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Abstract. In this paper, we explore the effectiveness of bootstrap-
ping supervised machine-learning polarity classif ers using the out-
put of domain-independent rule-based classif ers. The benef t of this
method is that no labeled training data are required. Still, this method
allows to capture in-domain knowledge by training the supervised
classif er on in-domain features, such as bag of words.
We investigate how important the quality of the rule-based classi-

f er is and what features are useful for the supervised classif er. The
former addresses the issue in how far relevant constructions for polar-
ity classif cation, such as word sense disambiguation, negation mod-
eling, or intensif cation, are important for this self-training approach.
We not only compare how this method relates to conventional semi-
supervised learning but also examine how it performs under more
diff cult settings in which classes are not balanced and mixed reviews
are included in the dataset.

1 Introduction

Recent years have seen a growing interest in the automatic text anal-
ysis of opinionated content. One of the most popular subtasks in this
area is polarity classif cation which is the task of distinguishing be-
tween positive utterances (Sentence 1) and negative utterances (Sen-
tence 2).

1. The new iPhone looks great and is easy to handle.
2. London is awful; it’s crime-ridden, dirty and full of rude people.

Various supervised classif cation approaches, in particular classif ers
using bag of words, are heavily domain-dependent [2], i.e., they usu-
ally generalize fairly badly across different domains. Yet the costs to
label data for any possible domain are prohibitively expensive.
Semi-supervised learning tries to solve this issue by reducing the

size of the labeled dataset. The lack of labeled training data is com-
pensated by a large unlabeled dataset of the target domain. The latter
is much cheaper to obtain.
Rule-based classif cation does not require any labeled training

data. In polarity classif cation, the rule-based classif er relies on
domain-independent polar expressions. Polar expressions are words
containing a prior polarity, such as great and awful. One typically
counts the number of positive and negative polar expressions in a test
instance and assigns it the polarity type with the majority of polar ex-
pressions. Since the classif er is restricted to domain-independent po-
lar expressions, it lacks the knowledge to recognize domain-specif c
polar expressions, such as crunchy+ in the food domain or buggy−
in the computer domain.
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In this paper, we explore the effectiveness of an alternative,
which like most semi-supervised learning algorithms is based on
self-training, i.e., the process of labeling the unlabeled data with a
preliminary classif er and then training another (more robust) clas-
sif er by using the expanded annotated dataset. Unlike traditional
semi-supervised learning, we do not use an initial classif er trained
on a small labeled dataset but the output of a domain-independent
rule-based classif er. (For reasons of simplicity, we will often refer
to this specif c version as plain self-training in the following sec-
tions.) While the rule-based classif er is restricted to the knowledge
of (domain-independent) polar expressions, the supervised classi-
f er trained on in-domain data labeled by the rule-based classif er
can make use of domain-specif c features, such as bag of words.
Hopefully, the supervised classif er can effectively use this domain-
specif c knowledge and thus outperform the rule-based classif er.
Though this kind of self-training has already been applied to tasks

in opinion mining, including polarity classif cation, there are certain
aspects of this method which have not yet been fully examined:
Firstly, what are good features for the (pseudo-)supervised polar-

ity classif er which is trained on the data labeled by the rule-based
classif er? Do the insights hold from common supervised learning or
semi-supervised learning?
Secondly, what is the impact of the robustness of the rule-based

classif er on the f nal classif ers, i.e., does the supervised classif er
improve when the rule-based classif er improves? This addresses the
issue of in how far relevant constructions for polarity classif cation
that can be incorporated into a rule-based classif er, such as word
disambiguation, negation modeling, or intensif cation, are important
for this kind of self-training approach.
Thirdly, how does this type of self-training compare to state-of-

the-art semi-supervised learning algorithms?
Finally, does this method work in realistic settings in which – in

addition to def nite polar reviews – also mixed polar reviews are part
of the dataset and the distribution of the classes is imbalanced?

2 Related Work
There has been much work on document-level polarity classif cation
using supervised machine learning methods. Various classif ers and
feature sets have been explored [10, 11]. Support Vector Machines
(SVMs) [5] usually provide best results [11]. Unigram and bigram
features outperform complex linguistic features [10].
Rule-based polarity classif cation usually requires an open-domain

polarity lexicon with polar expressions. One typically counts the
number of positive and negative polar expressions occurring in a test
document and assigns it the polarity type with most polar expres-
sions. This method can be enhanced by disambiguating polar expres-
sions in their respective contexts. A framework in which scores are
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heuristically assigned to polar expressions depending on their indi-
vidual contexts is proposed in [12]. The contextual modeling mainly
focuses on negation and intensif cation. Implementations inspired by
that formalism have been empirically proven effective [7, 8, 9].
Semi-supervised learning for polarity classif cation has been

shown to be effective on inducing polarity lexicons from lexical re-
sources [3, 14] but on text classif cation, the effectiveness is heavily
dependent on the parameter settings. Signif cant improvement over
supervised classif cation can usually only be achieved in presence
of few labeled training data and a predictive feature set, such as in-
domain adjectives or polar expressions from a polarity lexicon [17].
Another effective semi-supervised approach suggests to apply unsu-
pervised learning (i.e., clustering) to classify unambiguous data in-
stances and restrict manual annotation to hard data instances [4].
Bootstrapping supervised machine-learning classif ers with the

help of rule-based classif cation has already been effectively applied
to subjectivity detection of sentences [16]. The method has also
been applied to polarity classif cation, but so far only on Chinese
data [13, 15]. While the performance with out-of-domain supervised
classif ers is compared in [15], this method is embedded into a com-
plex bootstrapping system which also extends the vocabulary (or fea-
ture set) of the rule-based classif er in [13]. Neither of these works
examine the impact of the rule-based classif er on the f nal result,
the relation towards semi-supervised learning, nor discusses various
settings of the self-training algorithm, in particular, different feature
sets for the supervised classif er.

3 Data

In this paper, we use both the dataset of IMDb movie reviews [11]
and reviews extracted from Rate-It-All2. We evaluate on the former
because it is considered a benchmark dataset for polarity classif ca-
tion. The additional data are used to show that our f ndings are valid
throughout different domains. Moreover, they have also been used
in prior work on semi-supervised learning [17] which we also make
use of in our experiments. Table 1 lists the properties of the corpora
from the different domains. Note that on the Rate-It-All datasets we
labeled 1 and 2 star reviews as negative and 4 and 5 star reviews as
positive. 3 star reviews are labeled mixed. The actual class of these
reviews is unknown. Usually a 3 star review should be neutral in the
sense that it equally enumerates both positive and negative aspects
about a certain topic, so that a def nite verdict in favor or against it
is not possible. That is also why we cannot assign these instances
to either of the other two groups previously mentioned, i.e., positive
and negative. During a manual inspection of some randomly chosen
instances, however, we also found def nite positive and negative re-
views among 3 star reviews. For this work, we leave these instances
in the category of mixed reviews.

4 Method

4.1 Rule-based Classif er

In the following, we describe how a polarity lexicon is converted
to a rule-based polarity classif er. The polarity lexicon, the list of
other important word classes being intensif ers, negation expressions
(including the rules to disambiguate them) and polarity shifters are
taken from the MPQA project [18].

2 http://www.rateitall.com

4.1.1 Feature Extraction

Any word in a review that is not included in a polarity lexicon is
discarded. Positive words (e.g., excellent) are assigned the value +1,
negative words (e.g., awful) −1, respectively.

4.1.2 Basic Word Sense Disambiguation with
Part-of-speech Tags

The polarity lexicon we use has part-of-speech tags attached to po-
lar expressions in order to disambiguate them, e.g., the word like is
either a polar verb or a preposition (in which case it is meaningless
for polarity classif cation). We identify words as polar expressions
only if their part-of-speech tags also match the specif cation in the
lexicon. This can be considered as some basic form of word sense
disambiguation. For part-of-speech tagging we use the C&C tagger3.

4.1.3 Negation Modeling

If a polar expression occurs within the scope of a negation, its polar-
ity is reversed (e.g., [not nice+]−). By scope, we def ne the f ve words
immediately preceding the polar expression in the same sentence.
Since some negation words are ambiguous and do not express nega-
tions when used in certain constructions, such as not in not only . . .

but also, we also apply some rules disambiguating negation words.
In addition to common negation expressions, such as not, we also

consider polarity shifters. Polarity shifters are weaker than ordinary
negation expressions in the sense that they only reverse a particular
polarity type. For example, the shifter abate only modif es negative
polar expressions as in [abate the damage−]+.

4.1.4 Heuristic Weighting

So far, all polar expressions contained in the polarity lexicon are as-
signed the same absolute weight, i.e., (±)1. This does not ref ect
reality. Polar expressions differ in their individual polar intensity or,
in case of ambiguous words, in their likelihood to convey polarity.
Therefore, they should not obtain a uniform weight.
The polarity lexicon we use [18] includes a binary feature express-

ing the prior intensity of a polar expression. It distinguishes between
weak polar expressions, such as disordered, and strong polar expres-
sions, such as chaotic. Intuitively, strong polar expressions should
obtain a higher weight than weak polar expressions.
When a polar expression is modifed by a so-called intensif er, such

as very or extremely, its polar intensity is also increased. An ordinary
weak polar expression has a similar polar intensity when it is mod-
if ed by an intensif er as a strong polar expression, e.g., extremely
disordered and chaotic.
The part of speech of a polar expression usually sheds light on

the level of ambiguity of the word. If a polar expression is an ad-
jective, its prior probability of being polar is much higher than the
one of polar expressions with other parts of speech, such as verbs
or nouns [11, 17]. Therefore, polar adjectives should obtain a larger
weight than polar expressions with other parts of speech.
Since there are no development data in order to adjust the weights

for the previously mentioned properties, we propose to simply double
the value of a polar expression if either of these properties apply. If
n of these properties apply for a polar expression, then its value is

3 http://svn.ask.it.usyd.edu.au/trac/
candc
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Table 1. Properties of the different domain corpora (†only relates to the Rate-It-All data).

Domain Source Positive (4 & 5 Stars†) Mixed (3 Stars†) Negative (1 & 2 Stars†) Vocabulary Size
computer Rate-It-All 952 428 1253 15083

products Rate-It-All 2292 554 1342 21975

sports Rate-It-All 4975 725 1348 24811

travel Rate-It-All 9397 1772 3289 38819

movies IMDb 1000 0 1000 50920

doubled n times. For instance, an intensif ed adjective is assigned
the value of 4, i.e., 2 · 2.
The properties considered for heuristic weighting have already

been motivated and proven effective in previous work [7, 11].

4.1.5 Classif cation

For each data instance the contextual scores assigned to the indi-
vidual polar expressions are summed. If the sum is positive, then the
instance is classif ed as positive. It is classif ed as negative, if the sum
is negative. We assign to all cases in which the sum is 0 the polarity
type which gives best performance on that individual dataset (which
is usually negative polarity). Thus, we have a stronger baseline that
is to be beaten by self-training.
Note that the prediction score of a data instance, i.e., the sum of

contextual scores of the polar expressions, can also be interpreted as
a conf dence score. This property is vital for effectively using this
rule-based classif er in self-training. Thus, previously mentioned in-
stances with a score of 0, for example, are unlikely to occur in the
labeled training set since it only includes instances labeled with a
high conf dence score. The sum of contextual scores is normalized
by the overall number of tokens in a test instance. This normaliza-
tion additionally encodes the density of polar expressions within the
instance. The greater the density of polar expressions of a particular
type is in a text, the more likely the text conveys that polarity.
Figure 1 summarizes all steps of the rule-based classif er.

1. Lexicon loading, i.e., polar expressions, negation words, and intensif ers
2. Preprocessing:

(i) Stem test instance.
(ii) Apply part-of-speech tagging to test instance.

3. Polar expression marking:
(i) Check whether part-of-speech tag of potential polar expression matches lexical

entry (basic word sense disambiguation).
(ii) Mark strong polar expressions.

4. Negation modeling:
(i) Identify potential negation words (including polarity shifters).
(ii) Disambiguate negation words.
(iii) Reverse polarity of polar expression in scope of (genuine) negation.

5. Intensif er marking
6. Heuristic weighting: double weight in case polar expression is:

(i) a strong polar expression
(ii) an intensif ed polar expression
(iii) a polar adjective.

7. Classif cation: assign test instance the polarity type with the largest (normalized)
sum of scores.

Figure 1. Rule-based classif er.

4.1.6 Different Versions of Classif ers

We def ne four different types of rule-based classif ers. They differ in
complexity. The simplest classif er, i.e., RBPlain, does not contain
word sense disambiguation, negation modeling or heuristic weight-
ing. RBbWSD is like RBPlain but also contains basic word sense
disambiguation. RBNeg is like RBbWSD but also contains negation
modeling. The most complex classif er, i.e., RBWeight, is precisely
the algorithm presented in the previous sections. Table 2 summarizes
the different classif ers with their respective properties.

4.2 Semi-Supervised Learning
Semi-supervised learning is a class of machine learning methods that
makes use of both labeled and unlabeled data for training, usually a
small set of labeled data and large set of unlabeled data. A classif er
using unlabeled and labeled training data can produce better perfor-
mance than a classif er trained on labeled data alone. This is usually
achieved by harnessing correlations between features in labeled and
unlabeled data instances and thus making inferences about the la-
bel of these unlabeled instances. Since labeled data are expensive
to produce, semi-supervised learning is an inexpensive alternative to
supervised learning.
In this paper, we exclusively use Spectral Graph Transduction

(SGT) [6] as a semi-supervised algorithm since it produced consis-
tently better results than other algorithms on polarity classif cation
in previous work [17]. In SGT, all instances of a collection (i.e., la-
beled and unlabeled) are represented as a k nearest-neighbor graph.
The graph is transformed to a lower-dimensional feature space, i.e.,
its spectrum, and then divided into two clusters by minimizing the
graph cut. The two clusters that are chosen should preserve the high-
est possible connectivity of edges within the graph.

4.3 Self-Training a Polarity Classif er using the
Output of a Rule-based Classif er

The idea of this bootstrapping method is that a domain-independent
rule-based classif er is used to label an unlabeled dataset. Unlike
in semi-supervised learning (Section 4.2), no labeled training data
are used. The only available knowledge is encoded in the rule-
based classif er. The data instances labeled by the rule-based clas-
sif er with a high conf dence serve as labeled training data for a
supervised machine-learning classif er. Ideally, the resulting super-
vised classif er is more robust on the domain on which it was trained
than the rule-based classif er. The improvement can be explained
by the fact that the rule-based classif er only comprises domain-
independent knowledge. The supervised classif er, however, makes
use of domain-specif c features, i.e., words such as crunchy+ (food
domain) or buggy− (computer domain), which are not part of the
rule-based classif er. It may also learn to correct polar expressions
that are specif ed in the polarity lexicon but have a wrong polarity
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Table 2. Properties of the different rule-based classif ers.

Properties RBPlain RBbWSD RBNeg RBWeight

basic word sense disambiguation X X X

negation modeling X X

heuristic weighting X

type on the target domain. A reason for a type mismatch may be
that a polar expression is ambiguous and contains different polarity
types throughout the different domains (and common polarity lexi-
cons usually only specify one polarity type per entry). For instance,
in the movie domain the polar expression cheap is predominantly
negative, as it can be found in expressions, such as cheap f lms, cheap
special-effects etc. In the computer domain, however, it is predomi-
nantly positive as it appears in expressions such as cheap price. If
such a polar expression occurs in suff cient documents which the
rule-based classif er has labeled correctly, then the supervised learner
may learn the correct polarity type for this ambiguous expression on
that domain despite the fact that the opposed type is specif ed in the
polarity lexicon.
We argue that using a rule-based classif er is more worthwhile

than using few labeled (in-domain) data instances – as it is the case
in semi-supervised learning – since we thus exploit two different
types of features in self-training being domain-independent polar ex-
pressions and domain-specif c bag of words which are known to be
complementary [1]. The traditional semi-supervised approach usu-
ally just comprises one homogeneous feature set.
Figure 2 illustrates both semi-supervised learning and self-training

using a rule-based classif er for bootstrapping.

4.4 Feature Sets

Table 3 lists the different feature sets we examine for the supervised
classif er (within self-training) and the semi-supervised classif ers.
We list the feature sets along their abbreviation with which they
will henceforth be addressed. The f rst three features (i.e., Top2000,
Adj600, and MPQA) have been used in previous work on semi-
supervised learning [17]. They all remove noise contained in the
overall vocabulary of a domain corpus. The last two features (i.e.,
Uni and Uni+Bi) are known to be effective for supervised polarity
classif cation [10]. Bigrams can be helpful in addition to unigrams
since they take into account some context of polar expressions. Thus,
crucial constructions, such as negation ([not nice]−) or intensif ca-
tion ([extremely nice]++), can be captured. Moreover, multiword po-
lar expressions, such as [low tax]+ or [low grades]− , can be repre-
sented as individual features. Unfortunately, bigram features are also
fairly sparse and contain a considerable amount of noise.

Table 3. Description of the different feature sets.

Feature Set Abbrev.
the 2000 most frequent non-stopwords in the domain corpus Top2000
the 600 most frequent adjectives and adverbs in the domain corpus Adj600
all polar expressions within the polarity lexicon MPQA
all unigrams in the domain corpus Uni
all unigrams and bigrams in the domain corpus Uni+Bi

5 Experiments
For the following experiments – with the exception of those pre-
sented in Section 5.4 – we mainly adhere to the settings of pre-
vious work [17]. We deliberately chose these settings in favor of
semi-supervised learning in order to have a strong baseline for the
proposed self-training method. We use a balanced subset (randomly
generated) for each domain. The Rate-It-All dataset consists of 1800
data instances per domain, whereas the IMDb dataset consists of
2000 data instances. We just consider (def nite) positive and (def -
nite) negative reviews. The rule-based classif ers and the self-trained
classif ers (bootstrapped with the help of rule-based classif cation)
are evaluated on the entire domain dataset. The 1000 most highly-
ranked data instances (i.e., 500 positive and 500 negative instances)
are chosen as training data for the supervised classif er. This setting,
which is similar to the one used for semi-supervised learning [17],
provided good performance in our initial experiments. For the super-
vised classif er, we chose SVMs. As a toolkit, we use SVMLight4.
Feature vectors were always normalized to unit length and addition-
ally weighted with tf-idf scores. All words are stemmed. We report
statistical signif cance on the basis of a paired t-test using 0.05 as the
signif cance level.

5.1 Comparison of Different Rule-based Classif ers
Table 4 shows the results of the different rule-based classif ers across
the different domains. On average, the more complex the rule-based
classif er gets, the better it performs. The only notable exceptions
are the products domain (from RBNeg to RBWeight) and the sports
domain (from RBPlain to RBbWSD). On average (i.e., considering
all domains), however, the improvements are statistically signif cant.

5.2 Self-Training with Different Rule-based
Classif ers and Different Feature Sets

Table 5 compares self-training (SelfTr) using different rule-based
classif ers and different feature sets for the embedded supervised
classif er. In addition to accuracy, we also listed the F(1)-scores of
the two different classes. The results are averaged over all domains.
With the exception of RBNeg in combination with Top2000 and
MPQA, there is always a signif cant improvement from a rule-based
classif er to the corresponding self-trained version. If Top2000 or
MPQA is used, there is a drop in performance from RBNeg to SelfTr
in the sports domain. Improving a rule-based classif er also results
in an improvement of the self-trained classif er. With exception of
SelfTr(RBPlain) to SelfTr(RBbWSD) this is even signif cant.
The feature set producing the best results is Uni+Bi. Uni+Bi is

statistically signif cantly better than Uni. This means that, as far as
feature design is concerned, the supervised classif er within self-
training behaves similar to ordinary supervised classif cation [10].
Unlike in semi-supervised learning [17], a noiseless feature set is
not necessary. Best performance of SelfTr using a large set of polar
4 http://svmlight.joachims.org
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Figure 2. Comparison of semi-supervised learning and self-training using a rule-based classif er for bootstrapping.

Table 4. Comparison of accuracy between different rule-based classif ers (RB) and self-trained classif ers (SelfTr) trained on best feature set (Uni+Bi) on
different domains (for each domain, performance is evaluated on a balanced corpus).

RBP lain RBbW SD RBNeg RBW eight

Domain RB SelfTr RB SelfTr RB SelfTr RB SelfTr
computer 64.11 80.22 70.61 81.72 73.56 83.67 74.28 83.50
products 60.78 70.78 66.06 73.89 71.06 77.00 70.94 77.00
sports 64.33 66.44 64.39 64.94 67.50 68.89 68.89 72.78
travel 64.61 69.56 67.39 69.83 70.72 73.33 72.61 76.89
movies 61.75 72.70 64.80 72.45 67.85 73.55 71.30 77.75
average 63.12 71.94 66.65 72.57 70.14 75.29 71.60 77.58

expressions is reported in [13]. The feature set comprises an open-
domain polarity lexicon and is automatically extended by domain-
specif c expressions. Our results suggest a less complex alternative.
Using SelfTr with unigrams and bigrams (i.e., SelfTrUni+Bi) already
provides better classif ers than SelfTr with a polarity lexicon (i.e.,
SelfTrMPQA). The increase is approx. 3%.
It is also worth pointing out that the gain in performance that is

achieved by improving a basic rule-based classif er (i.e., RBPlain)
by modeling constructions (i.e., RBWeight) is the same as is gained
by just self-training it with the best feature set (i.e., SelfTrUni+Bi).
The relation between the F-scores of the two different classes dif-

fers between RB and SelfTr. In RB, the score of the positive class is
always signif cantly better than the score of the negative class. This
is consistent with previous f ndings [1]. The gap between the two
classes, however, varies depending on the complexity of the classi-
f er. In RBPlain, the gap is 17.45%, whereas it is less than 6% in
RBNeg and RBWeight. In SelfTr, the F-score of the negative class
is usually better than the score of the positive class5. This relation
5 The only exception where the reverse is always true is SelfTrMPQA . This
does not come as a surprise since this feature set resembles RB most.

between the two classes is typical of learning-based polarity clas-
sif ers [1]. However, it should also be pointed out that the gap is
much smaller (usually not greater than 2%). Moreover, the size of
the gap does not bear any relation to the gap in the original RB, i.e.,
though there is a considerable difference in size between the gaps of
RBPlain and RBNeg , the size of the gaps in the self-trained versions
is fairly similar.
We also experimented with a combination of bag of words and the

knowledge encoded in the rule-based classif er, i.e., the two features:
the number of positive and negative polar expressions within a data
instance. The performance of this combination is worse than a classi-
f er trained on bag of words. The correlation between the two class la-
bels and the two polarity features is disproportionately high since the
polarity features essentially encode the prediction of the rule-based
classif er. Consequently, the supervised classif ers develop a strong
bias towards these two features and inappropriately downweight the
bag-of-words features.
Table 4 compares rule-based classif cation and self-training on in-

dividual domains. In some domains self-training does not work. This
is most evident in the sports domain using self-training on RBbWSD.
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Apparently, the better the rule-based classif er is, the more likely a
notable improvement by self-training can be obtained. Note that in
the sports domain the self-trained classif er using the most complex
rule-based classif er, i.e., SelfTr(RBWeight), achieves the largest im-
provement compared to the rule-based classif er. These observations
are also representative for the remaining feature sets examined but
not displayed in Table 4.

5.3 Self-Training using Rule-based Classif ers
Compared to Semi-Supervised Learning

In the following experiments, we use Spectral Graph Transduction
(SGT) [6] as a semi-supervised classif er, since it provided best per-
formance in previous work [17]. As a toolkit, we use SGTLight6.
For each conf guration (i.e., training and test partition) we randomly
sample 20 partitions from the corpus. Labeled training and test data
are always mutually exclusive but the test data (500 positive and 500
negative instances) can be identical to the unlabeled training data.
Figure 3 compares self-training bootstrapped on the output of rule-

based classif cation (SelfTr) to supervised learning (SL) and semi-
supervised learning (SSL). We compare two variations of SelfTr.
SelfTr-A, as SSL, uses the same 1000 randomly sampled data in-
stances for both unlabeled training and testing7. (Again, we report
the averaged result over 20 samples.) SelfTr-B (like in previous sec-
tions) selects 1000 training instances by conf dence from the entire
dataset. The test data are, however, the same as in SelfTr-A. Unlike
in previous work in which Top2000 is used for SL [17], we chose
Uni+Bi as a feature set. It produces better results than Top2000 on
classif ers trained on larger training sets (i.e., ≥ 400)8. For SSL, we
consider Uni+Bi and Adj600, which is the feature set with the overall
best performance using that learning method. For SelfTr, we consider
the best classif er, i.e., SelfTrUni+Bi.
Though SSL gives a notable improvement on small labeled train-

ing sets (i.e., ≤ 100), it produces much worse performance than SL
on large training sets (i.e.,≥ 200). Adjectives and adverbs are a very
reliable predictor. However, the size of the feature set is fairly small.
Too little structure can be learned on large labeled training sets us-
ing such a small feature set. Using larger (but also noisier) feature
sets for SSL, such as Uni+Bi, improves performance on larger la-
beled training sets. However, even with Uni+Bi SSL does not reach
a performance comparable to SL on large training sets and it is sig-
nif cantly worse than Adj600 on small training sets.
Whenever SSL outperforms SL, every variation of SelfTr also out-

performs SSL. SelfTr-B is signif cantly better than SelfTr-A which
means that the quality of labeled instances matters and SelfTr is able
to select more meaningful data instances than are provided by ran-
dom sampling. Unfortunately, SSL-methods, such as SGT, do not in-
corporate such a selection procedure for the unlabeled data. Further
exploratory experiments using the entire dataset as unlabeled data
for SSL produced, on average, results similar to those using 1000
instances. This proves that SSL cannot internally identify as mean-
ingful data as SelfTr-B does. Whereas SSL signif cantly outperforms
SL on training sets using less than 200 training instances, the best
variation of SelfTr, i.e., SelfTr-B, signif cantly outperforms SL on
training sets using less than 400 instances. This difference is, in par-
ticular, remarkable since SelfTr does not use any labeled training data
at all whereas SSL does.

6 http://sgt.joachims.org
7 We use this conf guration since it is required by SGTLight.
8 Note that previous work in particular focused on small training sets [17].
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Figure 3. Comparison of self-training and semi-supervised learning
(performance is evaluated on balanced corpus and results are averaged over

all domains).

5.4 Natural Class Imbalance and Mixed Reviews

In this section, we want to investigate what impact natural class im-
balance has on bootstrapping polarity classif ers with a rule-based
classif er since this aspect has only been marginally covered in pre-
vious work [13, 15]. In those works, different class ratios on the test
set are evaluated. However, the same amount of positive and negative
reviews is always selected for training. We assume that the optimal
performance of self-training can be achieved when the class distribu-
tion of training and test set is identical and we will provide evidence
for that. Moreover, we want to explore what impact different distri-
butions between the two sets have on the accuracy of the classif er
and how different class-ratio estimation methods perform.
Previous work dealing with bootstrapping polarity classif ers us-

ing unlabeled data also focuses on datasets exclusively consisting of
def nite positive and negative reviews [4, 13, 15, 17]. In this sec-
tion, the unlabeled dataset will also include mixed reviews, i.e., 3
star reviews (see Section 3). Due to the availability of such data the
experiments are only carried out on the Rate-It-All data. We also add
the constraint that the test data must be disjoint from the unlabeled
training data9.
Test data are exclusively (def nite) positive reviews (i.e., 4 & 5

star reviews) and (def nite) negative reviews (i.e., 1& 2 star reviews).
From each domain, we randomly sample 200 data instances 10 times.
We state the results averaged over these different test sets. The class
ratio on each test set corresponds to the distribution of def nite polar
reviews, i.e., 3 star reviews are ignored.
The unlabeled training dataset is the dataset of a domain exclud-

ing the test data. As labeled training data for the embedded super-
vised classif er within self-training, we use 70% of data instances la-
beled by the rule-based classif er ranked by conf dence of prediction
(across all domains/conf gurations, this size provided best results).
Hopefully, most mixed reviews are among the remaining 30%.

9 We can include this restriction in this section since we will not consider the
semi-supervised learning algorithm SGT in this section.
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Table 5. Performance of self-trained classif ers with different feature sets (experiments are carried out on a balanced corpus and results are averaged over all
domains).

RBP lain RBbWSD RBNeg RBWeight

Type F1+ F1− Acc F1+ F1− Acc F1+ F1− Acc F1+ F1− Acc
RB (Baseline) 69.81 52.36 63.12 70.39 61.79 66.65 72.42 67.40 70.14 74.26 68.30 71.60
SelfTrTop2000 70.15 70.88 70.53 70.26 71.55 70.92 72.78 73.88 73.40 74.79 74.18 75.73
SelfTrAdj600 68.94 69.92 69.44 70.08 71.41 70.76 72.46 73.90 73.20 74.34 75.82 75.10
SelfTrMPQA 69.18 67.85 68.55 70.03 69.46 69.75 72.50 72.19 72.15 74.57 75.47 75.04
SelfTrUni 69.82 71.16 70.51 70.53 72.41 71.50 73.17 74.87 74.05 75.73 77.67 76.74
SelfTrUni+Bi 71.14 74.69 71.94 71.41 73.64 72.57 74.39 76.12 75.29 76.43 78.62 77.58

5.4.1 Class Imbalance and Rule-based Classif cation

In the f rst experiment, we just focus on class imbalance (i.e., 3 star
reviews are excluded). We examine a self-trained classif er using the
class-ratio estimate of a rule-based classif er as it is the most obvi-
ous estimate since the rule-based classif er is also used for generating
the labeled training data. In particular, we want to explore whether
there is a systematic relationship between the class distribution, the
class-ratio estimate of the rule-based classif er and the resulting self-
trained classif er. Table 6 lists the actual distribution of classes on the
test set, the deviation between the distribution as it is predicted by the
rule-based classif er and the actual distribution along the information
towards which class the rule-based classif er is biased. Finally, we
also list the absolute improvement/deterioration of the self-trained
classif er in comparison to the rule-based classif er. We will only
consider the best rule-based classif er, i.e., RBWeight, and for self-
training, we will exclusively consider the best conf guration from the
previous experiments, i.e., SelfTrUni+Bi. The table shows that the
quality of class-ratio estimates of rule-based classif ers varies among
the different domains. The deviation is greatest on the computer do-
main. This is also the only domain in which the majority class are the
negative reviews. With exception of the sports domain, the rule-based
classif er always overestimates the amount of positive reviews. This
overestimation is surprising considering that the polarity lexicon we
use contains almost twice as many negative polar expressions as pos-
itive polar expressions. This f nding, however, is consistent with our
observation from Section 5.2 that rule-based classif ers have a bias
towards positive reviews, i.e., they achieve a better F-score for pos-
itive reviews than for negative reviews10. Table 6 also clearly shows
that the deviation negatively correlates with the improvement of the
self-trained classif er towards the rule-based classif er. The improve-
ment is greatest on the sports domain where the deviation is smallest
and the greatest deterioration is obtained on the computer domain
where the deviation is largest.
In summary, the class distribution of the data has a signif cant im-

pact on the f nal self-trained classif er. In case there is a heavy mis-
match between actual and predicted class ratio, the self-training ap-
proach will not improve the rule-based classif er.

5.4.2 Class Imbalance, Class Ratio Estimates and 3 Star
Reviews

In the following experiment we will compare how alternative class-
ratio estimates relate to each other when applied to self-training.
We compare the actual distribution (Ratio-Oracle) with the balanced

10 We also observed that this bias is signif cantly larger on simple classi-
f ers, such as RBPlain, which is plausible since on this classif er the gap
between F-scores of positive and negative reviews is also largest (see Ta-
ble 5).

class ratio (Ratio-Balanced), the class ratio as predicted by the rule-
based classif er over the entire dataset (Ratio-RB) and estimates
gained from a small amount of randomly sampled data instances
from the dataset. We randomly sample 20 (Ratio-20), 50 (Ratio-50)
and 100 (Ratio-100) instances. For each conf guration (i.e., 20, 50,
and 100), we sample 10 times, run SelfTr for each sample and re-
port the averaged result. We compare the self-trained classif er with
a classif er always assigning a test instance to the majority class
(Majority-Cl) and the rule-based classif er (RBWeight). This time,
we also include the 3 star reviews in the unlabeled dataset.
Table 7 displays the results. We also display results of the datasets

without using 3 star reviews in brackets. SelfTr using Ratio-Balanced
produces the worst results among the self-training classif ers. This
was the only method used in previous work (in Chinese) [13, 15].
Apparently, English data are more diff cult than Chinese and, in En-
glish, SelfTr is more susceptible to deviating class-ratio estimates
since in [13, 15] SelfTr with Ratio-Balanced scores rather well.
Ratio-Oracle produces best results which comes to no surprise since
the class distribution in training and test set is the same. On av-
erage, Ratio-100 produces the second best result as it also gives
fairly reliable class-ratio estimates (the deviation is 3.3% on average,
whereas the deviation of Ratio-Balanced is 18.16%). Both Ratio-
50 and Ratio-100 produce results which are signif cantly better than
Majority-Cl and RBWeight.
As Ratio-Oracle, Ratio-Balanced, Ratio-20, Ratio-50, and Ratio-

100 suggest, the presence of mixed polar reviews does not produce
signif cantly different results. It is very striking, however, that the
results of Ratio-RB are better using the 3 star reviews which seems
counter-intuitive. We found that this is a corpus artifact. As already
stated in Section 3, 3 star reviews do not only contain indef nite polar
reviews but also positive and negative reviews. We also noted that
Ratio-RB has a bias towards predicting too many positive instances.
The bias is stronger if 3 star reviews are not included in the ratio-
prediction (deviation of 8.5% instead of 6%). We, therefore, assume
that among the 3 star reviews the proportion of negative-like reviews
is greater than among the remaining part of the dataset and RB within
SelfTr detects them as such. Thus, the bias towards positive polarity
is slightly neutralized.
In summary, using small samples of labeled data instances is the

most effective way for class ratio estimation enabling SelfTr to con-
sistently outperform Majority-CL and RBWeight. Mixed reviews
only have a marginal impact on the f nal overall result of SelfTr.

6 Conclusion
In this paper, we examined the effectiveness of bootstrapping a super-
vised polarity classif er with the output of an open-domain rule-based
classif er. The resulting self-trained classif er is usually signif cantly
better than the open-domain classif er since the supervised classif er
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Table 6. Class imbalance and its impact on self-training.

Domain Class distribution (+ : −) Deviation of predicted
distribution from actual

distribution

Class towards which
predicted distribution is

biased

Difference in Accuracy between
RB and SelfTr(RB)

computer 43.17 : 56.83 16.30 + −3.60

products 63.07 : 36.93 6.65 + −0.25

sports 78.68 : 21.32 2.10 − +3.15

travel 74.07 : 25.93 3.71 + +1.30

Table 7. Accuracy of different classif ers tested on naturally imbalanced data: for self-trained classif ers the unlabeled data also contain 3 star reviews;
numbers in brackets state the results on a dataset which excludes 3 star reviews.

SelfTr
Domain Majority-Cl RBWeight Ratio-Oracle Ratio-Balanced Ratio-RB Ratio-20 Ratio-50 Ratio-100
computer 56.83 73.80 82.80 (83.35) 83.25 (82.95) 75.95 (70.20) 77.36 (77.95) 80.43 (80.91) 80.96 (81.47)
products 63.07 76.00 80.90 (81.70) 75.40 (76.05) 77.50 (75.75) 77.61 (78.10) 80.45 (80.86) 80.69 (81.27)
sports 78.68 77.35 81.25 (81.10) 62.55 (60.30) 80.75 (80.50) 79.10 (79.01) 79.94 (79.94) 80.62 (80.50)
travel 74.07 79.50 81.70 (81.60) 66.95 (66.10) 81.15 (80.80) 77.96 (76.59) 80.64 (80.52) 80.76 (80.58)
average 68.16 76.66 81.66 (81.94) 72.04 (71.35) 78.84 (76.81) 78.01 (77.91) 80.37 (80.56) 80.76 (80.96)

exploits in-domain features. As far as the choice of the feature set is
concerned, the supervised classif er within self-training behaves very
much like an ordinary supervised classif er. The set of all unigrams
and bigrams performs best.
The type of rule-based classif er has an impact on the performance

of the f nal classif er. Usually, the more accurate the rule-based clas-
sif er is, the better the resulting self-trained classif er is. Therefore,
modeling open-domain constructions relevant for polarity classif ca-
tion is important for this type of self-training. It also suggests that
further improvement of rule-based polarity classif ers by more ad-
vanced linguistic modeling is likely to improve self-training as well.
In cases in which semi-supervised learning outperforms super-

vised learning, self-training at least also performs as well as the best
semi-supervised classif er. A great advantage of self-training is that
it chooses instances to be added to the labeled training set by using
conf dence scores whereas in semi-supervised learning one has to re-
sort to random sampling. The resulting data from self-training are
usually much better.
Self-training also outperforms a rule-based classif er and a

majority-class classif er in more diff cult settings in which mixed re-
views are part of the dataset and the class distribution is imbalanced,
provided that the class-ratio estimate does not deviate too much from
the actual ratio on the test set. A class-ratio estimate can be obtained
by the output of the rule-based classif er but, on average, using small
samples from the data collection produces more reliable results.
Since this self-training method works under realistic settings, it

is more robust than semi-supervised learning, and its embedded su-
pervised classif er only requires simple features in order to produce
reasonable results, it can be considered an effective method to over-
come the need for many labeled in-domain training data.
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