet text (and normalized text) as
input. Typically used Twitter metadata features
consider the author of a tweet, the number of his fol-
lowers, the location, account age, etc. This group
of metadata features are however not available in
our dataset as the task focuses only on the linguistic
content of microposts. All our metadata features
are numerical while some take external source lexi-
cons into account. We use the following external
resources (all German language):

(i) List of strings matching typical targets of abu-
sive speech, manually assembled according
to the annotation guidelines of the shared
task (Ruppenhofer et al., 2018) including:
feminists, black people, muslims, jews, ho-
mosexuals (LGBT), refugees, members of po-
litical parties, etc.;
separate list for strings matching German pub-
lic media names.

(ii) Lists of gender-specific names by the city of
Cologne, available on the web10.

9According to https://help.twitter.com/en/
using-twitter/how-to-use-hashtags, a hashtag
written with a # symbol is used to index keywords or topics
on Twitter while usernames are marked by the @ symbol. We
assume that in our experiments these can be used specifically
to find the target or typical topic of abusive comments.

10https://offenedaten-koeln.de/dataset/
vornamen

(iii) Lists of positive, negative and neutral German
polarity clues from the University of Biele-
feld (Waltinger, 2010).

(iv) List of 1,782 swearwords from the web11.
(v) Lists of words with positive and negative sen-

timent value from the University of Leipzig:
SentiWS (Remus et al., 2010).

(vi) Lexicon of words with positive, negative and
neutral sentiment values from the University
of Zürich.12

Note that the latter two resources not only contain
lists of words but additionally weights which we
also consider for our metadata features.

In total we extract the following 27 metadata
features for each tweet:

1. Length in number of characters;
2. Length of the normalized text in number of

characters;
3. Number of words starting with an uppercase

letter;
4. Number of user mentions (marked by @);
5. Number of user mentions in the first half of

the tweet;
6. Number of user mentions in the second half

of the tweet;
7. Number of matches of targets from list (i) in

the normalized text;
8. Number of matches of public media-specific

strings from list (i) in the list of mentions;
9. Number of matches of targets from list (i) in

the list of mentions;
10. Number of female names in the mentions us-

ing list (ii);
11. Number of male names in the mentions using

list (ii);
12. Number of #-marked keywords;
13. Number of matches of targets from list (i) in

the list of keywords;
14. Number of matches of public media-specific

strings from list (i) in the list of keywords;
15. Number of punctuation marks;
16. Number of reduplications of punctuation

marks;
17. Number of special characters (mostly emoti-

cons);
18. Number of words with uppercase letters only

in the normalized text;
11http://www.insult.wiki/wiki/

Schimpfwort-Liste
12http://bics.sentimental.li/files/

8614/2462/8150/german.lex

109



19. Number of matches of words with negative
polarity according from list (iii) in the normal-
ized text;

20. Number of matches of words with neutral po-
larity according from list (iii) in the normal-
ized text;

21. Number of matches of words with positive
polarity according from list (iii) in the normal-
ized text;

22. Number of matches of swearwords from list
(iv) in the normalized text;

23. Sum of negative sentiment values of matched
words from list (v) in the normalized text;

24. Sum of positive sentiment values of matched
words from list (v) in the normalized text;

25. Sum of negative sentiment values of matched
words from lexicon (vi) in the normalized text;

26. Sum of positive sentiment values of matched
words from lexicon (vi) in the normalized text;

27. Sum of neutral sentiment values of matched
words from lexicon (vi) in the normalized text.

3.2 Linguistic Analyses
We run the external systems described in Sec-
tion 2.3 on our data as follows. As system 1. com-
putes word frequencies and determines split points
according to a corpus, we add our tokenized tweets
to the large German corpus SdeWaC (Faaß and
Eckart, 2013) and input the combined corpus to
the system. We finally use the output to map com-
pounds of tweets to their components before com-
puting word embeddings. The systems 2. and 3. are
applied directly to the tokenized tweets.

4 Experiments

In this chapter we report on experiments using our
different models on the GermEval-2018 dataset.
Additionally, we mention dataset-specific observa-
tions as well as configurations of the neural net-
works. We present results from a 10-fold cross-
validation evaluation on the training data and de-
scribe our test runs with references to the filenames
containing the respective test data predictions.

The vocabulary given our entire dataset (training
and test data) consists of 9,812 distinct tokens with
a frequency greater than one. As the embedding
matrix contains all weights for all vocabulary en-
tries, our embedding layer has 1,962,400 trainable
weights (9,812 x 200 since the word vectors have
200 dimensions).

As the output predictions in the shared task are
evaluated based on the macro-average F1-score

measure, which does not take the frequency of each
class label into account, we optimized our model
to predict all labels uniformly. We achieve this
by adding class weights during training which we
compute according to the inverse frequencies of
the training data labels. Additionally, we smooth
the weights by factor 5 to avoid the bias getting
too strong, moving the values closer to the neu-
tral weight (1). For binary classification this leads
approximately to the following weights: 1.1 for
the label “OTHER” and 1.4 for the label “OF-
FENSE”. As the label frequencies are much more
imbalanced for the fine-grained classification, we
‘smooth’ them using a factor of 0.5, effectively dou-
bling the weights in comparison to their inverse fre-
quency with: “PROFANITY”: 144.4, “INSULT”:
15.9, “ABUSE”: 8.1 and “OTHER”: 2.0. We want
to note that using these weights does not lead to
an optimized overall accuracy; however, it helps to
balance the F1-scores over the classes.

Baseline Model: In total the baseline network
has 2,130,977 trainable weights for the binary clas-
sification (2,131,364 for the fine-grained classifi-
cation). We find that the model converges during
the binary classification experiments already after
4 epochs and during the fine-grained classification
experiments after 10 epochs. The results of the 10-
fold cross-validation on the training data are given
in Table 1. The table shows the label-specific pre-
cision, recall and F1-score values with the overall
accuracy and macro-average F1-score (F1, macro-avg).
All these values are averaged over the 10 folds. The
baseline model detects tweets marked to contain
offensive language with an F1-score of 61.88%.
Overall the macro-average F1-score is 71.93% for
binary classification. Results for the prediction of
the fine-grained classes are given in Table 2. Here,
the macro-average F1-score is considerably lower
with 43.24%. Instances annotated with the label
“PROFANITY” are most difficult to detect as the
model only reaches an F1-score of 13.21%. Consid-
ering all labels, the macro-average F1-score during
the 10-fold cross-validation on our training data of
our baseline fine-grained classifier is 43.24%.

We produce the first two test runs using the ex-
act same configurations as during the described
cross-validation setting, however, training on the
full training data and predicting the given test data
(HIIwiStJS coarse 1.txt using the baseline binary
classifier and HIIwiStJS fine 1.txt using the base-
line fine-grained classifier).

110



Label “OTHER” Label “OFFENSE”
Model precision recall F1-score precision recall F1-score Acc. F1, macro-avg

Baseline NN 80.45 83.82 81.94 65.86 59.32 61.88 75.64 71.91
Text&Meta 81.49 84.46 82.92 67.09 62.19 64.45 76.98 73.69
Text&Meta&POS 80.03 85.55 82.69 66.98 57.85 62.03 76.28 72.36

Table 1: 10-fold cross-validation result scores in % for the binary classification task.

“OTHER” “ABUSE” “INSULT” “PROFANITY”
Model F1-score F1-score F1-score F1-score Acc. F1, macro-avg

Baseline NN 78.16 48.24 33.35 13.21 65.24 43.24
Text & Meta 79.14 48.04 35.79 7.57 66.34 42.63

Table 2: 10-fold cross-validation result scores in % for the fine-grained classification task.

Text & Metadata Model: The combined net-
work consists of three models which are trained sep-
arately: 1. The text sequence-based sub-network
which is trained exactly like the baseline network
and converges after 4 epochs for binary classifica-
tion (10 training epochs for the fine-grained clas-
sification). 2. The metadata sub-network (with
18,714 trainable weights) we find to converge after
40 epochs for the binary classification (100 training
epochs for the fine-grained classification). 3. The
combined model (1,028 trainable weights) which
uses the pre-computed sub-networks converges af-
ter only 4 epochs for the binary classification and
6 epochs for the fine-grained classification.

The results for the binary prediction in the 10-
fold cross-validation on the training data are given
in Table 1. The evaluation shows that the extended
model outperforms the baseline model by 1.78%
macro-average F1-score. Especially the prediction
of tweets labeled as containing offensive language
is improved with and F1-score of 64.45% which is
2.57% more than to the baseline result.

The results for of the extended model the fine-
grained prediction in the 10-fold cross-validation
on the training data are given in Table 2. Here,
the overall macro-average F1-score is 0.61% lower
than the score for the baseline while the accuracy
is 1.10% higher. Observing the label-specific F1-
scores also shows an unclear pattern, as the values
only improve for half of the labels.

We compute two test runs using the text & meta-
data network using the exact same configurations
as during the described cross-validation setting,
however, training on the full training data and pre-
dicting the given test data (HIIwiStJS coarse 2.txt
using the binary classifier and HIIwiStJS fine 2.txt
using the fine-grained classifier).

Text & Metadata Model extended with Lin-
guistic Analyses: Early experiments on integrat-
ing the linguistic analyses in our described ap-
proach led to mixed results. We only report on
a few experiments here as the research is still on-
going and most models still require fine-tuning.

Using the compound splitter to normalize tweets
substantially reduces the size of vocabulary which
speeds up training, however, the performance dete-
riorates. We assume that it might be necessary to
train new word component embeddings using com-
pound splits on a large corpus as initial weights.

Furthermore, simply integrating the sub-
networks based on dependency parses does not
seem to improve the performance of the model.

Finally, we report the results when using three
sub-networks: the two sub-networks of our Text &
Metadata model extended by and additional sub-
network operating on sequences of POS tags. We
train the POS-based sub-network separately for
50 epochs and the combined model for 6 epochs.
The evaluation scores of our cross-validation are
given in Table 1 for the binary classification. Note
that this model reaches the highest recall for the
label “OTHER” in comparison to the other mod-
els while it performs worse according to all other
evaluation scores. The model seems to be overfit-
ted to this label which might signal that this ap-
proach is not fully optimized. We compute two
final test runs using this Text & Meta & POS-
based NN configuration, training on the full train-
ing data and predicting the given test data (HII-
wiStJS coarse 3.txt using the binary classifier vari-
ant and HIIwiStJS fine 3.txt using the fine-grained
classifier variant13).

13We train the POS-based sub-network in 120 epochs.

111



5 Conclusion and Future Work

In this paper we described our system runs and
methods for the identification of abusive language
in microposts. When integrating further feature
types we observed that fine-tuning the complex
neural networks gets much more difficult and time-
consuming. However, we manage to improve our
baseline model macro-average F1-score by 1.78%
to 73.69% when adding metadata features. Further-
more, we presented early findings on using linguis-
tic annotations in additional neural sub-networks,
which requires more optimization steps. We plan
to focus in future work on more in-depth analyses
on the integration of linguistic annotations into the
neural network to further improve the performance
of the system in modeling offensive language.

Acknowledgments

We would like to thank Ulrich Heid for his valuable
feedback and support.

References

Bernd Bohnet. 2010. Very high accuracy and fast de-
pendency parsing is not a contradiction. In Proceed-
ings of the 23rd international conference on com-
putational linguistics, pages 89–97. Association for
Computational Linguistics.

Fabienne Cap. 2014. Morphological processing
of compounds for statistical machine translation.
Ph.D. thesis, Institute for Natural Language Process-
ing (IMS), University of Stuttgart.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar.

Mark Cieliebak, Jan Milan Deriu, Dominic Egger, and
Fatih Uzdilli. 2017. A Twitter corpus and bench-
mark resources for German sentiment analysis. In
5th International Workshop on Natural Language
Processing for Social Media, Boston, MA, USA,
December 11, 2017, pages 45–51. Association for
Computational Linguistics.

Fabio Del Vigna, Andrea Cimino, Felice DellOrletta,
Marinella Petrocchi, and Maurizio Tesconi. 2017.
Hate me, hate me not: Hate speech detection on face-
book. In Proceedings of the First Italian Conference
on Cybersecurity (ITASEC17), Venice, Italy.

Gertrud Faaß and Kerstin Eckart. 2013. SdeWaC–A
corpus of parsable sentences from the web. In Lan-
guage processing and knowledge in the Web, pages
61–68. Springer.

Antigoni-Maria Founta, Despoina Chatzakou, Nicolas
Kourtellis, Jeremy Blackburn, Athena Vakali, and Il-
ias Leontiadis. 2018. A unified deep learning archi-
tecture for abuse detection. CoRR, abs/1802.00385.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Sebastian Köffer, Dennis M Riehle, Steffen
Höhenberger, and Jörg Becker. 2018. Dis-
cussing the value of automatic hate speech detection
in online debates. In Multikonferenz Wirtschaftsin-
formatik (MKWI 2018): Data Driven X - Turning
Data in Value, Leuphana, Germany.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153. International World Wide
Web Conferences Steering Committee.

Amir H Razavi, Diana Inkpen, Sasha Uritsky, and Stan
Matwin. 2010. Offensive language detection using
multi-level classification. In Canadian Conference
on Artificial Intelligence, pages 16–27. Springer.

Robert Remus, Uwe Quasthoff, and Gerhard Heyer.
2010. SentiWS – a Publicly Available German-
language Resource for Sentiment Analysis. In
Proceedings of the 7th International Language Re-
sources and Evaluation (LREC), pages 1168–1171.

Josef Ruppenhofer, Melanie Siegel, and Michael Wie-
gand. 2018. Guidelines for IGGSA Shared Task on
the Identification of Offensive Language, March 12,
2018.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

Naftali Tishby and Noga Zaslavsky. 2015. Deep learn-
ing and the information bottleneck principle. In
Information Theory Workshop (ITW), 2015 IEEE,
pages 1–5. IEEE.

Ulli Waltinger. 2010. GERMANPOLARITYCLUES:
A Lexical Resource for German Sentiment Analy-
sis. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation
(LREC), Valletta, Malta, May. electronic proceed-
ings.

112



ULMFiT at GermEval-2018: A Deep Neural Language Model for the
Classification of Hate Speech in German Tweets

Kristian Rother
Hochschule Hamm-Lippstadt

Marker Allee 76-78
59063 Hamm

kristian.rother@hshl.de

Achim Rettberg
Hochschule Hamm-Lippstadt

Marker Allee 76-78
59063 Hamm

achim.rettberg@hshl.de

Abstract

This paper describes the entry

hshl coarse 1.txt for Task I (Binary
Classification) of the Germeval Task 2018
- Shared Task on the Identification of
Offensive Language. For this task, German

tweets were classified as either offensive

or non-offensive. The entry employs a

task-specific classifier built on top of a

medium-specific language model which is

built on top of a universal language model.

The approach uses a deep recurrent neural

network, specifically the AWD-LSTM

architecture. The universal language model

was trained on 100 million unlabeled

articles from the German Wikipedia and

the medium-specific language model was

trained on 303,256 unlabeled tweets. The

classifier was trained on the labeled tweets

that were provided by the organizers of the

shared task.

1 Introduction

Hate speech is on the rise in online communica-

tion and can come in different forms but usually

follows certain patterns (Mondal et al., 2017). Ad-

ditionally social media serves as a breeding ground

for deviant behavior following real world incidents

(Williams and Burnap, 2015).

Hate speech has psychological consequences for

the victims such as fear, anger and vulnerability

(Awan and Zempi, 2015) as well as the worry that

online threats may become a reality (Awan and

Zempi, 2016). Additionally, hate speech can be

the harbinger of actual violence. Hate speech to-

wards a group can serve as a predictor of violence

towards that group (Müller and Schwarz, 2018a)

and Twitter use can fuel hate-crimes (Müller and

Schwarz, 2018b).

Institutions and legislators have reacted to this

trend towards hate speech. The European Commis-

sion and multiple social media companies agreed to

a code of conduct on countering illegal hate speech

online (European Commission, 2016). Germany

passed the Network Enforcement Act on September

1st 2017 to enforce fines of up to 50 million Euros

against social media companies that fail to delete

illegal content (German Bundestag, 2017). The law

specifically includes hate speech (§§130, 166 and

185-187 of the Criminal Code).

Due to the negative impact of hate speech and the

amount of social media data that is generated every

day, automated detection and classification of hate

speech has been studied widely. Recent overviews

can be found in (Schmidt and Wiegand, 2017) and

(Fortuna and Nunes, 2018). However, with some

exceptions such as (Ross et al., 2017) and (Van Hee

et al., 2015), the scope of the studies is often limited

to the English language. Therefore, this paper tries

to contribute to the improvement of the state of the

art in German hate speech detection by describing

the entry hshl coarse 1.txt which participated in

the binary classification task at Germeval 2018.

2 Experimental Setup

The overall setup closely follows the ULMFiT

method (Howard and Ruder, 2018) as depicted in

figure 1.

Figure 1: ULMFiT Overview.

The general idea is to split the training process

into three parts. First, a language model (LM)
is trained from a large corpus of unlabeled data.

113



This model is used as the basis to train a language-
medium model (LMM) from unlabeled data that
matches the desired medium of the task (e.g. fo-
rum posts, newspaper articles or tweets). Finally,
a task-specific head (TSH) like a hate speech clas-
sifier or a sentiment classifier is trained on top of
this model from a labeled dataset. This approach
facilitates the reuse of pretrained models for the
lower layers.

2.1 Technical Resources
All experiments were conducted in Jupyter Note-
books (Kluyver et al., 2016) running Python 3
(Python Software Foundation, 2018) kernels with
the following libraries:

• pytorch (Paszke et al., 2017)

• fast.ai (Howard and others, 2018)

• pandas (McKinney, 2010)

• numpy (Oliphant, 2006)

• scikit-learn (Pedregosa et al., 2011)

• matplotlib (Hunter, 2007)

• spaCy (Honnibal and Montani, 2018)

All models were trained on a desktop computer
with an Intel i7-6850 CPU, 32 GB of RAM and a
GTX 1080 GPU with 8 GB of RAM. A fixed seed
was used for the random number generators.1

2.2 Data
To train the entire model end to end, three data
sources were used. The language model was
trained on a dump of the entire German Wikipedia.
Only the top 100 million articles (with a character
length of at least 2,000) were kept and the vocabu-
lary was limited to 50,000 tokens. Because this is
the same approach as Wikitext-103 (Merity et al.,
2016) the model will be called W103-DE-50k.

The language-medium model was trained on
303,256 unlabeled tweets2 that were collected with
a custom script using the Twitter-Streaming-API.

Finally, to train the task-specific head, the 5,009
labeled tweets that were provided by the Germeval
2018 competition organizers were used. The data

1With this setup, the training of one epoch of the language
model took approximately 2 hours and 50 minutes.

2A rule of thumb from correspondence at the forums
hosted by one of the ULMFiT-authors is to use between 5x
and 10x of the available training data for this step.

is summarized in table 1 and the distribution of the
labels for the binary classification task is shown in
table 2

Model Medium Items Type
TSH Twitter 5,009 Labeled
LMM Twitter 303,256 Unlabeled
LM Wikipedia 100,000,000 Unlabeled

Table 1: Training Data.

Category Items Percent
Offensive 1,688 33.7
Other 3,321 66.3

Table 2: Frequencies of the Categories in the Train-
ing Set.

spaCy was used to tokenize the data and some ad-
ditional preprocessing as in (McCann et al., 2017;
Johnson and Zhang, 2017) was applied. Both the
Wikipedia and Twitter data was sanitized with a
custom function by replacing html-code and other
unwanted characters with sensible ones (e.g., re-
placing nbsp; with a space or <br /> with a new-
line). For the Wikipedia data, labels for the begin-
ning of an article and for the beginning of a para-
graph were added. For the tweets only a beginning
of tweet token was added and all @username occur-
rences were replaced with the label x user mention
and all urls were replaced with x url mention. Fi-
nally, special tokens for upper-case words, elon-
gation, repetition, unknown and padding were in-
serted. For the language model, the vocabulary was
capped at the most frequent 50,002 tokens with a
minimum frequency of 5. The medium-language
model has a vocabulary of 33,191 tokens.

All datasets were split into a training and a vali-
dation set by randomly separating 10% of the data
from the rest.

2.3 Architecture

Due to the sequential nature of the task, a recurrent
neural network (RNN) architecture was employed.
Specifically, the weight-dropped AWD-LSTM vari-
ant (Merity et al., 2017) of the long short-term
memory network (Hochreiter and Schmidhuber,
1997) and (Gers et al., 1999) was used. The chosen
embedding size was 400, the number of hidden
activations per layer was 1150 and the number of
layers was 3. For the classifier, two linear blocks
with batch normalization and dropout were added

114



to the model with rectified linear unit activations

for the intermediate layer and a softmax activation

at the last layer (Howard and Ruder, 2018).

2.4 Hyperparameters
The hyperparameters are similar across all stages

of the ULMFiT method. The batch size was limited

by the available GPU memory and always set to the

highest possible value. Back propagation through

time (BPTT) was set to 70 for all models. Apart

from these parameters, the models used different

configurations for the learning rate (LR), weight de-

cay (WD), dropouts, cyclical learning rates (CLR)

(Smith, 2017) and slanted triangular learning rates

(STLR) (Howard and Ruder, 2018). Additionally,

gradient clipping (Pascanu et al., 2013) was applied

to some of the models.

For the dropouts, the two configurations that

are summarized in table 3 were used. They are

taken from the Github repository3 corresponding

to (Howard and Ruder, 2018) and the Github repos-

itory4 corresponding to (Merity et al., 2017). The

dropout multiplier, when configured, is applied

to all dropouts. For the CLR the four parame-

ters are maximum to minimum learning rate di-

visor, cooldown percentage, maximum momentum

and minimum momentum in that order and for the

STLR the parameters are maximum to minimum

learning rate divisor and cut fract.

Dropout Howard Merity

Input Layer 0.25 0.6

General 0.1 0.4

LSTM’s Internal 0.2 0.5

Embedding Layer 0.02 0.1

Between LSTM Layers 0.15 0.2

Table 3: Dropout configurations.

2.4.1 Language Model
To obtain a sensible learning rate, the learning rate

finder (LRF) introduced by (Smith, 2017) was used.

The graph for the LRF is depicted in figure 2.

The hyperparameters for model C are directly

transfered from (Howard and Ruder, 2018)5. The

hyperparameters for model D are a variation of

3https://github.com/fastai/fastai/
tree/master/courses/dl2/imdb_scripts

4https://github.com/Smerity/
awd-lstm-lm

5Specifically, these up to date parameters were used:
https://github.com/fastai/fastai/tree/
master/courses/dl2/imdb_scripts

Figure 2: LRF - Language Model.

these parameters. The hyperparameters for model

A, B and E were deduced from the learning rate

finder and some short experiments.

Discriminative learning rates (Howard and

Ruder, 2018) of [lr/6, lr/4, lr, lr] were used for

models C and D for the four layer-groups. A fixed

learning rate was used for all other models.

The batch size for all language models was set

to 32 and a BPTT of 70 was used. A gradient

clipping of 0.4 and 0.12 was applied to model B

and D respectively. Model C used STLR with a

ratio of 32 and a cut fract of 0.1. Models A, B

and E used CLR with the parameters 10, 10, 0.95,

0.85 and model C used CLR with the parameters

10, 33, 0.8, 0.7. Adam was used as the optimizer

for models C and D and stochastic gradient descent

was used for the other models. Table 4 summarizes

the remaining hyperparameters.

Model LR WD Dropout

A 2 1e-7 Howard * 0.5

B 1.4 1e-7 Howard * 0.4

C 3e-4 1e-7 Howard * 0.5

D 2e-3 1e-6 Merity * 0.2

E 5.12 1e-7 Merity * 0.5

Table 4: Language Model Hyperparameters.

2.4.2 Language-Medium Model
A learning rate finder was used to determine suit-

able candidate learning rates. The graph is depicted

in figure 3.

The batch size for all language-medium models

was set to 32 and a BPTT of 70 was used. The

weight decay was set to 1e-7 for all models and

no gradient clipping was used. The model was

gradually unfrozen (Howard and Ruder, 2018) by

unfreezing the last layer first and then unfreezing

all remaining layers. Slanted triangular learning

115



Figure 3: LRF - Language-Medium Model.

rates (Howard and Ruder, 2018) with a ratio of 32

and a cut fract of 0.5 were used after the last layer

was unfrozen and a ratio of 20 and a cut fract of

0.1 was used when all layers were unfrozen. The

hyperparameters of all four models are summarized

in table 5. The columns LR-Last and LR-All refer

to the learning rates for the runs were only the

last layer was unfrozen and where all layers were

unfrozen.

Model LR-Last LR-All Dropout

LMM1 3e-3 3e-3 Howard * 0.7

LMM2 1e-3 1e-3 Howard * 0.7

LMM3 4e-3 3e-3 Howard * 0.3

LMM4 5e-3 1e-3 Howard * 0.3

Table 5: Language-Medium Model Hyperparame-

ters.

2.4.3 Task-Specific Head
A learning rate finder (see figure 4) was used to

find the learning rate of 3e-1. The batch size for

the classifier was set to 52 and a BPTT of 70 was

used.

Figure 4: LRF - Task-Specific Head.

The model was gradually unfrozen layer by layer

with the same hyperparameters applied to each

layer. The weight decay was set to 1e-7. Cycli-

cal learning rates with the parameters 10,10,0.98

and 0.85 were used. The Howard dropouts were

used with a multiplier of 1.8 and no gradient clip-

ping was applied. The optimizer was stochastic

gradient descent.

3 Experiments

The working hypothesis that an increased perfor-

mance of the lower layers improves the results at

the upper layers lead to the decision to try five

different hyperparameter configurations for the lan-

guage model. The models A-E were trained on

unlabeled Wikipedia data for 25 epochs. Model A

was trained for an additional 50 epochs and used

as the basis for the language-medium model.

Four different hyperparameter configurations

for the language-medium model (LMM1-LMM4)

were trained on unlabeled tweets for 30 epochs

each. Afterwards the best model (LMM1) was

used as the basis for the hate speech classifier.

Lastly, The hate speech classifier was trained on

the provided training data of labeled tweets. The

hyperparameters were tuned during experimenta-

tion by picking a learning rate that lead to conver-

gence with overfitting and regularizing via the other

parameters until the model didn’t overfit anymore.

4 Results

The perplexities for the language models are de-

picted in table 6. Models A, B and E outperformed

the other models and converged while models C

and D were underfitting. The perplexity of the best

LM is 27.39 which is better than the best perplexity

for a non-ensembled English language model on

the One Billion Word benchmark (30.0) that was re-

ported in the summary by (Jozefowicz et al., 2016)

and the current state of the art (28.7) for the same

corpus (Bakhtin et al., 2018). For comparison, the

best published result for the English Wikitext-103

is 40.8 (Grave et al., 2016). To our knowledge, the

best perplexity for a word level German language

model that uses the Wikipedia is 36.95 (Van Hee et

al., 2015).

After 30 epochs, the language-medium model

LMM1 showed the best overall result with a per-

plexity of 17.64.

To get a feeling for the quality of the hate speech

classifier, the labels for the validation set were pre-

dicted. Table 7 summarizes the results.

116



Model Validation Loss Perplexity
A 3.31 27.39
B 3.41 30.27
C 3.81 45.15
D 3.68 39.65
E 3.38 29.37

Table 6: Language Model Perplexities. Lower is
better.

Class Precision Recall F1 Support
Offensive 0.73 0.68 0.71 179
Other 0.83 0.86 0.85 322
Average 0.8 0.8 0.8

Table 7: Results Binary Classification.

5 Conclusion

The paper presented the submission
hshl coarse 1.txt that was entered for the bi-
nary hate speech classification task of Germeval
2018. It used a deep recurrent neural net, specif-
ically an AWD-LSTM architecture, to classify
German tweets as offensive or non-offensive.

A three layered approach based on the ULMFiT
method was used to train the classifier. First, a Ger-
man language model was trained from unlabeled
Wikipedia data. A language-medium model for
German tweets was trained on top of this model
from unlabeled tweets and served as the backbone
to train the hate speech classifier on the provided
labeled training data. This classifier achieved an
average F1 score of 80 on the validation data.

All relevant code will be made available at one
of the authors’ Github repositories6. The German
language model with a vocabulary size of 50,000
tokens achieved a perplexity of 27.39. It will be
released as W103-DE-50k and a link will be added
to the repository.

6 Outlook

The proposed approach towards hate speech clas-
sification can be improved in various ways. The
working hypothesis that better lower layer results
improve the classifier needs empirical support but
assuming it holds, the overall results could be im-
proved by improving the lower layers. Instead of
relying on a single model at each stage an ensem-
ble of models could be used. A good starting point
would be turning all models into bidirectional mod-

6https://github.com/rother

els (Peters et al., 2017). Different architectures
such as Quasi Recurrent Neural Networks (Brad-
bury et al., 2016) or Contextual LSTM (Ghosh et
al., 2016) or general improvements like continu-
ous caches (Grave et al., 2016) could improve the
overall results further.

The idea of super-convergence (Smith and Topin,
2017) might also be worth investigating and some
of the ideas outlined in the overview by (Schmidt
and Wiegand, 2017) could be tried.

Lastly, hate speech dictionaries could be used
to construct a keyword-filter for the Twitter-API
to collect more data for the offensive category to
improve the classifier by effectively increasing the
size of the training set.

7 Acknowledgements

We thank the Behr-Hella Thermocontrol GmbH
for supporting this research. We also thank all
reviewers and the competition organizers.

References
Imran Awan and Irene Zempi. 2015. We

fear for our lives: Offline and online ex-
periences of anti-Muslim hostility. Re-
port,[online] available: http://tellmamauk. org/wp-
content/uploads/resources/We% 20Fear% 20For%
20Our% 20Lives. pdf [accessed: 7 January, 2016].

Imran Awan and Irene Zempi. 2016. The affinity
between online and offline anti-Muslim hate crime:
Dynamics and impacts. Aggression and violent be-
havior, 27:1–8.

Anton Bakhtin, Arthur Szlam, Marc’Aurelio Ranzato,
and Edouard Grave. 2018. Lightweight Adaptive
Mixture of Neural and N-gram Language Models.
arXiv preprint arXiv:1804.07705.

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. 2016. Quasi-Recurrent Neural Net-
works. arXiv:1611.01576 [cs], November. arXiv:
1611.01576.

European Commission. 2016. Code of con-
duct on countering illegal hate speech online.
http://ec.europa.eu/newsroom/
document.cfm?doc_id=42985.

Paula Fortuna and Sérgio Nunes. 2018. A Survey on
Automatic Detection of Hate Speech in Text. ACM
Comput. Surv., 51(4):85:1–85:30, July.

German Bundestag. 2017. Act to improve en-
forcement of the law in social networks (network
enforcement act). https://www.bmjv.de/
SharedDocs/Gesetzgebungsverfahren/
Dokumente/NetzDG_engl.pdf?__blob=
publicationFile&v=2.

117



Felix A. Gers, Jürgen Schmidhuber, and Fred Cum-
mins. 1999. Learning to forget: Continual predic-
tion with LSTM. In 9th International Conference
on Artificial Neural Networks: ICANN ’99, pages
850–855.

Shalini Ghosh, Oriol Vinyals, Brian Strope, Scott
Roy, Tom Dean, and Larry Heck. 2016. Contex-
tual LSTM (CLSTM) models for Large scale NLP
tasks. arXiv:1602.06291 [cs], February. arXiv:
1602.06291.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2016. Improving neural language models with a con-
tinuous cache. arXiv preprint arXiv:1612.04426.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Matthew Honnibal and Ines Montani. 2018. spaCy
library. https://spacy.io.

Jeremy Howard et al. 2018. fast.ai library. https:
//github.com/fastai/fastai.

Jeremy Howard and Sebastian Ruder. 2018. Univer-
sal Language Model Fine-tuning for Text Classifica-
tion. arXiv:1801.06146 [cs, stat], January. arXiv:
1801.06146.

J. D. Hunter. 2007. Matplotlib: A 2d graphics en-
vironment. Computing In Science & Engineering,
9(3):90–95.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 562–570. Association
for Computational Linguistics.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Thomas Kluyver, Benjamin Ragan-Kelley, Fer-
nando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick,
Jason Grout, Sylvain Corlay, Paul Ivanov, Damián
Avila, Safia Abdalla, and Carol Willing. 2016.
Jupyter notebooks – a publishing format for repro-
ducible computational workflows. In F. Loizides
and B. Schmidt, editors, Positioning and Power in
Academic Publishing: Players, Agents and Agendas,
pages 87 – 90. IOS Press.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6294–6305.

Wes McKinney. 2010. Data structures for statistical
computing in python. In Proceedings of the 9th
Python in Science Conference, volume 445, pages
51–56. Austin, TX.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing LSTM
language models. arXiv preprint arXiv:1708.02182.

Mainack Mondal, Leandro Arajo Silva, and Fabrı́cio
Benevenuto. 2017. A measurement study of hate
speech in social media. In Proceedings of the 28th
ACM Conference on Hypertext and Social Media,
pages 85–94. ACM.

Karsten Müller and Carlo Schwarz. 2018a. Fanning
the Flames of Hate: Social Media and Hate Crime.
CAGE Online Working Paper Series 373, Competi-
tive Advantage in the Global Economy (CAGE).

Karsten Müller and Carlo Schwarz. 2018b. Making
America Hate Again? Twitter and Hate Crime under
Trump.

Travis E. Oliphant. 2006. A guide to NumPy, volume 1.
Trelgol Publishing USA.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In International Conference on Machine
Learning, pages 1310–1318.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS 2017 Workshop Autodiff.

Fabian Pedregosa, Gal Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, and Vincent Dubourg. 2011. Scikit-learn:
Machine learning in Python. Journal of machine
learning research, 12(Oct):2825–2830.

Matthew E. Peters, Waleed Ammar, Chandra Bhagavat-
ula, and Russell Power. 2017. Semi-supervised se-
quence tagging with bidirectional language models.
arXiv:1705.00108 [cs], April. arXiv: 1705.00108.

Python Software Foundation. 2018. Python program-
ming language. https://python.org.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2017. Measuring the reliability of hate
speech annotations: The case of the european
refugee crisis. arXiv preprint arXiv:1701.08118.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

118



Leslie N. Smith and Nicholay Topin. 2017.
Super-Convergence: Very Fast Training of
Neural Networks Using Large Learning Rates.
arXiv:1708.07120 [cs, stat], August. arXiv:
1708.07120.

Leslie N. Smith. 2017. Cyclical learning rates for train-
ing neural networks. In Applications of Computer
Vision (WACV), 2017 IEEE Winter Conference on,
pages 464–472. IEEE.

Cynthia Van Hee, Els Lefever, Ben Verhoeven, Julie
Mennes, Bart Desmet, Guy De Pauw, Walter Daele-
mans, and Vronique Hoste. 2015. Detection and
fine-grained classification of cyberbullying events.
In International Conference Recent Advances in Nat-
ural Language Processing (RANLP), pages 672–
680.

Matthew L. Williams and Pete Burnap. 2015. Cyber-
hate on social media in the aftermath of Woolwich:
A case study in computational criminology and big
data. British Journal of Criminology, 56(2):211–
238.

119



German Hate Speech Detection on Twitter

Samantha Kent
Fraunhofer FKIE

Fraunhoferstraße 20
53343 Wachtberg

samantha.kent@
fkie.fraunhofer.de

Abstract

This paper describes our system submis-
sion for the GermEval 2018 shared task on
the identification of German hate speech in
Tweets at Konvens 2018. We trained and
tested a Logistic Regression classifier with
10-fold cross validation using character n-
grams as features. We achieved a macro
F1 of 76.72 for the coarse-grained classifi-
cation task and 47.17 for the fine-grained
task when testing the classifiers on a small
development set we created.

1 Introduction

Germany recently passed the Network Enforce-
ment Act1, a law stating that social media com-
panies such as Twitter and Facebook are obliged
to remove hate speech and other illegal activity
from their websites. In light of this new law, hate
speech on social media has been receiving more
and more attention and raises the question of how
to automatically detect it. Twitter’s user guidelines
define hateful conduct by stating “You may not pro-
mote violence against or directly attack or threaten
other people on the basis of race, ethnicity, national
origin, sexual orientation, gender, gender identity,
religious affiliation, age, disability, or serious dis-
ease.” 2 Tweets in violation of the hateful conduct
policy, such as the example (1), must be removed.

(1) @welt Abschieben es sind doch nur
Moslems!!

@welt Deport they are just Muslims!!

While the definition in itself might seem straight-
forward, actually agreeing upon what hate speech
entails is much more complex. Ross et al. (2016)

1https://www.gesetze-im-
internet.de/netzdg/BJNR335210017.html

2https://help.twitter.com/en/rules-and-policies/hateful-
conduct-policy

point out that defining hate speech is difficult and
“a given statement may be considered hate speech or
not depending on someone’s cultural background
and personal sensibilities”. To test the reliability of
annotated hate speech corpora, they conducted an
experiment where 56 annotators categorized Ger-
man Tweets according to whether they contained
hate speech or not. They found a very low inter-
annotator agreement, even when providing anno-
tators with Twitter’s hateful conduct definition. A
similar observation was made by Waseem (2016),
who reports that it seems to be difficult to annotate
hate speech corpora without an intimate knowledge
of hate speech.

Currently, most automatic hate speech detection
research is conducted in English, and there is a
need for research in other languages. Thus, the
main aim in this paper is to contribute to German
hate speech detection methods.

2 Related Work

Automatic hate speech detection research, in par-
ticular on Twitter, can be roughly divided into two
separate areas. Namely, binary classification tasks
where the goal is to identify whether a Tweet con-
tains hate speech or not, and domain specific classi-
fication tasks where the Tweets contain, for exam-
ple, racist and sexist remarks (Waseem and Hovy,
2016) or remarks pertaining to the German refugee
crises (Ross et al., 2016).

There are a number of different methods used
in hate speech detection. Malmasi and Zampieri
(2017) use a linear Support Vector Machine with
which they obtain an accuracy of 78.0%. This
was achieved using character 4-grams only, as they
found that the addition of further features did not
improve overall performance. They also point out
that one of the particular difficulties in the binary
classification tasks is making a distinction between
hate speech and Tweets containing profane or of-
fensive language that should not be classified as

120



such.
Waseem and Hovy (2016) created a hate speech

corpus and used a logistic regression classifier
to identify racist and sexist Tweets. They found
the most predictive features are character bi- to
fourgrams combined with the information about
the gender of the person sending the Tweet and
achieved an F1 of 0.739. Badjatiya et al.(2017)
used a combination of deep learning methods and
gradient boosted decision trees and tested their
model on the dataset created by Waseem and Hovy
(2016), and reported an F1 score of 0.93.

3 Classification

We used scikit-learn 0.19 (Pedregosa et al., 2011)
to train and test a Logistic Regression classifier.
The optimal parameter settings were found to be:
C= 100.0, random state = 2, tol = 10.0, dual =
True. The classifier was evaluated using 10-fold
cross validation and a development Tweet set (see
section 3.1 for details). We used macro F1 as an
evaluation metric and compared the results to a
majority class baseline.

3.1 Data

The data was supplied as part of the GermEval
2018 shared task and consists of a total of 8541
German Tweets. 5009 Tweets are used for train-
ing and 3532 for testing. The Tweets have been
annotated so that there are two separate classifica-
tion tasks. Firstly, the coarse-grained (binary) clas-
sification task distinguishes between the classes
“offense” and “other”, where the former contains
hate speech and the latter does not. Secondly, for
the fine-grained classification task, the class “of-
fense” has been been split into three subclasses.
Thus, each tweet in the dataset is accompanied by a
coarse and a fine grained tag. The different classes
are as follows:

1. Offense - Tweets that contain hate speech.

1 a) Profanity — The use of profane words
without insulting someone.

1 b) Insult — Profanity directed at an individ-
ual with the intention to insult them.

1 c) Abuse — The most severe form of hate
speech where negative characteristics are
ascribed to a group of people.

2. Other — Tweets that do not contain hate
speech.

To thoroughly test the classifier, the training data
was split into a training and development set. This
allows for the identification of potential overfitting
or underfitting of the classifier on the training data.
The last 500 Tweets, approximately 10%, were cut
from the training data to form the development
set. The distribution of classes in the training and
development sets is reported in table 1. Both sets
have an extremely similar distribution in terms of
the occurrence of hate speech, as 33.6% of Tweets
in the training data and 33.8% in the development
data are annotated as hate speech.

Class Tweets %
Training set:
Offense 1519 33.6
Other 2990 66.3
Total 4509 100
Development set:
Offense 169 33.8
Other 331 66.2
Total 500 100

Table 1: The number of Tweets per class in the
training and development data.

A similar distribution can also be found within the
“offense” class. Table 2 shows the distribution of
the different types of hate speech is almost identical
in the training and development Tweets.

Offense % Train Tweets % Dev. Tweets
Profanity 4.2 (n=64) 4.1 (n=7)
Insult 35.3 (n=536) 34.9 (n=59)
Abuse 60.5 (n=919) 60.9 (n=103)
Total 100 (n=1519) 100 (n=169)

Table 2: The distribution of Tweets within the of-
fense class in the training and development data
sets.

3.2 Feature Description
Different types of features were tested while
constructing the classifier. We performed a search
to find the best feature combination and found that
the best results were obtained using only character
n-grams. The other features listed below were
tested but did not contribute to overall performance.
They consist of lexical lookups and basic linguistic
features such as those suggested in Nobata et al.
(2016).

121



• N-grams — These are the most basic features
that contribute the most in terms of perfor-
mance. We employ character n-grams ranging
from 1 to 6 characters each weighted by their
TF-IDF.

• The number of characters in a Tweet.

• The number of tokens in a Tweet.

• The number of non-alphanumeric characters

• The number of words in a Tweet containing
an asterisk, a symbol which is often used to
disguise swear words.

• The number of words present in a German
swear word list. 3

• The positive and negative sentiment score
based on the presence in the positive or nega-
tive polarity lists created by Waltinger (2010).

• The emoji feature was used to process the sen-
timent contained in the emoji’s in the Tweets.
It consists of a list lookup in a positive and a
negative emoji list4. Both lists are small and
contain only 22 and 24 entries respectively,
so that the focus lies on precision rather than
recall (Davidson et al., 2017).

3.3 Pre-processing

All Tweets were pre-processed prior to classifica-
tion. Firstly, the Tweets were anonymized by re-
moving all user names. Secondly, all punctuation
was removed. And finally, all Tweets were lemma-
tized using the Spacy 5 lemmatizer.

4 Results

The results section is split into two separate parts.
Given that the results on the final test data are not
yet available at the time of writing, the first part
of the results section will focus on the preliminary
results obtained by testing the classifiers on the
development set. The description of the predictions
submitted to the GermEval organizers can be found
in section 4.2.

3The swear word list was retrieved from
http://www.hyperhero.com/de/insults.htm

4The positive and negative emoji lists were obtained from
https://unicode.org/emoji/charts/full-emoji-list.html

5The Tweets were lemmatized using
https://spacy.io/api/lemmatizer

4.1 Preliminary results
The coarse-grained classification results are shown
in table 3. The best performing classifier used char-
acter 1-5 grams as features and achieves a macro F1
of 76.26 on the 500 Tweet development set. None
of the other features contribute to the performance.
For example, the addition of the emoji feature or
the sentiment scores seems to increase the cross val-
idated F1, but decreases performance when tested
on the development data.

The macro F1 is consistently slightly lower on
the cross-validated training data. We suspect this
is due to variance in the data. The results fluc-
tuate depending on the instances provided to the
classifier in the training and the development sets.
During cross-validation on the training data, it be-
came apparent that the range of different results is
larger for the classifier with character 1-2 grams
as a feature, than it is for character 1-5 grams. For
character 1-2 grams, the difference between the
highest and lowest f1 score is 1.01, compared to
0.08 for character 1-5 grams. The smaller the range
in cross-validation during training, the better the
results on the blind development set.

Feature Macro F1
10-fold CV

Macro F1
Development

Majority Class Baseline - 39.83
Character 1-2 grams 64.24 65.98
Character 1-3 grams 68.73 74.46
Character 1-4 grams 73.04 75.49
Character 1-5 grams 73.80 76.26
Character 1-6 grams 70.27 39.83
Best N-grams + emoji 73.27 39.76
Best N-grams + polarity 71.94 54.82

Table 3: Classification results for the coarse-
grained task: Macro F1 10-fold cross validation
on the training data and macro F1 on the develop-
ment set.

The same classifier retrained on the fine-grained
labels does not perform as well as it does on the
binary classification task. Table 4 shows that the
best result on the development set was an F1 of
47.17. Unlike in the coarse-grained task, lengthen-
ing the n-gram sequence does not increase perfor-
mance, because the F1 decreases quite drastically
after character trigrams.

The performance for the individual classes for
the best feature combination, character 1-3 grams,
is shown in table 5. The classifier performs best on

122



Features Macro F1
10-fold CV

Macro F1
Development

Majority Class Baseline 19.92
Character 1-2 grams 33.27 40.10
Character 1-3 grams 39.70 47.17
Character 1-4 grams 40.09 23.85
Best N-grams + emoji 44.37 23.54
Best N-grams + polarity 42.15 23.33

Table 4: Classification results for the fine-grained
task: Macro F1 10-fold cross validation on the
training data and macro F1 on the development set.

the abuse subclass, which is the strongest form of
hate speech, and the worst on the profanity class.
This indicates that the classifier is sensitive to the
most offensive hate speech, rather than the less
offensive Tweets in the profanity class.

Class Precision Recall Macro F1
Profanity 0.00 0.00 0.00
Insult 81.82 15.25 25.71
Abuse 70.27 50.49 58.76
Other 75.90 95.17 84.45

Table 5: Classification results for the fine-grained
task: Macro F1 10-fold cross validation on the
training data and macro F1 on the development set.

4.2 Final results
The following six files were submitted for evalua-
tion:

1. fkieITF coarse 1.txt — character 1-3 grams

2. fkieITF coarse 2.txt — character 1-4 grams

3. fkieITF coarse 3.txt — character 1-5 grams

4. fkieITF fine 1.txt — character 1-3 grams

5. fkieITF fine 2.txt — character 1-3 grams

6. fkieITF fine 3.txt — character 1-3 grams

The final models were trained and tested on the full
training and test set provided by the task organizers,
not the reduced set that was used to achieve the re-
sults described above. For the coarse grained task,
three separate classifiers were trained with char-
acter 1-3, 1-4 and 1-5 grams as features. For the
fine-grained task, the three classifiers were trained
using character 1-3 grams only. The parameters
were the same as described in section 3 for all clas-
sifiers, except the random state parameter was not

fixed for the three fine-grained classifiers. All data
was pre-processed as described in section 3.3.

5 Discussion

The results for the fine-grained classification in-
dicate that differentiating between different types
of hate speech is more difficult than just detecting
whether hate speech is present in a Tweet. While
the basic character n-gram features perform reason-
ably well on the binary classification task, other
features tailored specifically to differentiating be-
tween different types of hate speech are needed for
the fine-grained task. For example, Tweet (2) is
annotated and correctly identified as “abuse”, but
Tweet (3) is annotated as “profanity”, and is incor-
rectly predicted to be “other”. Both Tweets are a
similar length, contain swear words, and attribute
a negative quality to the subject of the Tweet. A
human annotator knows that one Tweet is much
more harmful than the other, but it is not so easy to
define features to distinguish between the two.

(2) Wer die Grünen wählt ist entweder dumm
oder ein Hurensohn

(3) Juhu, das morgige Wetter passt zum Tag
SCHEIßWETTER

Another challenge stems from the fact that it is
difficult for human annotators to consistently an-
notate hate speech. The Tweets in the examples
below are both annotated as “abuse”, the strongest
type of hate speech in the corpus. While the Tweet
in example (4) can be clearly identified as being
abusive to a large group of people, the Tweet in
example (5) is much less extreme, and an argument
can be made that this is not the same type of hate
speech, or perhaps not even hate speech at all. Bet-
ter definitions of what hate speech exactly is would
make it easier to automatically distinguish between
different types.

(4) @diMGiulia1 Araber haben schon ekel-
hafte Fressen....!

(5) @BILD Warum lese ich nix ber Ab-
gaswerten von ausländischen Autos.
Werden diese Daten uns unterschlagen?
Kann mir beim besten Willen nicht
vorstellen, dass nur bei deutschen Auto-
motoren geschummelt wurde!!!!!!

An issue that may also contribute is the fact that
the subclasses within “offense” are relatively small.

123



In particular, “profanity” only has a total of 64
training instances and it occurs only 7 times in
the development set. This leads to issues with the
fine-grained classifiers, as Tweets are often not pre-
dicted to be “profanity” at all.

For the final results of the classifiers, there is
an increase in both training and test data. There
is a possibility that some of the challenges dis-
cussed above have been solved by the increase in
data. Based on the learning rate provided in figure
1 below, a slight increase in the results could be
expected. However, as discussed in the previous
section, the results may fluctuate depending on the
instances in the training and test data.

Figure 1: Learning rate for a coarse-grained classi-
fier with character 1-5 grams as features.

6 Conclusion

In this paper we presented a logistic regression clas-
sifier based on character n-grams to automatically
identify hate speech in Tweets. We participated in
both tasks set out at GermEval 2018. We reported a
macro F1 of 76.72 and 47.17 for the coarse-grained
task and fine-grained task, respectively, after test-
ing the classifiers on the self-created development
set. Unsurprisingly, the binary classification task
was simpler than trying to determine the degree of
severity of hate speech in a Tweet. Nevertheless,
in both cases, the task still remains challenging
and highlights the fact that defining and annotating
hate speech can indeed be problematic (Ross et al.,
2016). A comprehensive error analysis would pro-
vide insight into how to differentiate between these
types of hate speech and allow us to understand
how to design features specifically tailored to the
task at hand.

References
Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,

and Vasudeva Varma. 2017. Deep learning for hate

speech detection in tweets. In Proceedings of the
26th International Conference on World Wide Web
Companion, Perth, Australia, April 3-7, 2017, pages
759–760.

Thomas Davidson, Dana Warmsley, Michael W. Macy,
and Ingmar Weber. 2017. Automated hate speech
detection and the problem of offensive language.
In Proceedings of the Eleventh International Con-
ference on Web and Social Media, ICWSM 2017,
Montréal, Québec, Canada, May 15-18, 2017.,
pages 512–515.

Shervin Malmasi and Marcos Zampieri. 2017. De-
tecting hate speech in social media. In Proceedings
of the International Conference Recent Advances in
Natural Language Processing, RANLP 2017, Varna,
Bulgaria, September 2 - 8, 2017, pages 467–472.

Chikashi Nobata, Joel R. Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th International Conference on World
Wide Web, WWW 2016, Montreal, Canada, April 11
- 15, 2016, pages 145–153.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben-
jamin Cabrera, Nils Kurowsky, and Michael Wo-
jatzki. 2016. Measuring the reliability of hate
speech annotations: The case of the european
refugee crisis. CNLP4CMC III: 3rd Workshop
on Natural Language Processing for Computer-
Mediated Communication, Bochum, Germany.

Ulli Waltinger. 2010. Germanpolarityclues: A lexical
resource for german sentiment analysis. In Proceed-
ings of the International Conference on Language
Resources and Evaluation, LREC 2010, 17-23 May
2010, Valletta, Malta.

Zeerak Waseem and Dirk Hovy. 2016. Hateful
symbols or hateful people? predictive features
for hate speech detection on twitter. In Proceed-
ings of the Student Research Workshop, SRW@HLT-
NAACL 2016, The 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
San Diego California, USA, June 12-17, 2016, pages
88–93.

Zeerak Waseem. 2016. Are you a racist or am I
seeing things? annotator influence on hate speech
detection on twitter. In Proceedings of the First
Workshop on NLP and Computational Social Sci-
ence, NLP+CSS@EMNLP 2016, Austin, TX, USA,
November 5, 2016, pages 138–142.

124



CNN-Based Offensive Language Detection

Jian Xi? and Michael Spranger Dirk Labudde

University of Applied Sciences Mittweida
Forensic Science Investigation Lab (FoSIL)

Mittweida, Germany

{xi, spranger}@hs-mittweida.de

Fraunhofer SIT
Cyber Security

Darmstadt, Germany

labudde@hs-mittweida.de

Abstract

Sentiment analysis of short social media
texts is a challenging task due to limited
contextual information and noise in texts.
We present a deep convolutional model that
utilizes unsupervised pre-trained word em-
beddings to detect offensive texts. Unfor-
tunately, the model cannot outperform the
baseline model in task-1 of the Germeval
Task 2018 in terms of the F1-measure.

1 Introduction

Sentiment Analysis (SA) is a subtask in Text Classi-
fication (TC) that focuses on the contextual mining
of texts that are related to some specific objects.
SA has great potential for several different applica-
tions. For instance, for a recommender system it is
critical to know the interests of the customers. Fur-
thermore, SA is also useful to find out the public
opinion concerning highly sensitive political topics,
as was the case in the study by Ross et al. (2016),
in which Twitter texts were used to detect hate
speech in the European refugee crisis. Usually, SA
includes methods from different disciplines such
as natural language processing (NLP) and machine
learning (ML) (Pang et al., 2002).

The detection of offensive language in the Ger-
meval Task 2018 is a typical task in SA. The sub-
mitted models should be able to categorize tweets
into offensive or neutral for task-1 and into more
fine-grained categories, namely neutral, profanity,
insult and abuse, in task-2. Both, basic features and
deep learning features, were used and combined
with a classical ML model and a deep model in
order to find out how the best result for the task can
be achieved.

The paper is organized as follows: in Section II
the architecture for the task is presented. Section III
details the experimental setup and results. Finally,
Section IV gives a short conclusion and discusses
future work.

2 Model Description

The deep learning model shows remarkable perfor-
mance in SA tasks as was shown by Nogueira dos
Santos and Gatti (2014) as well as in NLP sequen-
tial text generation (Sutskever et al., 2011). The
former study used a Convolution Neural Network
(CNN) that uses convolution filters to extract local
features in order to classify texts. In the latter study,
a Recurrent Neural Network (RNN) captures the
dependencies of data in a time-sequential way. In
our case, we used a CNN model due to its perfor-
mance in NLP tasks.

2.1 Architecture

Our model is a variation of the CNN by Kim (2014)
as depicted in Figure 1. For the model, two chan-
nels were used for static and non-static represen-
tations of inputs with word embeddings (Mikolov
et al., 2013). After maximizing the feature map
with a max pooling operator as was presented by
Kim (2014) a dense layer was added and its output
entered into a second convolution layer

cs = f (w ·max{c}+b), (1)

where c is the feature map, w and b the weights
connected to the dense layer. It was found that,
without this structure, the results are even worse.
The output of the second convolution layer is con-
catenated and used as the input for the last dense
layers. The final predicted sentiment label is output
by a softmax layer.

2.2 Network Training

In our task let T = t1, ..., tm be a set of texts to be
categorized, and c = c1, ...,cn a set of sentiment
classes, then the task of categorizing can be de-
scribed as a surjective mapping f : T →C, where
f (t) = c ∈ C yields the correct class for t ∈ T .
Given a text, the model calculates a score for each
sentiment class c∈C. The network is hence trained

125



Figure 1: The architecture of the model with two input channels.

by minimizing the negative likelihood for the train-

ing set T defined in Equation 2.

logL(c|t,Θ) =
m

∑
i=1

p(c|ti,Θ)− log
n

∑
j=1

esΘ(ti)c j (2)

For each input text ti, the sentiment score sΘ(ti)c for

the sentiment label c is calculated by the network

with the parameter Θ. The probability of a senti-

ment class ck given the input ti is the proportion

of the sentiment class c over all sentiment classes

c j ∈ C, j = 1, ...,n and is calculated as shown in

Equation 3.

p(ck|ti,Θ) =
esΘ(ti)ck

∑n
j=1 esΘ(ti)c j

(3)

To predict a sentiment class it has to be determined

which Θ maximizes the probability for a certain

class as is shown in Equation 4.

c̃ = arg max
Θ

p(c|ti,Θ) (4)

In order to solve this optimization task

ADADELTA, as proposed by Zeiler (2012),

was applied.

2.3 Regularization
In order to regularize the parameters the L2 norm

was used in the convolution layers and a batch nor-

malization (Ioffe and Szegedy, 2015) in the dense

layers. The training does not stop until the valida-

tion accuracy does not improve any further within

25 epochs.

3 Experimental Setup and Results

The tasks are implemented with NLTK (Loper

and Bird, 2002), Keras (Chollet, 2017), Scikit-

learn (Pedregosa et al., 2011) and TreeTagger

(Schmid, 1995). For task-1 four machine learn-

ing approaches were used: Naı̈ve Bayes, SVM, a

Multi-layer Perceptron (MLP) and our deep model.

The basic models give a base-line performance for

task-1. Afterwards, the deep model was build to

upgrade the results for both tasks. All models are

evaluated with respects of precision, recall and F1-

measure. Before the setup is explained in more

detail, the features used are briefly introduced.

3.1 Feature Selection
In text classification tasks the selection of features

is a critical step. On the one hand, well selected

features are necessary to achieve highly accurate

results. On the other hand, they help to reduce the

feature space and as a consequence to minimize the

time complexity (Yang and Pedersen, 1997).

Basic Features: Before the selection of features,

all stop-words, repeated words and the punctuation

were removed. Wang and Castanon (2015) showed

that emoticons help in sentiment analysis tasks,

however, this was not taken into account in our

classification. The following three representations

of text documents incorporating different features

were compared:

• bag of words (BoW),

• TF-IDF of the BoW,

• Word n−grams (bi- and trigrams)

We also tried to select the top most common k
n−grams to serve as a dictionary. However, due to

an almost uniform distribution of n−grams in the

corpus, this approach gives less informative feature

representations.

Deep Learning Features: In order to use the

similar contextual semantic of words, we used un-

supervised pre-trained word embeddings (Mikolov

et al., 2013) from the following resources:

• German twitter data between 2013 and 2017,

with 100 dimensions and window size 5 pro-

vided by Ruppenhofer (2018),

126



• German Wikipedia and news articles, with
300 dimensions and window size 5 from
Müller (2015)

3.2 Setup

Features: Table 1 shows the abbreviations for the
features considered in both classification tasks.

Abbrv. Feature

RAW only raw texts
RAW* with replacement of mention and hash

tag
STM BoW after stemming
LEM BoW after lemmatizing
TFI TF-IDF of BoW
STF TF-IDF of BoW after stemming
LTF TF-IDF of BoW after lemmatizing
BIG word bigrams after stemming
TRG word trigrams after stemming
MIG mixture of BIG and TRG

Table 1: Features considered in the classification
tasks.

In order to evaluate the fitting of the models
for our data, a 10-fold cross validation was used.
In each cross step, models with different features
were evaluated regarding precision, recall and f-
measure. After the best accuracy was achieved the
most appropriate features and model was selected.
The results will be given in 3.3.

Models: For the three basic models the default
parameter settings from NLTK were used. In order
to select the best version for the deep model, the
following model variations were tested:

• Random: the word embeddings are initialized
randomly and learned during training,

• Static: the word embeddings are initialized
with previously pre-trained word embeddings
and not changed during training,

• Non-static: one channel is set as static and
the other as non-static. The static channel
gives a basic word representation in the se-
mantic space, while the other channel is ad-
justed during the learning process, so it can
give a plausible representation of words in the
given context.

3.3 Results
The results for the 10-fold cross-validation of three
basic machine learning models for task-1 with dif-
ferent features are given in Table 2. As can be seen,
unigram features lead to less information in the
classification, while trigrams give the best preci-
sion results. Since the sequential and contextual in-
formation between words are encoded in trigrams,
it enables a model to classify offensive texts better.
Of all three basic models, the Naı̈ve Bayes using
BoW and stemmed texts performs best in terms of
the F1 measure.

Model Feature P R F1

Naı̈ve
Bayes

RAW 0.542 0.789 0.623
RAW* 0.536 0.756 0.627
STM 0.556 0.784 0.651
LEM 0.558 0.779 0.650
BIG 0.570 0.225 0.323
TRG 0.775 0.018 0.036
MIG 0.565 0.222 0.319

MLP

RAW 0.654 0.473 0.549
RAW* 0.651 0.439 0.524
STM 0.661 0.493 0.565
LEM 0.669 0.495 0.569
TFI 0.629 0.511 0.564
STF 0.626 0.509 0.561
LTF 0.638 0.490 0.554
BIG 0.748 0.069 0.126
TRG 0.875 0.012 0.025
MIG 0.836 0.033 0.064

SVM

TFI 0.663 0.513 0.579
STF 0.677 0.524 0.591
LTF 0.680 0.523 0.591
BIG 0.777 0.056 0.104
TRG 0.917 0.007 0.013
MIG 0.857 0.025 0.048

Table 2: Evaluation results of the basic models for
task-1.

Additionally, Table 3 shows stems of words that
often occur in offensive twitter texts. They were
selected by their informativeness which is based
on the prior probability that features occur for each
label. These may be useful in a later approach in
order to set up a knowledge base.

Table 4 shows the best results for our deep model
for task-1, achieved using word embeddings pre-
trained on Twitter data, as suggested by Rezaeinia
et al. (2017). The model performs best with a static

127



Stem Informativeness

murksel 21.68
scheiss 19.09
pack 17.95
idiot 17.34
wand 14.20
deutschfeind 12.09
entsorgt 10.07
gehirn 8.31
hitl 7.18
altmai 6.65

Table 3: The 10 most informative features detected
by the Naı̈ve Bayes model.

Class P R F1

OTHER 0.778 0.918 0.840
OFFENSIVE 0.754 0.470 0.572

Table 4: Evaluation results of the CNN model for
task-1.

initialization. However, the Naı̈ve Bayes model per-
forms better in this task. One possible explanation
for the poor performance of our model is the lack in
sufficient training data. For example Kim’s (2014)
training data set was on average of double the size.
Another possible explanation is that the quality of
the pre-trained word embeddings is not sufficient.
As we have seen the word embeddings include a
lot of noise. Subsequently, three runs of the static
deep model using Twitter word embeddings were
submitted as:

• FoSIL coarse 1.txt,

• FoSIL coarse 2.txt, and

• FoSIL coarse 3.txt.

4 Conclusions and Future Work

In this paper we used basic ML methods and a deep
CNN model in order to classify texts into differ-
ent categories regarding offensive language. The
results show that the Naı̈ve Bayes model performs
better in task-1 in comparison to our proposed CNN
model. The reasons might be the small amount of
training data as well as the poor quality of the pro-
vided word embeddings. Tai et al. (2015) showed
that sequential models perform best in sentiment
analysis tasks, which is why these models should

be further tested. However, also further features
should be considered. For instance, in order to
distinguish texts including profanity from those,
that include abuse and insults, it would be useful
to take Part-of-Speech (POS) into account as Reza-
einia et al. (2017) suggest to use POS and word
embeddings to improve classification accuracy. As
emoticons occur in both, neutral texts and offen-
sive texts, it should be analyzed how they might
influence the classification results. Furthermore,
Nogueira dos Santos and Gatti (2014) used word-
level embeddings as well character-level embed-
dings to catch morphological information in order
to classify short texts.

References
Francois Chollet. 2017. Deep learning with python.

Manning Publications Co.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings
of the 32Nd International Conference on Interna-
tional Conference on Machine Learning - Volume 37,
ICML’15, pages 448–456. JMLR.org.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1746–1751. As-
sociation for Computational Linguistics.

Edward Loper and Steven Bird. 2002. Nltk: The natu-
ral language toolkit. In Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Com-
putational Linguistics - Volume 1, ETMTNLP ’02,
pages 63–70, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Andreas Mueller. 2015. German Wikipedia
Embeddings. URL: https://devmount.
github.io/GermanWordEmbeddings/ [ac-
cessed: 2018-08-09].

Cicero Nogueira dos Santos and Maira Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In Proceedings of COLING
2014, the 25th International Conference on Compu-
tational Linguistics: Technical Papers, pages 69–78.
Dublin City University and Association for Compu-
tational Linguistics.

128



Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification using
machine learning techniques. In Proceedings of
EMNLP, pages 79–86.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12:2825–2830, November.

Seyed Mahdi Rezaeinia, Ali Ghodsi, and Rouhollah
Rahmani. 2017. Improving the accuracy of pre-
trained word embeddings for sentiment analysis.
CoRR, abs/1711.08609.

Björn Ross, Michael Rist, Guillermo Carbonell, Ben
Cabrera, Nils Kurowsky, and Michael Wojatzki.
2016. Measuring the Reliability of Hate Speech An-
notations: The Case of the European Refugee Cri-
sis. In Michael Beißwenger, Michael Wojatzki, and
Torsten Zesch, editors, Proceedings of NLP4CMC
III: 3rd Workshop on Natural Language Processing
for Computer-Mediated Communication, pages 6–9.

Josef Ruppenhofer. 2018. German Twit-
ter Embeddings. URL: http://www.
cl.uni-heidelberg.de/english/
research/downloads/resource_
pages/GermanTwitterEmbeddings/
GermanTwitterEmbeddings_data.shtml
[accessed: 2018-08-09].

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to german. In In
Proceedings of the ACL SIGDAT-Workshop, pages
47–50.

Ilya Sutskever, James Martens, and Geoffrey Hinton.
2011. Generating text with recurrent neural net-
works. In Proceedings of the 28th International
Conference on International Conference on Ma-
chine Learning, ICML’11, pages 1017–1024, USA.
Omnipress.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term memory
networks. CoRR, abs/1503.00075.

H. Wang and J. A. Castanon. 2015. Sentiment expres-
sion via emoticons on social media. In 2015 IEEE
International Conference on Big Data (Big Data),
pages 2404–2408, Oct.

Yiming Yang and Jan O. Pedersen. 1997. A compar-
ative study on feature selection in text categoriza-
tion. In Proceedings of the Fourteenth International
Conference on Machine Learning, ICML ’97, pages
412–420, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.

Matthew D. Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. CoRR, abs/1212.5701.

129



spMMMP at GermEval 2018 Shared Task: Classification of Offensive
Content in Tweets using Convolutional Neural Networks and Gated

Recurrent Units

Dirk von Grünigen∗
Fernando Benites
Pius von Däniken
Mark Cieliebak

Zurich University of Applied Sciences (ZHAW)
CH-8400 Winterthur

dirk@vongruenigen.com
{benf,vode,ciel}@zhaw.ch

Ralf Grubenmann∗
SpinningBytes AG
Albanistrasse 20

CH-8400 Winterthur
rg@spinningbytes.com

Abstract

In this paper, we propose two differ-
ent systems for classifying offensive lan-
guage in micro-blog messages from Twit-
ter (”tweet”). The first system uses an en-
semble of convolutional neural networks
(CNN), whose outputs are then fed to a
meta-classifier for the final prediction. The
second system uses a combination of a
CNN and a gated recurrent unit (GRU) to-
gether with a transfer-learning approach
based on pretraining with a large, automat-
ically translated dataset.

1 Introduction

Sentiment Analysis was a major focus for text an-
alytics in the last few years. Recently it became
clear that only differentiating between positive and
negative opinions is insufficient for some practical
applications. Nowadays many website maintain-
ers are requested to remove offensive content and
monitor the discussions on their websites and so-
cial networks. This creates an overwhelming need
for automated classification and removal of posts
which could cause legal issues.

Although there are resources and research on
some languages, e.g. English (Davidson et al.,
2017; Waseem and Hovy, 2016), most languages
have little or no resources on the matter. The Ger-
mEval Shared Task 2018 aims to tackle the problem
of offensive language within micro-blog posts from
Twitter (”tweets”) written in German.

In this report, we propose two classifiers for iden-
tifying offensive content in tweets. Our experi-
ments show that using embeddings created from

∗Equal Contribution

large amounts of unsupervised in-domain data has a
beneficial impact on the results. We rely on state-of-
the-art convolutional neural networks (CNNs) and
ensemble strategies, which have shown to achieve
competitive results on sentiment analysis (e.g. De-
riu et al. (2016)).

2 Task Description

The organizers of the shared task provided a dataset
with 5009 samples. Each sample contains a tweet
and two types of labels, one for each sub-task: The
first label is for the binary-classification task (”Task
I”) and hence only distinguishes between offensive
and non-offensive content. The second label dis-
criminates between four different classes, of which
3 are different types of offensive content: abuse,
insult and profanity and the fourth label for non-
offensive. The second subtask is very unbalanced,
with the labels distributed as: 3321 non-offensive,
1022 abusive, 595 insult and 71 profanity.

3 System Descriptions

In the following two sections, we describe our two
proposed systems. System I is built on an ensem-
ble of convolutional neural networks (CNN) whose
outputs are consumed by a meta-classifier for the fi-
nal prediction. This system is optimized to work as
a classifier for the binary classification task (”Task
I”). System II is based on the CNN+GRU archi-
tecture proposed by Zhang and Luo (2018). An
important component of both systems is the use of
diversified and enriched word embeddings to grasp
the semantic context of the words. Both approaches
are cutting-edge for specific but related text classi-
fication tasks and are therefore well suited to the
problem domain, although they have not been di-

130



rectly compared to date.

4 System I

Deep learning models based on convolutional neu-
ral networks (CNN) are state-of-the-art for a num-
ber of text classification tasks, in particular in sen-
timent analysis (Kim, 2014; Kalchbrenner et al.,
2014; Severyn and Moschitti, 2015a; Severyn and
Moschitti, 2015b; Johnson and Zang, 2015), which
is closely related to the domain of detecting of-
fensive content in text. The system proposed by
Mahata et al. (2018) has proven to perform excep-
tionally well in the domain of classifying medica-
tion intake from tweets. Based on this, we also
trained multiple shallow CNNs and combine them
into an ensemble in a similar fashion.

4.1 Preprocessing

The data is processed by lowercasing the tweet
and normalizing numbers and removing ”|LBR|”
tokens, which signify a newline in a tweet. De-
pending on the embeddings used further down the
process, as detailed in Section 4.3, we used differ-
ent tokenization strategies. For vanilla word2vec
and fastText embeddings, we used the NLTK
TweetTokenizer (Bird et al., 2009). On the
other hand, for the subword byte-pair embed-
dings (Sennrich et al., 2016), we used the Google
sentencepiece1 tool.

As the last step, we applied the hashtag splitting
procedure described below to split up hashtags into
their distinctive parts, since hashtags can convey
a lot of the intention of a tweet. Finally, we con-
verted the tokenized tweets into a list of indices,
which was used to select the corresponding word
embeddings. Furthermore, we enriched the word-
embeddings with word-based polarity values.

Word Polarity Values: In offensive texts in
tweets, often very polarising words are used (e.g.
racial slurs or insults). To take advantage of this
fact, we incorporated polarity values for each word
in the used dataset. For that purpose, we employed
three different resources: A multi-domain senti-
ment lexicon for German from the IGGSA web-
site2, the list of insults in German from the website
hyperhero.com3 and a list of racial slurs in Ger-
man from the website hatebase.org4. The polarity

1https://github.com/google/sentencepiece
2https://sites.google.com/site/iggsahome/downloads
3http://hyperhero.com/de/insults.htm
4https://www.hatebase.org/search results

values in the lexicon range from -1.0 (negatively
polarising) to +1.0 (positively polarising). The av-
erage of all polarity values provided for each word
in the lexicon provided to the system an additional
feature. This sentiment lexicon was extended with
the words from the list of German insults from the
website hyperhero.com and from the list of racial
slurs from hatebase.org to it. Further, we assigned
a negative polarity (i.e. −1.0) value to these addi-
tional words. We then generated a one-hot encoded
vector with 11 polarity-classes for each word in
the dataset by discretizing the continuous polarity
values. These vectors were stacked on top of each
of the word embedding vectors before being passed
to the convolutional network.

Hashtag Splitting: Hashtags are problematic in
tweets, since sometimes they are composed of mul-
tiple words (e.g. ”#ThisIsASingleHashtag”) and
hence would be out-of-vocabulary for the word em-
beddings most of the time. But they are crucial to
understand the real meaning behind a tweet: For
example the meaning of a tweet with the hashtag
”#sarcasm” might be understood completely dif-
ferent without adding this hashtag. To tackle this
problem, we implemented a hashtag splitting pro-
cedure using the CharCompound5 tool (Tuggener,
2016). It is a simple but elegant solution, which
uses ngram probabilities and returns different splits
for each word with a certainty value for each split.
We applied the splitting procedure recursively to
the hashtags to ensure that we split all compounds.
We set the certainty threshold to 0.8 and stopped
when no split with a certainty greater or equal to
this threshold could be found.

4.2 Base CNN
The base CNN for the ensemble consists of mul-
tiple, shallow convolutional layers. Each convolu-
tional layer consists of the following components,
in the listed order:

• Word embeddings layer that converts an
indices-vector into a sentence-matrix.

• Dropout layer (Srivastava et al., 2014) as a
regularization measure.

• Convolution operation for the feature extrac-
tion.

• Batch normalization layer (Ioffe and Szegedy,
2015) to speed up the training.

5https://github.com/dtuggener/CharSplit

131

Proceedings of GermEval 2018, 14th Conference on Natural Language Processing (KONVENS 2018)
Vienna, Austria – September 21, 2018



Hyperparameter Value
Number of Conv. Kernel 200
Conv. Kernel Sizes [2, 3, 4, 5, 6]
Conv. Kernel Stride 1
Conv Kernel Dilation 0
Number of Neurons in Hidden Layer 4096
Dropout Probability (after word-embeddings layer) 0.4
Dropout probability (after conv. operation) 0.3
Dropout probability (between fully-connected layers) 0.4
Max. Input Length 200

Table 1: Hyperparameters used for the base CNN
in System I. Only one kernel size was used per con-
volutional operation, but we used 5 convolutional
layers, each using one of the sizes for its kernels.

• Another dropout layer.

• Max-pooling layer to reduce the dimensional-
ity of the output.

• ReLU activation function (Nair and Hinton,
2010) to squeeze the output values into the
range [0,+∞).

In total there are five of these layers, all using the
same hyperparameters (see Table 1), except for
the kernel size in the convolution operation. The
sentence-matrix is fed to each of these parallel con-
volutional layers and the resulting output vectors
are concatenated, resulting in a vector with 1000
values. This vector is then forward propagated
through two fully connected layers, which then out-
put two logit values for the two classes (i.e. ”not
offensive” and ”offensive”). A visualization of the
base CNN model is depicted in Figure 1.

Hyperparameters: The hyperparameters used
in the base CNN of System I can be seen in table
1. The max-pooling operation was performed as
global max-pooling. This implies that each of the
convolution operations outputs 200 distinct values,
because we configured each convolution operation
to use 200 different kernels. As a result of using
5 different convolutional layers having 200 output
values each, the vector, which is forwarded to the
fully-connect layer, contains 1000 values.

Initialization and Optimization of Parame-
ters: All parameters, except for the biases, of
the base CNN were initialized using the Xavier
Normal initialization (Glorot and Bengio, 2010)
with the gain value set to 1. The biases were initial-
ized to 0. We used the Adam optimizer (Kingma
and Ba, 2014) for the optimization of the network
parameters, including the word embeddings. Adam
dynamically adapts the learning rate for every pa-
rameter in the network by using first- and second-

order information. We used a learning rate of
0.001, 0.9 and 0.999 as the beta coefficients for
computing the running averages of the gradients, a
weight decay value of 0.0005 and an epsilon value
of 10−8. As the loss function, we employed the
cross-entropy loss between the expected, one-hot
encoded label vector and the output of the CNN
after being passed through a Softmax layer.

4.3 Word Embeddings

Word embeddings are omnipresent today when
performing any natural language processing, es-
pecially with deep learning models. Due to our ap-
proach of using several of the previously described
base CNNs, we decided that we would initialize
each of these with another kind of word embed-
dings. We use different kind of word embeddings
to get an diversified view of the data, which helps
with our ensembling approach.

The following types of word embeddings were
used:

• fastText (SpinningBytes-FT) em-
beddings (Bojanowski et al., 2017; Joulin et
al., 2017) with 300 dimensions trained on a
large corpus of German tweets (”sb-tweets”)
provided by SpinningBytes6. These are cur-
rently not publicly available.

• fastText (fasttext-Wiki) embed-
dings with 200 dimensions pretrained on the
texts from the German Wikipedia corpus.
These can be downloaded via the fastText
GitHub page7.

• word2vec (SpinningBytes-W2V)
(Mikolov et al., 2013) embeddings with 200
dimensions, also trained with the ”sb-tweets”
corpus. These can also be downloaded from
the SpinningBytes website.

• fastText Byte-Pair Embeddings
(Spinningbytes-BP) embeddings with
100 dimensions for the case where subword
tokenization (Sennrich et al., 2016) was per-
formed, trained with the ”sb-tweets” corpus.
For the tokenization, we used the previously
mentioned Google sentencepiece tool.
These embeddings are not publicly available
at the moment.

6http://spinningbytes.com
7https://github.com/facebookresearch/fastText/

132



Figure 1: Visualization on the structure of the base CNN model.

4.4 Training Procedure and Ensembling of
Classifiers

We decided to train our models in a similar fashion

as Mahata et al. (2018): First, we split the data pro-

vided by the organizers randomly into a training

and holdout dataset, where the training dataset con-

tains 90% of the provided data and the other 10% is

used as for the holdout dataset. We train each of the

different models by doing k-fold cross-validation

(with k = 5) over said training data and use the eval-

uation dataset for performing early stopping if the

performance on it did not improve for more than 20

epochs with respect to the macro F1-score. Each

of the models trained on each fold is then stored

for later usage in the ensemble. This results in 20

base CNNs in total, 5 for each of the 4 different

CNNs initialized with the word embeddings listed

in Section 4.3.

Class Weights: Only 33.7% of the samples

in the provided data contain offensive content,

whereas 66.3% do not. We used class weights to

counter this imbalance in the label distribution. For

this we computed class weights, which are then

used to rescale the loss function when perform-

ing the back-propagation. The following formulae

were employed:

CO =
|LN|+ |LO|

2 · |LO| (1)

CN =
|LN|+ |LO|

2 · |LN| (2)

where |LO| is the number of offensive samples, |LN|
the number of samples with non-offensive content

in the provided dataset. CO and CN are the result-

ing class weights for offensive and non-offensive

samples respectively.

4.5 Meta Classifiers

As described before, we trained the same base CNN

with different word embeddings on different parts

of the training data using k-fold cross-validation.

Moreover, we concatenated the outputs of these 20

models on the training dataset and used them in

conjunction with the labels to train different meta-

classifiers. We experimented with different strate-

gies for meta-classification (see Table 3 in Section

6) and used hyper-parameter optimization while

training them.

5 System II

Following Zhang and Luo (2018), our second ar-

chitecture utilizes both CNN and Gated Recurrent

Units (GRU, Cho et al. (2014)). It uses three differ-

ent embeddings and an attention layer, which are

described in detail in the following.

5.1 Preprocessing

Additionally to the preprocessing of System I, user

mentions (@username) were removed, words con-

taining dots were split and special characters / |: ;
& \ were removed. German stopwords8 were also

removed from the input string. Words not present

in the embeddings were replaced with an UNK
token.

8https://github.com/stopwords-iso/stopwords-de

133



5.2 CNN + GRU

The model consists of two CNN+GRU architec-
tures, one for word-embeddings and one for sub-
word embeddings, which are later concatenated to-
gether, along with a Smiley-feature vector, before
being used by a fully connected Softmax layer to
get predictions of the model. To prevent overfitting,
dropout of 0.5 was added before every convolu-
tional as well as the final layer. ReLU was used as
activation function for all convolutional layers. An
overview of the architecture is shown in Figure 2.

Word embeddings architecture: fastText em-
beddings of 200 dimensions each for uni- and bi-
grams in a tweet are concatenated to get a 100x400
feature matrix. Tweets are limited 100 tokens. 1d
convolutions with 100 feature maps and kernel
sizes of 3, 4 and 5, and kernel sizes 2 and 3 with
dilations of 2 and 3, respectively, are then applied
to the feature matrix separately. The dilated con-
volutions are meant to simulate the skipped CNN
proposed in (Zhang and Luo, 2018). The results
are max-pooled by a factor of 4 and concatenated
along the feature axis. This is then passed to a
bi-directional GRU unit. The hidden states at each
time step of the GRU are then combined by an at-
tention layer (Xu et al., 2014), yielding a feature
vector containing 1000 values.

Subword embeddings architecture: This ar-
chitecture largely mirrors the word embeddings
architecture, but takes subword tokenized embed-
dings as input. Due to the smaller nature of sub-
word tokens, a maximum sentence length of 150
is enforced. The architecture is adjusted to yield
the same 1000 dimensional feature vector as in the
word-embeddings architecture.

Emoji embeddings: A list of 751 Unicode emo-
jis (Kralj et al., 2015) is used to count the occur-
rences of different emojis in the tweets. A linear
transformation is applied to the emoji feature vector
to reduce dimensionality to 200.

Final layer: The output of all three parts of
the architecture is concatenated to yield a 2200
dimensional feature vector. A fully connected layer
with Softmax is used to get the final output of the
architecture, with 2 and 4 dimensions for the coarse
and fine tasks, respectively.

5.3 Transfer Learning

Due to the relatively small amount of training data,
the model was pretrained on a related task. To
our knowledge, only one other hate speech corpus

in German is available (Ross et al., 2016). But
there are two large corpora for hate speech detec-
tion available in English, namely (Davidson et al.,
2017) and one provided by Lukovnikov9. To get
as close as possible to the target domain, the En-
glish hate speech corpora were automatically trans-
lated10 to German. The model was jointly trained
on the related German and English corpora until
train scores stopped improving. Then the last layer
of the network was discarded and retrained on the
actual data provided for the Shared Task.

5.4 Semi-Supervised Retraining using the
Test Dataset

To extend the training set, we used a similar semi-
supervised approach to Jauhiainen (2018). For that
purpose, our system is first trained on the training
dataset and then used to classify the test dataset.
Predictions on samples of the unlabeled test dataset
with a confidence higher than 0.75 are then used as
additional labeled data to augment the training set.
We treat the output of the Softmax layer as the con-
fidence score. The classifier is then trained again
on the augmented training dataset. The results can
be seen in Tables 2 and 3 for the systems labeled
with Semi.

6 Experiments

We performed several tests on the labeled training
data. As described above, we randomly selected
10% of the training data as test data. We then
trained on the training data and evaluated the sys-
tems on the test data. This procedure was repeated
five times in order to estimate an average and stan-
dard deviation of the performance.

We compared our results to a baseline which
consisted of an SVM using TF-IDF feature weight-
ing. The data preprocessing was performed
by tokenizing the tweets with the mentioned
TweetTokenizer and the GermanStemmer
from the stem.snowball module of NLTK. We
also compared the single classifiers of System I ver-
sus the results using different meta classifiers. We
evaluated the results with the F-1 macro average
measure. The results are depicted in Table 3.

In task I, the meta classifiers had a remarkable
impact. Logit Averaging provided an advantage
over the other approaches and improved the overall
classification performance by more than 3 points

9https://github.com/lukovnikov/hatespeech
10https://translate.google.com/

134



Figure 2: Visualization on the structure of the CNN + GRU model.

with respect to the F-1 macro score in comparison

to the best performing single classifier (see Table 3).

This confirms the results of Mahata et al. (2018).

Other meta-classifiers, such as Random Forests,

Logistic Regression and Linear SVM were close,

though the single classifiers were also in this range.

The System I results showed that the embeddings

can have a decisive impact on the results of the

classification systems. These systems had a big

margin to the Multilayer Perceptron meta classifier,

which performed last in the results and also has

the largest variance in the performance. The SVM

baseline performed worse comparing to the other

single classifier approaches.

Using the semi-supervised routine can make a

decisive difference on the performance, as can be

seen from the System II results. Especially for task

II, we see that the semi-supervised approach was

4 points better. Interestingly, the baseline SVM

performed best in this task.

7 Submitted Runs

7.1 For Task I

The following runs were submitted to the Ger-

mEval organizers for Task I:

• spMMMP coarse 1: System I, best model

out of 15 runs.

System II F-1 macro
SpinningBytes-CNN+GRU 0.4100 ± 0.0363

SpinningBytes-CNN+GRU Semi 0.4549 ± 0.0324

SVM 0.4797 ± 0.0346

Table 2: Results for the CNN+GRU classifier on

task 2. All reported scores are the performance on

the holdout dataset from each specific run, mea-

sured in F1-score (macro) over the OFFENSIVE,

ABUSIVE, INSULTING and OTHER labels for the

4-class classification task.

• spMMMP coarse 2: System I, second-best

model out of 15 runs.

• spMMMP coarse 3: System II with semi-

supervised augmented training data, best

model out of 5 training runs.

7.2 For Task II

The following runs were submitted to the Ger-

mEval organizers for Task II:

• spMMMP fine 1: System II without semi-

supervised augmented training data, best

model out of 5 training runs.

• spMMMP fine 2: System II with semi-

supervised augmented training data, best

model out of 5 training runs.

135



System F-1 macro
SVM 0.7266 ±0.0212
System I

Single Classifiers
SpinningBytes-FT CNN 0.7547 ± 0.0160
SpinningBytes-W2V CNN 0.7656 ± 0.0143
fastText-Wiki CNN 0.7703 ± 0.0102
SpinningBytes-BP CNN 0.7354 ± 0.0188

Meta Classifiers
Random Forest 0.7843 ± 0.0188
Majority Vote 0.6813 ± 0.0329
Logit Averaging 0.8048 ± 0.0138
One Trigger 0.6304 ± 0.0223
Logistic Regression 0.7762 ± 0.0308
Linear SVM 0.7686 ± 0.0334
Multilayer Perceptron 0.6638 ± 0.1299
System II
SpinningBytes-CNN+GRU 0.7454 ± 0.0168
SpinningBytes-CNN+GRU Semi 0.7684 ± 0.0087

Table 3: Classification results on the task I training
data. All reported scores are the performance mea-
sures in F1-score (macro) over 5 randomly different
tests on the holdout set.

• spMMMP fine 3: SVM with TF-IDF and
semi-supervised augmented training data.

8 Conclusion

In this paper, we described our two different ap-
proaches to tackling the problem of detecting of-
fensive content in micro-blog posts from Twitter in
the context of the GermEval 2018 Competition.

The first system used an ensemble of the same
CNN base model initialized with different types
word embeddings. These models are then used in
combination with an output-averaging approach to
generate the final prediction. A preliminary eval-
uation of the system showed that it achieves an
average F1-score (macro) of 80% on average on
randomly chosen holdout datasets on the binary
classification task.

The second system used a combination of a CNN
and GRU architecture with two different type of
word embeddings. The preliminary evaluation on a
randomly chosen holdout set showed that it could
achieve a performance of 45% with respect to the
macro-averaged F1-score over all four labels from
the multi-label classification task.

References
Bird Steven, Loper Edward and Klein Edward.

2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Bojanowski Piotr, Grave Edouard, Joulin Armand and
Mikolov Tomas. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics.

Cho Kyunghyun, Van Merriënboer Bart, Gulcehre
Caglar, Bahdanau Dzmitry, Bougares Fethi,
Schwenk Holger, Bengio Yoshua. 2014. Learning
Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation. arXiv
preprint arXiv:1406.1078. arXiv.org.

Davidson Thomas, Warmsley Dana, Macy Michael,
Weber Ingmar. 2017. Automated Hate Speech De-
tection and the Problem of Offensive Language. Pro-
ceedings of the 11th International AAAI Conference
on Web and Social Media. ICWSM.

Deriu Jan, Gonzenbach Maurice, Uzdilli Fatih, Lucchi
Aurelien, De Luca Valeria and Jaggi Martin. 2016.
SwissCheese at SemEval-2016 Task 4: Sentiment
Classification using an Ensemble of Convolutional
neural networks with distant supervision. Proceed-
ings of the 10th International Workshop on Semantic
Evaluation, 1124–1128. Association for Computa-
tional Linguistics.

Deriu Jan, Lucchi Aurelien, De Luca Valeria, Sev-
eryn Aliaksei, Müller Simon, Cieliebak Mark, Hoff-
mann Thomas and Jaggi Martin. 2017. Leverag-
ing Large Amounts of Weakly Supervised Data for
Multi-Language Sentiment Classification. Proceed-
ings of the 26th International Conference on World
Wide Web, pages 1045–1052. International World
Wide Web Conferences Steering Committee.

Glorot Xavier and Bengio Yoshua. 2010. Understand-
ing the Difficulty of Training Deep Feedforward Neu-
ral Networks. Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statis-
tics 2010, pages 249–256. ACM.

Ioffe Sergey and Szegedy Christian. 2015. Batch
Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. Proceed-
ings of the 32nd International Conference on Inter-
national Conference on Machine Learning volume
37. JMLR.org.

Jauhiainen Tommi, Linden Krister and Jauhiainen
Heidi. 2018. HeLI-based Experiments in Swiss
Germ Dialect Identification (in Press). Proceedings
of the Fifth Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial).

Johnson Rie and Zhang Tong. 2015. Semi-Supervised
Convolutional Neural Networks for Text Categoriza-
tion via Region Embedding. NIPS 2015 - Advances
in Neural Information Processing Systems. Associa-
tion for Computational Linguistics.

136



Joulin Armand, Grave Edouard, Bojanowski Piotr and
Mikolov, Tomas. 2017. Bag of Tricks for Efficient
Text Classification. Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics volume 2, short papers.
Association for Computational Linguistics.

Kalchbrenner Nal, Grefenstette Edward and Blunsom
Phil. 2014. A Convolutional Neural Network for
Modelling Sentences. ACL - Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Kim Yoon. 2014. Convolutional Neural Networks for
Sentence Classification. EMNLP 2014 - Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Kingma Diederik and Ba Jimmy. 2014. Adam: A
Method for Stochastic Optimization. arXiv prepr.int
arXiv:1412.6980. arXiv.org.

Kralj Novak Petra, Smailović Jasmina, Sluban Borut,
Mozetič, Igor. 2015. Sentiment of emojis. PLoS
ONE Volume 10. PLoS ONE

Mahata Debanjan, Friedrichs Jasper, Shah Rajiv Ratn
and Hitkul. 2018. # phramacovigilance-Exploring
Deep Learning Techniques for Identifying Mentions
of Medication Intake from Twitter. arXiv preprint
arXiv:1805.06375. arXiv.

Mikolov Tomas, Sutskever Ilya, Chen Kai, Corrado
Greg and Dean Jeff. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. NIPS 2013 - Advances in Neural Information
Processing Systems. Curran Associates, Inc.

Nair Vinod and Hinton Geoffrey E. 2010. Rectified
linear units improve restricted boltzmann machines.
Proceedings of the 27th international conference on
machine learning (ICML-10). Omnipress.

Ross Björn, Rist Michael, Carbonell Guillermo, Cabr-
era Benjamin, Kurowsky Nils, Wojatzki Michael.
2016. Measuring the Reliability of Hate Speech An-
notations: The Case of the European Refugee Crisis.
Proceedings of NLP4CMC III: 3rd Workshop on Nat-
ural Language Processing for Computer-Mediated
Communication. Bochumer Linguistische Arbeits-
berichte.

Sennrich Rico, Haddow Barry and Birch Alexandra.
2016. Neural Machine Translation of Rare Words
with Subword Units. Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics volume 2, long papers. Association for
Computational Linguistics.

Severyn Aliaksei and Moschitti Alessandro. 2015.
Twitter Sentiment Analysis with Deep Convolutional
Neural Networks. Proceedings of the 38th Interna-
tional ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. ACM.

Severyn Aliaksei and Moschitti Alessandro. 2015.
UNITN: Training Deep Convolutional Neural Net-
work for Twitter Sentiment Classification. SemEval
2015 - Proceedings of the 9th International Work-
shop on Semantic Evaluation. Association for Com-
putational Linguistics.

Srivastava Nitish, Hinton Geoffrey, Krizhevsky Alex,
Sutskever Ilya and Salakhutdinov Ruslan. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search volume 15. JMLR.org.

Tuggener Don. 2016. Incremental Coreference Resolu-
tion for German. PhD Thesis. University of Zurich.

Tuggener Don. 2018. Evaluating Neural Sequence
Models for Splitting (Swiss) German Compounds (in
press). Proceedings of the 3rd Swiss Text Analytics
Conference - SwissText 2018. ceur-ws.org.

Waseem Zeerak and Hovy Dirk, 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. Proceedings of the
NAACL student research workshop 2016, pages 88–
93. NAACL.

Xu Kelvin, Ba Jimmy, Kiros Ryan, Cho Kyunghyun,
Courville Aaron, Salakhudinov Ruslan, Zemel Rich,
Bengio Yoshua. 2014. Show, attend and tell: Neu-
ral image caption generation with visual attention.
International conference on machine learning 2015,
pages 2048–2057. icml.cc.

Zhang Ziqi, Luo Lei. 2018. Hate Speech Detection:
A Solved Problem? The Challenging Case of Long
Tail on Twitter. arXiv preprint arXiv:1803.03662
arXiv.org.

137



GermEval 2018 : Machine Learning and Neural Network Approaches for
Offensive Language Identification

Pruthwik Mishra
IIIT-Hyderabad

Hyderabad, Telangana
India - 500032

pruthwik.mishra@
research.iiit.ac.in

Vandan Mujadia
i.am+ LLC.

Bangalore, Karnataka
India - 560071

vandan.mujadia@
iamplus.com

Soujanya Lanka
i.am+ LLC.

Mapex Building
Singapore - 577177

soujanya@
iamplus.com

Abstract

Social media has been an effective carrier
of information from the day of its inception.
People worldwide are able to interact and
communicate freely without much of a has-
sle due to the wide reach of the social me-
dia. Though the advantages of this mode of
communication are many, the severe draw-
backs can not be ignored. One such in-
stance is the rampant use of offensive lan-
guage in the form of hurtful, derogatory or
obscene comments. There is a greater need
to employ checks on social media websites
to curb the menace of the offensive lan-
guages. GermEval Task 2018 1 is an initia-
tive in this direction to automatically iden-
tify offensive language in German Twitter
posts.

In this paper, we describe our approaches
for different subtasks in the GermEval Task
2018. Two different kinds of approaches
- machine learning and neural network ap-
proaches were explored for these subtasks.
We observed that character n-grams in Sup-
port Vector Machine (SVM) approaches
outperformed their neural network coun-
terparts most of the times. The machine
learning approaches used TF-IDF features
for character n-grams and the neural net-
works made use of the word embeddings.
We submitted the outputs of three runs, all
using SVM - one run for Task 1 and two
for Task 2.

1 Introduction

Automatic identification of offensive language in
social media micro posts has become paramount
in order to tackle dangerous phenomena like cyber

1https://projects.fzai.h-da.de/iggsa/

bullying, trolling, hateful comments related to eth-
nicity and gender discrimination. The GermEval
2018 shared task is an attempt to automatically
identify offensive language with a training dataset
containing around 5000 twitter posts. This shared
task is divided into two subtasks.

• Task 1 - it is a binary classification task where
the tweet is either predicted as Offensive or
Other or Non-Offensive.

• Task 2 - it is a fine grained classification on
offensive tweets - either Profanity, Insult or
Abuse, non offensive tweets are classified as
Other similar to task 1

We used different machine learning and neural
network approaches for both the tasks which are
explained in the subsequent sections. The paper
is organized as follows: Section 2 lists down the
related work and Section 3 describes our approach.
Section 4 presents the experiments and results on
the development set. Section 5 discusses about the
evaluation metric and Section 6 details about the
error analysis. Section 7 concludes the paper with
possible future work.

2 Related Work

There has been a renewed interest among academia
and industry recently for identification of online
offensive posts due to their unabated use mostly
related to racism and sexism. Most of the previous
works have been done with respect to hate speech
detection in English. According to Waseem and
Hovy (2016), a logistic regression classifier with
character n-grams performed the best for detect-
ing hateful speeches in English twitter data. They
used various extra-linguistic features like gender,
word length and location information. Schmidt
and Wiegand (2017) outlined the approaches for
hate speech detection ranging from surface level
features like character n-grams, linguistic features

138



like POS Tags, typed dependency labels, word clus-
tering, to customized lists comprising of hateful
utterances, hate verbs, and meta information like
gender, location, history of a user. Most of the ap-
proaches in Schmidt and Wiegand (2017) used sup-
port vector machines (Cortes and Vapnik, 1995) for
achieving optimal results. Microsoft used Smokey
(Spertus, 1997) for identifying abusive content in
their commercial applications. Smokey was im-
plemented using a C 4.5 decision tree classifier
(Quinlan, 1986) for flame or abuse identification.
Nobata et al. (2016) used a regression model taking
into account word and character n-grams, syntactic
features, and word embeddings to detect abusive
language in online comments found from Yahoo!
finance and news.

There has been very few attempts on offensive
language detection in social media content in Ger-
man. So this shared task is the first such initiative in
this regard. The released data was annotated by hu-
man annotators following the guidelines prepared
by the organizers 2.

3 Approach

Most of the machine learning (ML) algorithms are
heavily reliant on hand crafted features designed
by experts. This makes ML algorithms less gener-
alizable and cost inefficient. So we did not use any
language specific features like part-of-speech tags,
morph features, dependency labels etc. for any of
the tasks. We used publicly available sentiment
lexicons as the only external resource. We describe
our approaches in the following subsections.

3.1 Machine Learning Approaches
Three different machine learning algorithms were
implemented for Task 1 and 2.

1. Linear SVM (Cortes and Vapnik, 1995)

2. Stochastic Gradient Descent (Bottou, 2010)

3. Logistic regression

In the above ML algorithms, we used TF-IDF
(Sparck Jones, 1972) vectors for the character n-
grams present in the training corpus. Two different
feature sets were passed to the ML algorithms to
create models for prediction of Task 1 and Task 2.
The first feature set only contained a bag-of-words

2http://www.coli.uni-saarland.de/
˜miwieg/Germeval/guidelines-iggsa-shared.
pdf

representation with TF-IDF vectors. The second
set made use of the publicly available sentiment
datasets German Polarity clues (Waltinger, 2010)
and German slur dictionary 3 along with the TF-
IDF representations. From the German Polarity
clues repository, we created lists belonging to in-
dividual sentiments. Three sentiment labels were
used namely positive, negative and neutral. The
list specific features were computed as the counts
of words pertaining to a specific sentiment and the
number of slur words present in the post. All these
features were appended to the TF-IDF vector repre-
sentation of a post. We also tried a variation for the
fine-grained classification task where the predicted
output from task 1 was also added as a feature to
the TF-IDF and list specific features.

3.2 Neural Networks

Two neural network architectures, bi-directional
LSTM(bi-LSTM) (Graves and Schmidhu-
ber, 2005), multi-layer perceptron (MLP)
(Sparck Jones, 1972) were used. These neural
network models used word embeddings as features.
Publicly available German Word2vec embeddings
4 were used for these experiments. For encoding
a sequence, bidirectional LSTM uses both past
and future contextual information. We used word
embeddings of size 200 trained on 200 million
tweets. We have experimented only with a single
hidden layer, with the number of hidden units same
as the word embedding dimension for the MLP
architecture. For the bidirectional LSTM model,
we only use word embeddings as features. The
maximum length of the sample was set to 50 based
on the property of the training data. Each sample
is represented as a vector of size 50 ∗ d where
d =word embedding dimension. In case of MLP,
all the vectors present in a sample are concatenated
and presented as a single input vector whereas
all the vectors are given as a sequence of vectors
for a bidirectional LSTM. The representation of
a post is the representation learned after passing
the whole sequence of tokens through the biLSTM.
There is no sequence or ordering information in
case of an MLP, so the hidden layer representation
is the learned representation of the post. For both
tasks, the output layer contained nodes equal to the
number of class labels (2 for Task 1 and 4 for Task

3http://www.hyperhero.com/de/insults.
htm

4https://www.spinningbytes.com/
resources/wordembeddings/

139



2).

4 Experiment Setup

The corpus details and the model description are
explained in the following subsections.

4.1 Corpus Details

The released data contained 5009 twitter posts. The
frequency analysis for coarse and fine classes with
respect to Task 1 and Task 2 is detailed in tables 1
and 2. We split the data into 9:1 ratio for designing
the training and development sets.

Label No Of Samples
OFFENSIVE 1688

OTHER 3421
Total 5009

Table 1: Label Frequencies for Task 1

4.2 Tokenization

As the training data provided for this task was from
twitter posts, we tokenized the data as a preprocess-
ing step. We considered punctuations except the
@, #, as individual tokens. @ and # are associ-
ated with twitter handles and user ids, appeared
in some twitter handles, so we did not tinker these
punctuations.

4.3 Model Description

The model parameters of both approaches are ex-
plained in detail in the subsections below.

4.3.1 Machine Learning Algorithms
The machine learning algorithms described in 3.1
were implemented using sklearn library (Pedregosa
et al., 2011). sklearn uses count vectorizers to con-
vert a text input into a sparse collection of tokens.
It provides the flexibility of including higher order
n-grams in the vocabulary. The SVM algorithm
used linear kernel with penalty parameter of 1.0 for

Label No Of Samples
ABUSE 1022
INSULT 545
OTHER 3321

PROFANITY 71
Total 5009

Table 2: Label Frequencies for Task 2

Type No Of Samples
Train 4505
Dev 504

Total 5009

Table 3: Corpus Split

error term and tolerance level of 0.001 for classi-
fication. For the logistic regression classifier (Fan
et al., 2008), the parameters were set to L2 regu-
larization, tolerance level of 0.0001, and penalty
parameter of 1.0. The SGD classifier was imple-
mented using hinge loss with L2 regularization.

4.3.2 Neural Networks
We implemented two neural network models, bi-
directional LSTM(bi-LSTM) (Graves and Schmid-
huber, 2005), multi-layer perceptron (MLP)
(Sparck Jones, 1972) using the framework designed
by Chollet et al. (2015). The accuracies of these
models are reported in the subsequent sections.
The word embedding for a word was arrived at
by concatenating the pre-trained word vector and
the learned representation of the word from the
training data. The word representation is learned
using an embedding layer. The size of the vector
representation for a word has been fixed at 200. We
have experimented only with a single hidden layer,
with 200 hidden units for the MLP architecture.
The activation of each hidden node was chosen to
be tanh. The maximum length of a post has been
fixed at 50. Each sample was represented as a vec-
tor of size 200∗50= 10000 for bi-LSTM and MLP
experiments when only word vectors were used as
features. For a post containing more than 50 words,
only the first 50 words were used and rest all are
ignored. When the number of tokens in a post is
less than 50 words, it has to be padded with zero
vectors. The Adam (Kingma and Ba, 2014) opti-
mizer was used with categorical cross entropy as
the loss function, batch size 16 and 10 epochs. The
activation at the output layer was “softmax” for
both the tasks.

4.4 Experimental Results on Development
Set

The results of the experiments on the development
set are detailed in this section. The features ex-
plained in table 6 were used in SVM for the final
submission.

As the linear SVM was the best performing sys-

140



Model Features Category Precision Recall F1-Score

Bi-LSTM Word Embeddings
OFFENSE 65.27 63.74 64.50
OTHER 81.60 82.58 82.09
AVERAGE 73.44 73.16 73.30

MLP Word Embeddings
OFFENSE 64.23 51.46 67.14
OTHER 77.38 85.29 81.14
AVERAGE 70.81 68.37 69.57

Linear SVM TF-IDF
OFFENSE 80.00 52.07 63.08
OTHER 79.44 93.43 85.87
AVERAGE 79.72 72.75 76.08

SGD TF-IDF
OFFENSE 61.54 14.20 23.08
OTHER 68.82 95.52 80.00
AVERAGE 65.18 54.86 59.58

Log Reg TF-IDF
OFFENSE 79.71 32.54 46.22
OTHER 73.79 95.82 83.38
AVERAGE 76.75 64.18 69.91

Table 4: Task 1 Results on Dev-Set for All Models

Model Features Category Precision Recall F1-Score

Bi-LSTM Word Embeddings

ABUSE 13.59 13.59 13.59
INSULT 40.82 33.33 36.70
OTHER 66.95 69.97 68.43
PROFANITY 0.00 0.00 0.00
AVERAGE 30.34 29.22 29.77

MLP Word Embeddings

ABUSE 9.09 6.80 7.78
INSULT 45.83 18.33 26.19
OTHER 65.51 79.28 71.74
PROFANITY 0.00 0.00 0.00
AVERAGE 30.11 26.10 27.96

Linear SVM TF-IDF

ABUSE 74.00 35.92 48.37
INSULT 66.67 10.17 17.65
OTHER 73.26 97.31 83.59
PROFANITY 0.00 0.00 0.00
AVERAGE 53.48 35.85 42.93

SGD TF-IDF

ABUSE 62.96 16.50 26.15
INSULT 25.00 37.29 29.93
OTHER 72.24 83.88 77.62
PROFANITY 0.00 0.00 0.00
AVERAGE 40.05 34.42 37.02

Log Reg TF-IDF

ABUSE 75.00 23.30 35.56
INSULT 100.00 5.08 9.68
OTHER 69.94 97.91 81.59
PROFANITY 0.00 0.00 0.00
AVERAGE 61.23 31.57 41.66

Table 5: Task 2 Results on Dev-Set for All Models

Features Category Precision Recall F1-Score

TF-IDF+Sentiment Lexicon+Slur Dictionary

OFFENSE 76.99 51.48 61.70
OTHER 79.03 92.24 85.12
AVERAGE 78.01 71.86 74.81
ABUSE 78.85 39.81 52.90
INSULT 66.67 10.17 17.65
OTHER 74.04 97.91 84.32
PROFANITY 0.00 0.00 0.00
AVERAGE 54.89 36.97 44.18

TF-IDF ABUSE 59.55 51.46 55.21
+Sentiment Lexicon INSULT 66.67 27.12 38.55
+Slur Dictionary OTHER 79.03 92.24 85.12
+Task1 Predictions PROFANITY 0.00 0.00 0.00

AVERAGE 51.31 42.70 46.61

Table 6: Task 2 Results on Dev-Set for All Models

141



tem in basic TF-IDF vectors of character 2-6 grams,
the variation of using a sentiment lexicon was im-
plemented only with SVM. The results are shown
in table 6.

5 Evaluation

Evaluation code was provided by the organizers 5.
The evaluation metric included the overall accuracy,
class or category wise precision, recall, and F1-
scores for both the tasks. The average precision,
recall and F1-scores for all the categories are also
returned after running the evaluation tool.

5.1 Observation

From the tables 4 and 5, we can see that SVM
consistently outperforms all other models. The Bi-
LSTM model outperforms MLP by a significant
margin while linear SVM comfortably beats SGD
and logistic regression. All the machine learning
models outperform the neural models. It was quite
intuitive that the use of sentiment lexicon and slur
dictionary improved the results. All the models
failed to predict samples with ‘PROFANITY’ la-
bels owing to fewer class samples in the training
data.

5.2 Submitted Runs

For the GermEval Shared Task, we submitted three
outputs using linear SVM classifier. The features
used for the submissions are explained below in
detail.

• We used TF-IDF features along with the
counts of sentiment words using the German
polarity clues lexicon, and count of slur words
using the slur dictionary appearing in posts
for coarse 1 and fine 1.

• The output predicted for Task 1 was appended
to the features explained above for fine 2.

6 Error Analysis

The neural network models did not perform well
because of the limitation of pre-trained word em-
beddings. The words present in the pre-trained
word2vec model were not normalized, so differ-
ent spelling variations of a single word can have
multiple representations. Overall the dataset was
imbalanced, many classes had fewer samples to

5https://projects.fzai.h-da.de/iggsa/evaluation-tool/

create robust models. The higher number of sam-
ples from the ‘OTHER’ class created a lot of false
positives.

7 Conclusion & Future Work

In this paper, we describe our systems for both sub-
tasks. We showed that linear SVM with character
n-grams outperformed all other machine learning
and neural network models.

It is intuitive that specific words in a text influ-
ence its overall classification. We can explore at-
tention mechanism with bi-LSTM models to model
this context vector in a better way. We plan to
use character embeddings for out-of-vocabulary
(OOV) words. This might help us improve the
overall models and make it robust to spelling vari-
ations of words. Some normalization tools can be
added as a preprocessing step for twitter text which
will help us learning better word representations.

References
Léon Bottou. 2010. Large-scale machine learning

with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer.

François Chollet et al. 2015. Keras. https://
github.com/fchollet/keras.

Corinna Cortes and Vladimir Vapnik. 1995. Support
vector machine. Machine learning, 20(3):273–297.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of ma-
chine learning research, 9(Aug):1871–1874.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works, 18(5):602–610.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Chikashi Nobata, Joel Tetreault, Achint Thomas,
Yashar Mehdad, and Yi Chang. 2016. Abusive lan-
guage detection in online user content. In Proceed-
ings of the 25th international conference on world
wide web, pages 145–153. International World Wide
Web Conferences Steering Committee.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.

142



Scikit-learn: Machine learning in python. J. Mach.
Learn. Res., 12:2825–2830, November.

J. Ross Quinlan. 1986. Induction of decision trees.
Machine learning, 1(1):81–106.

Anna Schmidt and Michael Wiegand. 2017. A survey
on hate speech detection using natural language pro-
cessing. In Proceedings of the Fifth International
Workshop on Natural Language Processing for So-
cial Media, pages 1–10.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21.

Ellen Spertus. 1997. Smokey: Automatic recogni-
tion of hostile messages. In AAAI/IAAI, pages 1058–
1065.

Ulli Waltinger. 2010. Germanpolarityclues: A lexical
resource for german sentiment analysis. In LREC.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

143


	Preface
	Overview Michael Wiegand, Melanie Siegel & Josef Ruppenhofer
	Offensive Language without Offensive Words (OLWOW) Manfred Klenner
	h_da Submission for the Germeval Shared Task on the Identification of Offensive Language Melanie Siegel & Markus Meyer
	Saarland University's Participation in the GermEval Task 2018 (UdSW) – Examining Different Types of Classifiers and Features Michael Wiegand, Anastasija Amann, Tatiana Anikina, Aikaterini Azoidou, Anastasia Borisenkov, Kirstin Kolmorgen, Insa Kröger & Christine Schäfer
	Challenges of Automatically Detecting Offensive Language Online: Participation Paper for the Germeval Shared Task 2018 (HaUA)  Tom De Smedt & Sylvia Jaki
	KAUSTmine - Offensive Comment Classification on German Language Microposts Matthias Bachfischer, Uchenna Akujuobi & Xiangliang Zhang
	Fine-Grained Classification of Offensive Language Julian Risch, Eva Krebs, Alexander Löser, Alexander Riese & Ralf Krestel
	TUWienKBS at GermEval 2018: German Abusive Tweet Detection Joaquín Padilla Montani & Peter Schüller
	Feature Explorations for Hate Speech Classification Tatjana Scheffler, Erik Haegert, Santichai Pornavalai & Mino Lee Sasse
	Offensive Language Detection with Neural Networks for Germeval Task 2018 Dominik Stammbach, Azin Zahraei, Polina Stadnikova & Dietrich Klakow
	RuG at GermEval: Detecting Offensive Speech in German Social Media Xiaoyu Bai, Flavio Merenda, Claudia Zaghi, Tommaso Caselli & Malvina Nissim
	upInf - Offensive Language Detection in German Tweets Bastian Birkeneder, Jelena Mitrovic, Julia Niemeier, Leon Teubert & Siegfried Handschuh
	InriaFBK at Germeval 2018: Identifying Offensive Tweets Using Recurrent Neural Networks Michele Corazza, Stefano Menini, Pinar Arslan, Rachele Sprugnoli, Elena Cabrio, Sara Tonelli & Serena Villata
	Transfer Learning from LDA to BiLSTM-CNN for Offensive Language Detection in Twitter Gregor Wiedemann, Eugen Ruppert, Raghav Jindal & Chris Biemann
	Towards the Automatic Classification of Offensive Language and Related Phenomena in German Tweets Julian Moreno Schneider, Roland Roller, Peter Bourgonje, Stefanie Hegele & Georg Rehm
	HIIwiStJS at GermEval-2018: Integrating Linguistic Features in a Neural Network for the Identification of Offensive Language in Microposts Johannes Schäfer
	ULMFiT at GermEval-2018: A Deep Neural Language Model for the Classification of Hate Speech in German Tweets Kristian Rother & Achim Rettberg
	German Hate Speech Detection on Twitter Samantha Kent
	CNN-Based Offensive Language Detection Jian Xi, Michael Spranger & Dirk Labudde
	spMMMP at GermEval 2018 Shared Task: Classification of Offensive Content in Tweets using Convolutional Neural Networks and Gated Recurrent Units Dirk von Grunigen, Fernando Benites, Pius von Däniken, Mark Cieliebak & Ralf Grubenmann
	GermEval 2018: Machine Learning and Neural Network Approaches for Offensive Language Identification Pruthwik Mishra, Vandan Mujadia & Soujanya Lanka



