
Release of the MySQL based implementation

of the CTS protocol

Jochen Tiepmar

ScaDS

Leipzig University

Ritterstrasse 9-13, 2.OG

04109 Leipzig
jtiepmar@informatik.uni-leipzig.de

Abstract

In a project called "A Library of a Billion

Words" we needed an implementation of the

CTS protocol that is capable of handling a text

collection containing at least 1 billion words.

Because the existing solutions did not work for

this scale or were still in development I started

an implementation of the CTS protocol using

methods that MySQL provides. Last year we

published a paper that introduced a prototype

with the core functionalities without being

compliant with the specifications of CTS

(Tiepmar et al., 2013). The purpose of this pa-

per is to describe and evaluate the MySQL

based implementation now that it is fulfilling

the specifications version 5.0 rc.1 and mark it

as finished and ready to use. Further infor-

mation, online instances of CTS for all de-

scribed datasets and binaries can be accessed

via the projects website1.

1 Introduction

CTS is a protocol developed in the Homer Mul-

titext Project2 and, according to (Blackwell and

Smith, 2014), “defines interaction between a cli-

ent and server providing identification of texts and

retrieval of canonically cited passages of texts“ by

using CTS URNs, that “are intended to serve as

persistent, location-independent, resource identi-

fiers“.

These URNs are built in a way that resembles

the hierarchy in- and outside the document.

The URN urn:cts:demo:goehte.faust.de:1.2-1.4

refers to the text passage spanning from act 1

scene 2 to act 1 scene 4 of the document Goethe's

Faust. The first part urn:cts: marks it as an URN

of the CTS protocol. The second part demo: refers

to the namespace that the text belongs to.

goehte.faust.de: refers to the edition (document)

1 www.urncts.de
2 http://www.homermultitext.org/

and 1.2-1.4 specifies the text passage inside the

document. With the addition of the @-notation for

subpassages, like in 1.2@hu-1.4@d, you can

specify any text passage in any translation or edi-

tion.

The citation depth and structure can differ be-

tween documents - while one document can be

structured on 4 levels, like book, chapter, section

and sentence, it is also valid to structure another

document (or even another edition of the same

document) in a different way. This means that –

for example – while the passage 2.1 in a bible can

refer to part 1 of book 2, in Shakespeare's Sonnets,

2.1 refers to verse 1 of sonnet 2. By reducing the

type of each text unit to a label, the protocol makes

it possible to use any possible text. The worst case

scenario would be that no information about the

structure of a document is available, in which case

it is still possible to use lines as text units.

Even if it might not be intended to be used as

such by the authors of the specifications, CTS can

serve as a way to standardize texts and therefore

work as a text catalogue or -repository. Further-

more, any tool that uses the methods that CTS pro-

vides, can work with any data that is or will be

added, basically making CTS a framework and

standard for public access to text.

Smith (2007) points out another advantage of

the usage of CTS: "These Canonical Text Services

URNs make it possible to reduce the complexity

of a reference like “First occurrence of the string

'cano' in line 1 of book 1 of Vergil's ~~Aeneid~~”

to a flat string that can then be used by any appli-

cation that understands CTS URNs". This also

means that you can reduce long texts to URNs and

then request them as they are needed and this way

reduce the memory needed for software that han-

dles texts or text parts.

Using it as a text repository requires a very fast

and efficient implementation of the protocol. The

35

Published in: Bański, Piotr; Biber, Hanno; Breiteneder, Evelyn; Kupietz, Marc; Lüngen, Harald; Witt, Andreas (eds.) (2015): Proceedings of
the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3). Mannheim: Institut für Deutsche Sprache, pp. 35-43.

prototype already showed potential for this goal

by building maximal passages with response

times averaging at 78 MS with a text collection

that contains 100‘000 documents with

1‘281‘272‘600 tokens (Tiepmar et al., 2013). As I

will show in chapter 7, the implementation still

performs fast as it is finished.

While working on this project, 3 major text col-

lections were published as instances of CTS. They

are described in chapter 6.

2 Using Canonical Text Services

This chapter is intended to give a rough overview

about the specifications defined in (Blackwell and

Smith, 2014) and explain the workflow with CTS.

Data from CTS is collected via HTTP requests.

Each request has to include a GET parameter re-

quest which specifies, what function of CTS is re-

quested. Attributes are added as GET parameters

to the HTTP request. The following functions are

available in CTS 5.0 rc.1.

2.1 GetCapabilities

GetCapabilities returns the text inventory of the

CTS with all the URNs of works or editions as

well as meta information for each entry. The ex-

tend or content of the meta information is not

specified in CTS.

2.2 GetValidReff(urn,level)

GetValidReff returns all the URNs that belong to

the given urn. level is a required parameter speci-

fying the depth of the citation hierarchy.

2.3 GetLabel(urn)

The request GetLabel returns an informal descrip-

tion of the urn.

2.4 GetFirstUrn(urn)

GetFirstUrn returns the first URN in document

order belonging to the given urn.

2.5 GetPrevNextUrn(urn)

GetPrevNextUrn returns the previous and next

URN in document order from the given urn.

3 According to the specifications, an implementation of CTS

is free to choose any suitable edition if the edition is not

fully specified in the URN.
4 Compare for example https://github.com/cite-architec-

ture/ctsvalidator/blob/master/

2.6 GetPassage(urn,[context])

GetPassage returns the text passage that belongs

to this urn. context is an optional parameter spec-

ifying, how many text units should be added to the

passage as contextual information.

2.7 GetPassagePlus(urn,[context])

GetPassagePlus returns the combined infor-

mation from 2.2 to 2.6

2.8 The Response

The response for each request is a XML-docu-

ment describing the request and the response from

the CTS. For example the response for a

GetPassage request is structured according to the

following XML-document:

<GetPassage>

<request>

<requestName>

GetPassage

</requestName>

<requestUrn>

urn:cts:latinLit:phi1014.phi001.lat1:1

</requestUrn>

</request>

<reply>

<urn>

urn:cts:latinLit:phi1014.phi001.lat1:1

 </urn>

<passage>

(...)

</passage>

</reply>

</GetPassage>

It may seem odd that the URN is listed two times.

If you do not specify the exact edition it can hap-

pen that both URNs differ. Requesting the text

passage with urn:cts:latinLit:phi1014.phi001:1

may result in the text passage for urn:cts:

latinLit:phi1014.phi001.lat1:13.

There are contradictory information about

whether or not the XML elements must reference

CTS as a namespace, like <cts:urn> instead of

<urn>4. All XML elements in the replies of this

implementation are unique and there is no need to

differentiate them with namespaces. That's why I

chose to not include them. This can be changed as

soon as the specifications make it clear, which for-

mat should be used.

src/main/webapp/testsuites/4-09.xml and

https://github.com/cite-architecture/cts_spec/

blob/master/reply_schemas/prevnext.rng

36

3 Validation

The specifications refer to a validator that checks

whether or not an instance of CTS is compliant

with the specifications. Unfortunately, some of

the results that the validator expects contradict the

specifications making it impossible to validate

this implementation5.

4 Data Structure

This chapter will give an abstract overview about

the data structure used in this implementation. A

more technical description can be found in

(Tiepmar et al., 2013).

To implement an efficient CTS it was crucial

that the underlying data structure is as efficient as

possible. The best case would be a data structure

that resembles the hierarchical structure that is en-

coded in CTS URNs and this way minimizes the

overhead that is needed to describe the structural

information. By storing this information in a tree

you get a structure that can be modelled similar to

the tree in Figure 1.

Figure 1, Visualization of the tree-like data structure

NS=Namespace (e.g. greekLit)

ED=Edition (e.g. Goethe’s Faust)

TP=Text part (e.g. Chapter)

TU=Text unit (e.g. Sentence)

[TUx] contains the text content for each text unit.

The nodes on [TU] level must be ordered as they

appear in the document. This is done by using an

incremental id indicated by the arrow.

To make sure that you cannot concatenate mul-

tiple editions, the CTS will always at least traverse

down to edition level and return the first node on

that level. Once the node for an URN is found, any

related information can be returned. Parent child

nodes can be calculated by deleting parts of the

URN. The passage can be constructed by concat-

enating the text units that belong to the node. The

child nodes resemble the URNs that belong to the

5 See issue 26, 27, 28, 29 at https://github.com/cite-architec-

ture/ctsvalidator

given URN and the first and last child node corre-

spond to the first and last child URN.

When searching for the URN

urn:cts:[NS2]:[ED1]:[TP2]

the implementation traverses through the tree to

the node [TP2]. By this point it knows that this is

a valid URN and can return any information asso-

ciated with this node. If no suitable node is found,

then the CTS knows that the URN is not valid.

There may be a node [TP2] belonging to [ED2],

but as soon as the CTS passed [ED1] this node is

no longer in the potential result set.

Treelike data structures provide the benefit of

logarithmic search times and (if implemented cor-

rectly) prefix- and suffix optimisation, which is

beneficial for CTS because the URNs contain a lot

of redundant prefixes.

MySQL uses B-Trees for string indices and

therefore I considered it a perfect fit for CTS

URNs. Another – maybe less technical and more

intuitive – way of visualizing it, is that this imple-

mentation is using techniques that are generally

used for automated completion of strings to build

the hierarchy of CTS URNs.

5 Unique Features

There are four unique features to discuss: the pos-

sibility to post process the passage, the configura-

tion parameter, the generated text inventory and

possibility of multiple import methods. The fol-

lowing chapters will explain these features in de-

tail, give examples of use cases and explain how

they fit into the specifications.

5.1 Passage Post Processing

According to (Blackwell and Smith, 2014), the

passage “may (…) be further structured or format-

ted in whatever manner was selected by the editor

of the particular edition or translation“. This

means, that CTS does not restrict the content of

the passage in any way as long as "The CTS im-

plementation (…ensures…) that including the

contents of the requested in the cts:passage ele-

ment results in well-formed XML" (Blackwell

and Smith, 2014)6. As long as it does not break the

structure of the reply, the passage may be plain

text or – for example – text that either contains

XML tags as text or text with XML tags as meta

information describing a part of the text.

The following examples help to illustrate the

difference.

6 The cts:passage element is the XML element in the CTS

reply that contains the text passage specified the the URN

37

a) The tag <speaker> refers to a speaker

and must be closed by </speaker>

b) <speaker>Hamlet </speaker>To be, or

not to be(...)

While a) should clearly be seen as plain text de-

scribing the tag <speaker>, it is reasonable for an

editor to prefer the structured output in example

b).

Changing a) to

A) The tag <speaker> refers to a speaker.

it becomes obvious that this probably breaks the

structure of the CTS reply.

One solution here would be to make sure that

every document only contains valid XML. This

means that you would either restrict your text to

valid XML or have to make sure that anything that

would potentially break the XML structure, must

be escaped. This results in a lot of work for the

editors since they cannot simply escape the whole

text but have to differentiate structural tags used

by the CTS (like <chapter>) from meta tags that

are part of the text (like <speaker>).

The solution that I propose is to make it possi-

ble to adapt the content of the passage by the CTS

to the needs of the individual text collection or

even to the needs of the individual viewer or edi-

tor. As long as the post processing method, that is

used to modify the passage, is not changed, the

CTS still guarantees a persistent citation. One

URN will always result in the same text passage,

but the data is presented differently. The CTS

does not change the textual content, but its repre-

sentation (or the view on the data) changes.

On the side of the server, this is nothing differ-

ent than the possibility to serve the text in “what-

ever manner was selected by the editor" (Black-

well and Smith, 2014). In general, this is the same

as creating annotated editions of one document,

which is already a common method in today's

Digital Humanities as – for example – described

in (Almas, 2013). Doing this on CTS level is just

automating the process.

On the opposite side, the client can benefit from

this by having options. Imagine someone who

wants to develop a universal reader for documents

in EpiDoc format. It would be very useful to be

able to connect to a CTS and have the possibility

to request any text in this format without the need

to rebuild all the documents and add additional

EpiDoc editions. Another reader wants to look up

some text but the edition is heavily annotated,

7 http://folio.furman.edu/projects/citedocs/

cts/#client-server-communication

making it hard to read. A view without all the

XML tags would probably be something nice.

To enable the client to control the format of the

passage, it is required to give the possibility to

specify a configuration that should be used. This

can be achieved with the configuration parameter

that I will discuss in the next chapter.

5.2 Configuration Parameter

The configuration parameter was added to this im-

plementation to give any client the possibility to

adapt the output of the CTS in different ways. Its

use is not described in the specifications but a side

note makes it clear, that it does also not violate

them. One valid example URL is

http://myhost/mycts?configuration=default&re-

quest=GetCapabilities7. Because this url is valid,

it is allowed to add additional parameters to the

requests. Therefore it does not contradict the spec-

ifications to use it to give the client the ability to

configure the CTS as long as the results are still

valid against the specifications. In especially the

CTS must still make sure, that the reply results in

valid XML and all of the required information is

included.

It is possible to combine multiple parameters by

combining them with "_". For example, the con-

figuration ?configuration=div=true_stats=true

combines the parameters div and stats.

The following parameters are currently sup-

ported. The default values for each parameter can

be defined for every CTS instance. The configu-

ration that the client provides will overwrite this

default configuration.

Div / Epidoc

The parameters div and epidoc are useful if you

want to see the structure of the text passage – for

example to render it nicely. div uses a notation

with numbered <div> elements and includes the

type of the text units as a @type value.

<passage>

<div1 n=“5“ type=“book“>

<div2 n="1" type="line">

(TEXT)

</div2>

</div1>

</passage>

epidoc uses EpiDoc notation, a variation of

TEI/XML.

<passage>

<tei:TEI>

38

<tei:text>

<tei:body>

<tei:div n="1" type="song">

<tei:div n="1" type="stanza">

<l n="1">(TEXT)</l>

<l n="2">(TEXT)</l>

</tei:div></tei:div>

</tei:body>

</tei:text>

</tei:TEI>

</passage>

epidoc is ignored if div is set to true.

Stats

stats does not yet serve a useful purpose but illus-

trates this implementations flexibility nicely by

adding some simple statistics as @-values in the

numbered divs. This setting is ignored if div is set

to false.

<div3 n="1" type="line" letters="24" to-

kens="4" avg_tokensize="6">

(TEXT)

</div3>

Escapepassage

escapepassage specifies whether or not the XML

content of the passage should be escaped. This is

always true if URNs with subpassage notation are

requested to ensure the validity of the reply.

Seperatecontext

If seperatecontext is set to true, then the context

that is specified for GetPassage or

GetPassagePlus is returned in separate XML ele-

ments with the name context_prev and con-

text_next. Else the context is added to the passage

and returned inside the passage element.

Formatxml

formatxml configures whether or not the reply

should be formatted. Formatted XML is easier to

read but if you want to process it automatically,

formatting may not be needed and influence the

performance of the CTS negatively without hav-

ing any benefit.

Smallinventory

smallinventory reduces the text inventory to a list

of <edition> elements with their URNs. I noticed,

that dealing with lots of documents can result in

large text inventories that are hard to parse if all

8 See https://github.com/cite-architecture/

ctsvalidator/blob/master/src/main/webapp/

testsuites/3-19.xml

the meta information is included. This meta infor-

mation may be unnecessary if you only need a list

of the documents URNs.

Maxlevelexception

If you set maxlevelexception to true and then spec-

ify a level for GetValidReff that is higher than the

levels that the document ‘has left’, it will return

CTS error 4. Else it will return the URNs up to

that level. For example if your document has two

levels: chapter and sentence, and you request Get-

ValidReff with level=100, then the CTS will re-

turn error 4 if this is set to true. It will return all

the URNs that belong to the given URN if this is

set to false.

The validator requires the CTS to return error 4

if you request a level higher than the document

provides 8 . However since there is no way of

knowing, how a document is structured and Get-

ValidReff is the function that gives you this infor-

mation, this would force a user to try out levels

until they receive an error, which gets more com-

plicated considering that the document structure is

not fixed for the complete document. While in a

document book 1 may have 3 levels – chapter,

passage, sentence – book 2 of the same document

may be structured in 2 levels – stanza, line. This

means that you can never know, if you can request

another level until you received an error. You can

add this information as meta information in

GetCapabilities but it is not required by CTS to do

so and this solution would still make it problem-

atic to work with documents containing different

citation levels.

In my opinion it is more reasonable to ignore

this error and make it optional for validation pur-

poses.

This also fits with the specifications noting that

"The GetValidReff request identifies all valid val-

ues for one on-line version of a requested work,

up to a specified level of the citation hierar-

chy"(Blackwell and Smith, 2014)9.

5.3 Dynamically Generated Text Inventory

GetCapabilities returns a text inventory contain-

ing all URNs that belong to works or editions.

This text inventory is manually edited and serves

as an overview about what texts are part of the

CTS and as a guide for the CTS to know which

XML tags of a document are part of the citation.

9 http://folio.furman.edu/projects/citedocs/

cts/#cts-request-parameters

39

Working with a big number of documents, it

might be problematic to require someone to read

all the documents, create citation mappings, col-

lect the meta information for each document and

store it in the inventory file.

While you still have to configure the citation

mapping in this implementation, you do not need

to do this for every document (you still can if you

want). It can be configured in one line for all doc-

uments while setting up the CTS. This means that

the text inventory is not required to import data,

reducing its purpose to the output of GetCapa-

blities. According to (Blackwell and Smith,

2014), the response of GetCapabilities is "a reply

that defines a corpus of texts known to the server

and, for texts that are available online, identifies

their citation schemes". This information can be

gathered in an automated process once the data is

made available to the CTS.

This way a basic default text inventory is gen-

erated which contains all the referenceable edi-

tions without the need for manual editing. At the

moment of writing, the label and author of an edi-

tion and the information, whether or not the edi-

tion can be parsed as valid XML, is added as meta

information. This result is generated with every

new request.

The following example shows the content that

is currently included in the text inventory.

<TextInventory>

<textgroup urn="urn:cts:greekLit:tlg0003">

<groupname>tlg0003</groupname>

<edition urn="urn:cts:greekLit:tlg0003.

tlg001.eng1:">

<title>

History of the Peloponnesian War

</title>

<author>Thucydides</author>

<contentType>xml</contentType>

</edition>

</textgroup>

</TextInventory>

The citation mapping – as it is used to specify,

which XML elements are used for citation in the

CTS implementation based on a XML database –

is not part of the generated inventory because

from my understanding it is only useful for the

data import. My argument is that once you refer-

ence texts with URNs, the citation mapping has

only descriptive use and it is better located in the

specific text passage or in the reply of the CTS

10 A cronjob collects the files, that were changed since the

last update via OAI-PMH and timestamps as part of the

URNs guarantees persistency.

request GetLabel. If you refer to a passage with a

URN like urn:cts:demo:a:1.2, it is not relevant,

whether the passage – 1.2 – refers to a sentence or

verse or line. Adding it to the text inventory can

however increase the complexity of the XML doc-

ument making it harder to process the file. Espe-

cially consider that – in theory – every text unit

that is referenced by an URN can have its own ci-

tation mapping. Mapping one unit to a sentence

does not mean that every text unit is a sentence. In

the worst case scenario, if citation mappings are

included, the text inventory would have to contain

one entry for any URN on level of the text units in

the complete text collection.

By adding a file named inventory.xml, admin-

istrators can instead use one that is manually ed-

ited. It is a very reasonable workflow to save the

generated inventory as inventory.xml and edit it

further to manually add information.

5.4 Multiple Import Methods

The implementation is divided into two parts: one

part imports the data into the database and the

other part reads the data from the database. This

separation makes it possible to plug in new import

scripts. At the moment of writing, there exist 3

supported ways to import data.

Local import is the default way that this system

uses.

CTS cloning makes it possible to clone one

CTS. Since it relies on the div-configuration, it is

currently only compatible with this implementa-

tion. In theory, this feature allows community

driven decentralized data backups.

The third method relies on a MyCore installa-

tion that was used in the project "A Library of a

Billion Words" and therefore might require a spe-

cific setup. However, together with this setup and

using the possibility of timestamp related queries

in OAI PMH, we created a self-updating CTS

with support for versioning and this way created a

persistent CTS with editable content10.

6 Available Texts

While the implementation was still in progress, it

was possible to collect 3 major text collections.

For evaluation purposes another corpus contain-

ing 100‘000 editions with 1‘281‘272‘600 tokens

was generated from random sentences.

40

6.1 DTA (Deutsches Text Archiv)

DTA includes 5136 editions from the German

Text Archive of the BBAW in Berlin. All docu-

ments are published in 3 editions – .norm, .trans-

lit, .transcript – marking different states of nor-

malization. The documents are structured with

one citation level (sentence) and include

334‘820‘482 tokens.

6.2 PBC (Parallel Bible Corpus)

PBC is based on the project Parallel Bible Corpus

and contains 831 translations of the bible (includ-

ing 5 different german translations) with

247‘292‘629 tokens. The documents are struc-

tured in 3 citation levels (book, chapter, sentence).

6.3 Perseus

Perseus is the dataset from the Perseus project up-

dated in November 2014. This is a well known

text collection, containing mainly greek and latin

documents that are manually annotated. The doc-

uments are structured heterogeneously and the ci-

tation depth varies for each document. This corpus

adds another 27‘670‘121 tokens and is especially

relevant since it is closely related to CTS (see

Crane et al., 2014).

7 Evaluation

To evaluate this implementation I used a virtual

machine (VM) that was part of our universities

network. To make sure that the traffic outside of

the VM does not interfere with the results, all re-

quests were sent via localhost. I measured the time

it needs to send the request and to get and read the

response. Requesting the data from outside the

VM would have been a more realistic scenario but

would also have included the noise from the net-

work. Since CTS cannot influence the latency of

the network in any way, this would also not have

been very constructive. Aside from whatever

caching strategies are used by Apache Tomcat or

MySQL, no caching is used by this implementa-

tion. Each response is generated as it is requested.

The test system has a Common KVM processor

with one 2,4 GHz core and 1 GB memory. Only

one dataset is loaded at any time during the tests

and before any test is started, I rebooted the sys-

tem.

All the URNs of editions were collected and for

each one the passage spanning the 2 first URNs

on citation level 1 was requested. If there was no

second URN on level 1, then level 2 was used. If

this was not possible, this edition is ignored.

Depending on the structure of the document, the

passages can differ in text length. Passage 1-2 of

Luther's “Die Bibel in Deutsch“ spans the books

1 to 2 while the same passage in Schillers “Kabale

und Liebe“ as it is structured in this case includes

the sentences 1 to 2. This means that the results

are not comparable between the datasets. The av-

erage number of characters in the generated text

passage is given for each diagram.

318

72,39

33

0 500 1000

max

avg

min

PBC (avg length 280'931)

Time in MS

Figure 2, Minimum, average and maximum response

times for the PBC dataset

Figure 3, Minimum, average and maximum response

times for the DTA dataset

Figure 4, Minimum, average and maximum response

times for the Perseus dataset

70/1176 editions of Perseus did not contain any

text and were ignored.

100

36,36

31

0 500 1000

max

avg

min

DTA (avg length 204)
Time in MS

531

37,65

30

0 500 1000

max

avg

min

Perseus (avg length 31'234)

Time in MS

41

Figure 5, Minimum, average and maximum response

times for the 100k dataset

4'800/100'000 documents consist of only 1 sen-

tence and could therefore not deliver a passage 1-

2.

In general the results show that the MySQL

based implementation performs very well and

stays under 1 second in any case. It seems like the

response time depends more on the size of the pas-

sage that is requested than on the size of the text

collection. If the passages length influences the re-

sponse time, the average response time should re-

flect this if you limit the result set to 1/4 or 1/10

of the longest or shortest passages in one test run.

 Shortest 1/4

(MS)

Longest 1/4

(MS)

DTA 36,00 37,29

PBC 60,70 91,50

Perseus 33,76 47,86

100K 78,64 83,08
Table 1, Response times for 1/4 of the longest and

shortest text passages

 Shortest 1/10

(MS)

Longest 1/10

(MS)

DTA 35.90 37,93

PBC 56,62 98,05

Perseus 33,59 60,24

100K 75,31 81,51
Table 2, Response times for 1/10 of the longest and

shortest text passages

Unsurprisingly the length of the requested pas-

sage influences the response time (a little bit).

However, the differences are small and back-

ground noise of the operating system might also

have had an impact. It is hard to argue, that such

small differences in milliseconds mean anything.

Comparing the results from DTA and PBC, it

seems like other factors are also influencing the

response time. The 3 longest passages in DTA are

1‘915, 1‘944 and 1‘974 characters long while the

11 urn:cts:dta:abelinus.theatrum1635.de.translit:

3 shortest passages in PBC are 9‘099, 9‘718 and

9‘793 characters long. Any passage from PBC is

longer and also deeper structured than any pas-

sage from DTA. Still the PBC CTS could often

respond faster than the DTA CTS. This could in-

dicate an influence of the documents structure.

Another interesting value is the response time

needed to collect passages spanning complete

documents. The following table shows the mini-

mum, average and maximum values for a docu-

ments complete passage length and the response

times for the corresponding GetPassage request.

 Passage length

(in 1000 MS)

min | avg | max

Response time

(MS)

min | avg | max

DTA 0.5 | 444 | 7‘406 32 | 182 | 3‘444

PBC 80 | 163 | 6‘655 57 | 548 | 4‘859

Perseus 35 | 170 | 8‘457 32 | 70 | 3‘088

100k 0.016 | 82 | 438 31 | 86 | 922
Table 3, Minimum, average and maximum response

times compared to the minimum, average and maxi-

mum passage lengths

Perseus includes the longest document with

8‘457'677 characters and 1‘350'876 tokens. This

request also took the maximum time in the dataset

with 3‘088 MS. The longest document – and again

the document with the highest value for the re-

sponse time – in DTA is Abelinus Theatrum in its

translit edition11 containing 1’082’893 tokens or

7’406’366 characters.

Considering the hardware limitations and the

very good and relatively stable response times, it

seems reasonable to include a lot more data into

future tests and especially test, at which point this

implementation starts to struggle.

Factors that can also be investigated in future

evaluations are the influence of the structure of the

document and the length of individual text units.

8 Conclusion

This paper marks the release of the MySQL based

implementation of the CTS protocol. It introduces

features that are exclusive to this software and ar-

gues why they are useful additions to the protocol

while not contradicting the specifications. Evalu-

ation shows that the performance is very good and

sets a baseline for future implementations. It has

also shown that this implementation is easily ca-

pable of handling a text collection containing one

billion words and can be used as a text repository.

705

80,79

33

0 500 1000

max

avg

min

100k (avg length 19'892)

Time in MS

42

Acknowledgements

Parts of the work presented in this paper is the result

of the project “Die Bibliothek der Milliarden Wörter”.

This project was funded by the European Social Fund.

“Die Bibliothek der Milliarden Wörter” was a cooper-

ation project between the Leipzig University Library,

the Natural Language Processing Group at the Insti-

tute of Computer Science at Leipzig University, and

the Image and Signal Processing Group at the Insti-

tute of Computer Science at Leipzig University.

This project is part of the project Scalable Data Solu-

tions (ScaDS) funded by BMBF. ScaDS is a coopera-

tion project between the Leipzig University and TU

Dresden. This projects number is 01/5140148.

Reference

Almas B, Beaulieu M. 2013. "Developing a New Inte-

grated Editing Platform for Source Documents" in

Classics in Oxford Journals Literary and Linguistic

Computing, Volume 28, Issue 4.

Blackwell C, Smith N. 2014. Canonical Text Services

protocol specification. Retrieved from http://fo-

lio.furman.edu/projects/citedocs/ctsurn/ and

http://folio.furman.edu/projects/citedocs/cts/ 2015,

February 19.

Crane G, Almas B, Babeu A, Cerrato L, Krohn A,

Baumgart F, Berti M, Franzini G, Stoyanova S.

2014. Cataloging for a billion word library of Greek

and Latin. In DATECH 2014: Proceedings of the

First International Conference on Digital Access to

Textual Cultural Heritage.

Smith N. 2007. An architecture for a distributed library

incorporating open-source critical editions. Re-

trieved from https://wiki.digitalclassi-

cist.org/OSCE_Smith_Paper. 2015, February 19.

Smith N. 2014. Test suite to validate compliance of

CTS instances with the CTS API. Retrieved from

https://github.com/cite-architecture/ctsvalidator.

2015, February 19.

Tiepmar J, Teichmann C, Heyer G, Berti M and Crane

G. 2013. A new Implementation for Canonical Text

Services. in Proceedings of the 8th Workshop on

Language Technology for Cultural Heritage, Social

Sciences, and Humanities (LaTeCH).

Project Website of this implementation

http://www.urncts.de.

Deutsches Text Archiv http://www.deutschestextar-

chiv.de/

Parallel Bible Corpus http://paralleltext.info/data/all/

Perseus-CTS/XML https://github.com/PerseusDL/ca-

nonical/tree/master/CTS_XML_TEI/perseus

43

