Published in: Lexicographica vol. 9 (1993), pp. 174-219.

Non-thematic part

Ralf Hauser | Angelika Storrer

Dictionary Entry Parsing Using the LEXPARSE System

1. Introduction

2. Dictionary Entry Parsing: Problems and Requirements
2.1. Dictionary Entry Parsing

2.2. Structural Properties of Dictionary Texts

2.3. Dictionary Entry Parsing vs. Sentence Parsing
2.4. Requirements for a Dictionary Entry Parser

3. LEXPARSE System Design and Concepts

3.1. The System’s Architecture

3.2. LEXPARSE Concepts

4. The LEXPARSE Grammar Formalism

4.1. Formal Description of the LEXPARSE Grammar
4.2. Annotations to the Formalism

4.3. Applying the LEXPARSE Grammar Formalism
5. The Implementation

5.1. Module LEXPARSE

5.2. Module GRAMMAR

5.3. Module PPROCESS

5.4. Module PREP

5.5. Module SCAN

5.6. Module PARSE

5.7. Module OUTPUT

5.8. Module ERROR

5.9. Module GREP

5.10. Module INI

5.11. Module TOOLS

6. Conclusion and Outlook

7. References

Appendixes

A List of All Available XCodes

B A Sample ‘.INI" Configuration File for LEXPARSE
C A Sample LEXPARSE Grammar

D Sample Sessions

D.1. Treffen, DUDEN-STILWORTERBUCH, Page 703
D.2. trennen, DUDEN-STILWORTERBUCH, Page 704
D.3. iiberhaupt, DUDEN-STILWORTERBUCH, Page 716

1. Introduction

Dictionary entry parsing, i.e., the automatic conversion of a typesetting representation of dic-
tionary text into a format which explicitly represents the hierarchical structure of dictionary

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 175

entries, has become an increasingly important topic in Computational Lexicography. Whereas
earlier programs were tailored to the conversion of one specific dictionary, the growing inter-
est in machine readable dictionaries led to the development of general-purpose dictionary entry
parsers, which may be used in converting any type of typesetting representation of dictionary
text (cf. NEFF & BOGURAEV 1990 and BLASI & KOCH 1991).

Dictionary entry parsers analyze an input stream coming from typesetting tapes using a
dictionary entry grammar and then generate a representation of the dictionary text in which the
hierarchical structure of the entries is explicitly shown so that each lexicographic item can be
individually accessed by a software system. Such a representation of both dictionary form and
dictionary subject is generally called Lexical Database and is used in different fields:

Computational Lexicography:
Methods and techniques are developed and tested to transform the lexical information stored in lexical da-
tabases into a format which can be processed by a natural language processing (NLP) system (cf. Bo-
GURAEV & BRISCOE 1989).
Since the manual construction of NLP lexicons is a time and labor consuming task, one hopes that the
automatic exploitation of machine readable dictionaries (MRDs) using these methods will reduce the effort
required in the development of NLP lexicon components (cf. BOGURAEV 1991).

Traditional Lexicography:

Lexical databases are fundamental components of lexicographic workbenches, i.e., software systems for
computer-aided dictionary publishing. Dictionary entries stored in the database can be edited and updated
directly thereby speeding up the process of revising existing dictionaries and making new dictionaries.
Furthermore, the multiple ways in which lexical databases can be queried allow for a more consistent and
reflected description of the lexical items in the dictionaries (cf. BLASER & WERMKE 1990).

Electronic editions of dictionaries based on lexical databases can easily be developed offering a faster
and more flexible access to the dictionary text using techniques such as hierarchical, relational or object-
oriented databases or hypertext systems.

Dictionary entry parsers automatically assign structure to the dictionary text represented on
typesetting tapes using a dictionary entry grammar. Dictionary entry grammars define condi-
tions for well-formedness of dictionary entries and specify partitive and precedence relations
between the constituents of the dictionary entry structure. Dictionary entry structures not li-
cenced by the dictionary entry grammar will be marked as non-wellformed. As a consequence,
the process of dictionary entry parsing — aside from its main goal of converting the typesetting
tape into a lexical database — has the side-effect of detecting errors and inconsistencies in the
structural encoding of the dictionary. Thus, not only can complete and correct dictionary entry
grammars be used in the conversion step, but they may be reused for checking structural well-
formedness of revised entries in future editions of the dictionary in question as well. A prerequ-
isite for this use of dictionary entry grammars is that the grammar formalism is simple and easy
to learn, so that changes in the dictionary entry structure, introduced in connection with the re-
vision of the dictionary, can be adapted without difficulty.

Our paper deals with the problems of dictionary entry parsing and presents the main fea-
tures of the LEXPARSE system, a dictionary entry parser developed by Ralf Hauser within the
framework of the ELWIS project.’

LEXPARSE supports a context-free grammar formalism supplemented by special operators

ELWIS is a research project on the corpus-based development of lexical knowledge bases (the acronym
stands for Korpusunterstitzte Entwicklung lexikalischer Wissensbasen) carried out at the University of
Tiibingen since 1992 and funded by the Ministry of Science and Research Baden-Wiirttemberg (cf.
STORRER, FELDWEG & HINRICHS 1993).

LEXICOGRAPHICA 9/1993

176 Ralf Hauser / Angelika Storrer

which are needed for the particular requirements of dictionary entry parsing. It has been tested
with parts of the DUDEN-STILWORTERBUCH (DUDEN-2) and the DUDEN-BEDEUTUNGSWOR-
TERUCH (DUDEN-10).2 and is currently being used for the parsing of the DEUTSCHES RECHTS-
WORTERBUCH (Akademie der Wissenschaften in Heidelberg/Germany) and the FRUHNEUHOCH-
DEUTSCHES WORTERBUCH (German language department of the University of Heidelberg) and
will be applied to a bilingual dictionary in an EC funded R&D project. In most cases, our
examples will refer to the dictionary entry grammar which was developed for the DUDEN-STIL-
WORTERBUCH (cf. ENGELKE 1994). Although the system was designed for the parsing of
dictionary text, the system can also be used for the parsing of text types with similar structural
properties such as bibliographies and encyclopedias.

The development of the system and of the above mentioned dictionary entry grammars was
based on the theory on lexicographic texts by H.E. WIEGAND. In the following section we will
briefly introduce some basic notions of this theory needed in describing the key problems of
dictionary entry parsing. Most of these problems can be traced back to the fact that intellectual
segmentation of dictionary text into meaningful lexicographic text segments presupposes an
understanding of its semantic content, whereas automatic segmentation can only rely on formal
properties of the text segments. We will show that the problems of dictionary entry parsing
differ considerably from those related to the parsing of natural languages and we will compile a
list of specific requirements which a parsing system has to meet in order to cope with these
problems. We will then present a detailed description of the design and of the general concepts
of LEXPARSE explaining how these concepts together with the grammar formalism lead to a
powerful tool for dictionary entry parsing which will allow a straightforward treatment of these
problems. Finally, we will describe the modular architecture of the system implemented in the
object-oriented programming language C++ and outline how the modules of the system inter-
act.

2. Dictionary Entry Parsing: Problems and Requirements

2.1. Dictionary Entry Parsing

A Dictionary entry parser is a software system which segments dictionary text stored on type-
setting tapes into functional text segments and generates an explicit representation of the dic-
tionary structure by consulting a user-supplied dictionary entry grammar. The development of
dictionary entry grammars must be based on a theory which provides methods and categories
for the analysis of the dictionary form and the dictionary subject. In recent metalexicographic
research on printed dictionaries, the idea that dictionaries can be observed as a special text type
to be described with textlinguistic categories has succeeded in being accepted. A formalized
theory on lexicographic texts worked out by H.E. WIEGAND provides:

— a sound theoretical framework for the development of dictionary entry grammars by formally describing
the various types of text structures to be found in standardized dictionaries;

~ methods to intellectually analyze and segment entries of standardized monolingual dictionaries;

- asubstantial terminological framework to elaborate the problems of dictionary entry parsing as well as the
different strategies for their solution.

In the following we will informally introduce those basic notions of the theory which are

2 We would like to thank Dr. MATTHIAS WERMKE and the DUDEN editorial for supplying us with this mate-

rial.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 177

needed to understand the basic concepts and strategies of the LEXPARSE approach to diction-
ary entry parsing’

2.2. Structural Properties of Dictionary Texts

The main part of a general monolingual dictionary is the word list, consisting of lexicographic
descriptions for lemma signs, i.e., those lexical signs which are represented as lemmata
(headwords) in the dictionary. The basic textual units of a word list are the dictionary entries.
Dictionary entries can be further segmented into functional text segments which are either
structure indicators carrying information on the dictionary form, or lexicographic items carry-
ing information on the dictionary subject. The microstructure and the macrostructure are both
order structures which are characteristic for the word list of a dictionary and have to be rec-
ognized by a dictionary entry parser.*

2.2.1. The Macrostructure

The macrostructure defines the ordering of the lemmata in the word list by means of a specific
access alphabet, i.e., an alphabet in which all kinds of diacritics are integrated. Strictly-alpha-
betically ordered dictionaries arrange their lemmata strictly according to this alphabet, whereby
two kinds of arrangements have to be distinguished: Niching dictionaries cluster sub-entries,
i.e, each sub-lemma immediately follows the preceding sub-entry without beginning a new
line, whereas straight-alphabetical dictionaries have no lexicographic grouping. Nested dic-
tionaries reveal the same type of grouping as niched ones, but are not strictly alphabetical,
because the alphabetic order can be interrupted in order to exhibit morphosemantic relation-
ships between the (sub)-lemmata.’

2.2.2. The Microstructure

The microstructure of a dictionary is determined by the classes of lexicographic items (item
classes) used in the dictionary and specific relations which hold between them.® Two types of
relations are relevant for the development of dictionary entry grammars to be used by a dic-
tionary entry parser:

— Partitive relations are defined on the set of classes of items and determine the partitive microstructure.

— Precedence Relations are defined on the set of classes of items which cannot be further segmented into
smaller functional text segments (classes of elementary items) thereby determining the precedential micro-
structure.

Both relations together determine the hierarchical microstructure of dictionary entries which
can be represented by tree diagrams.” Classes of elementary items are the terminal nodes,
classes of non-elementary items, i.e., complex categories such as example groups or lexico-

® Detailed and formal descriptions of different parts of the theory are given in different publications, e.g., in

WIEGAND 1989a; 1989b; 1989c; an overview is given in WIEGAND 1991.

Other types of structures described in the above mentioned theory on lexicographic texts, e.g., addressing
structures, cohesion structures, theme-rheme structures, mediostructures have not yet been dealt with
within the context of dictionary entry parsing.

For a detailed description of the different kinds of access structures and macrostructures see WIEGAND
1989a. .

In our dicussion we use the term ‘microstructure’ to refer to the ‘abstract microstructure’ in the sense of
WIEGAND 1989b without further differenciating in abstract und concrete microstructures.

A detailed description of different kinds of microstructures in general monolingual dictionaries can be
found in WIEGAND 1989b; 1989c.

LEXICOGRAPHICA 9/1993

178 Ralf Hauser / Angelika Storrer

graphic comments, are the non-terminal nodes of such a tree representation. Hierarchical mi-
crostructures can be described as a context-free dictionary grammar DG <CEI,CNI,R, WA>
where:

— CEI (the set of Classes of Elementary Jtems) is the terminal alphabet of DG;

~ CNI (the set of Classes Non-elementary /tems) is the set of non-terminal symbols of DG;

R (Rules) is a set of context-free rewrite rules;

WA (Weérterbuchartikel = dictionary entry) is an element of CNI and the initial symbol of DG.

2.2.3. Structure indicators

Structure indicators (SIs) carry information about the form of the dictionary and have the
genuine function of supporting the user’s perception of the macrostructure and the microstruc-
ture. Two types of S/s must be distinguished:

— Symbols like punctuation marks, brackets or other special characters are used as nontypographic structure
indicators (Sl.y,) which give structural information, e.g., separate lexicographic items from each other.
Along with the lexicographic items, they constitute the main types of lexicographic text segments.

— The fonts and typefaces in which text segments appear in the dictionary have the function of fypographic
structure indicators (SIy,). With respect to the printed dictionary, SIs,, are not segments of the dictionary
text, but rather attributes of segments such as items and S/s,,,. They belong — from a semiotic point of
view — to a secondary system of signs, which can only fulfill their sign function with the help of a primary
system of signs.® This, however, does not hold true for the way in which the dictionary text is represented
on typesetting tapes: In this representation, typographic information is encoded directly in the form of con-
trol codes denoting different kinds of fonts and typefaces.

Together S/sy, and Slsuy, both help human users to reconstruct the textual structure of a dic-
tionary. An elaborate system of SIs allows for rapid access to the desired information and can
therefore considerably speed up the process of dictionary look-up. SIs play a central role in
dictionary entry parsing because the automatic segmentation and analyses of dictionary text is
mainly controlled by the interpretation of S/s. Whereas human users of dictionaries can rely on
their linguistic and metalexicographic knowledge, dictionary entry parsers have to cope with-
out this knowledge. The quality of the parsing results are substantially impaired if the system of
SIs is not carefully considered or if it is used in an inconsistent way.

2.3. Dictionary Entry Parsing vs. Sentence Parsing

On a very high level of abstraction, the parsing of syntactic structures of natural language
sentences and the parsing of dictionary entry structures are similar tasks, namely the automati-
cal assignment of non-linear structure to a linear input stream of text segments by consulting a
grammar. A closer look, however, reveals significant differences between the problems related
to sentence parsing and those related to dictionary entry parsing:®

— A sentence parser has to cope with recursion, whereas a dictionary entry parser has to adequately handle
the iteration of an arbitrary number of items belonging to the same item class, all being direct constituents
of the same item group (e.g. a number of example sentences all of which are direct constituents of an ex-
ample group item or a number of translations belonging to the same translation group). Recursion is only
needed for dictionaries with niched or nested entries and only in those cases where the structure of the sub-
entries is identical to the structure of the main entry.

~ A sentence parser generally consults a lexicon in order to assign the words of the sentence to syntactic
categories. A dictionary entry parser, however, when classifying the lexicographic text segments as be-

§ Cf WIEGAND 1991:26f.
® On this subject see also NEFF, BIRD & RIzK 1988.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 179

longing to specific item classes, has to manage without a lexicon: It is not feasible to list all items of unre-
stricted item classes, like example or definition sentences in a lexicon, since this would mean a listing of
an infinite number of phrases and sentences which can, in priniciple, be used in order to describe or ex-
emplify the meaning of the lemmata in the dictionary.'® Lists of permissible values can only be specified
for ‘closed’ item classes (e.g. items giving the gender of a noun or items giving information about inflec-
tion) — the parser can then test a lexicographic text segment in question against these lists and assign it to
the appropriate item class.

- An important issue of sentence parsing is the recognition and resolution of various types of structural and
semantic ambiguities. These phenomena do not have a counterpart in dictionary entry parsing where the
hierarchical microstructure is unambiguously specified. However, dictionary entry parsing has to cope
with two types of functional ambiguities both related to S7s, i.e., those text segments which play a crucial
role for the identification and interpretation of the dictionary entry structure:
¢ One type of ambiguity occurs if the same S/ has potentially different functions: The slash in the DUDEN-

STILWORTERBUCH for example is used, on the one hand, to separate lexical variants from each other
(e.g. two variants of a phraseme component as in den starken Mann mimen/markieren) and, on the
other hand, it indicates the beginning and end of an item giving pragmatic-semantic information (as in
grilner Star /eine Augenkrankheit/). The dealing with this type of ambiguity is simple as long as the two
functions are - linguistically speaking — in complementary distribution, i.e., if each function is bound to
a specific context. Error-prone, with respect to dictionary entry parsing, are those cases where
contextual features do not suffice to identify the function of the SI.

o Most dictionary texts contain symbols which — depending on the context — can either be a S/ giving in-
formation on the dictionary form or can be part of an item giving information on the dictionary sub-
ject."! An example of this second type of ambiguity is the colon in the DUDEN-STILWORTERBUCH which
can either function as a S/ separating the comment on form from the rest of the dictionary entry, or can
be part of an example group, e.g., in die Mannschaften trennten sich 0:0 (the teams parted with a score
of 0:0). In the following we will use the term indefinite structure indicator (SI"™) for the symbols which
reveal this type of ambiguity between dictionary form and dictionary subject in order to distinguish
them terminologically from symbols called definite structure indicators (SIY), which may also be
functionally ambiguous but which always carry information about the dictionary form (like the slash
mentioned above).

Dictionary entry parsers have to provide facilities to handle both types of ambiguities, because
the automatic identification of the dictionary entry structure is mainly controlled by the correct
interpretation of SIs. The wrong interpretation of S/s” will inevitably result in bad segmenta-
tion results and in inadequate structural analyses. In the following section we will show that the
LEXPARSE systems provides straightforward solutions to these problems based on a differenti-
ated handling of S/s* and S7s™.

2.4. Requirements for a Dictionary Entry Parser

In order to cope with the specific problems related to the automatic conversion of typesetting
tapes into lexical databases, a dictionary entry parser must meet the following requirements:

- The segmentation of the typesetting tape into separate dictionary entries and the structural analyses of
these entries must be based primarily upon the automatic recognition and the correct interpretation of SIs.

— Ambiguities due to SIs™ have to be recognized and handled adequately.

- The grammar formalism supported by the dictionary entry parser has to provide operators and mechanisms
to cope with phenomena — such as the handling of fonts and typefaces and the management of counters —
that cannot be expressed by means of a context-free grammar formalism.

- Iteration of an arbitrary number of items belonging to the same item class is typical for hierarchical micro-
structures of dictionary entries and has to be supported by the grammar formalism. Recursive rules are not
appropriate, because they result in a misleading representation of iterative structures.

The permissible values of these item classes can only be specified by means of very general data types.
For the distinction between dictionary form and dictionary subject see WIEGAND 1991:18f.

LEXICOGRAPHICA 9/1993

180 Ralf Hauser / Angelika Storrer

In addition, a dictionary entry parser must meet some general requirements:

- A simple and easy to learn yet powerful grammar formalism should assist the user in developing diction-
ary entry grammars.

— In order to meet specific user needs, the format of the parse trees should be user-configurable. The system
should at least be capable of displaying parse trees as hierarchical attribute-value structures for an easy-to-
read view, and as annotated SGML structures for a convenient conversion of the data into other formats.

— The parser should provide special functions and protocol files in order to facilitate the development and
the debugging of dictionary entry grammars.

— Since the process of parsing is usually carried out offline, speed of execution plays a minor role for dic-
tionary entry parsing. However, brief response times are an advantage, especially during the time period in
which the dictionary entry grammar is being developed and the user heavily interacts with the system.

— The program should be capable of permanently saving all settings and options in order to facilitate subse-
quent parsing sessions with identical settings and options.

~ The implementation of the program should be independent of a specific host architecture or operating
system so as to obtain a maximum portability.

In the following we will explain how the LEXPARSE parsing system meets these requirements.
In contrast to former approaches to dictionary entry parsing, the LEXPARSE system was not
built upon an existing natural language parser but was developed from scratch, taking into
account the specific problems related to the parsing of dictionary text stored on typesetting
tapes.

3. LEXPARSE System Design and Concepts

3.1. The System’s Architecture

The LEXPARSE system consists of two files: the configuration file and the program executable
comprising the following modules:

— The main function initializes all data structures, error handlers and uses default values for the program’s
settings. It also contains the main loop for dictionary entry parsing.

~ The parsing engine itself is split into three different components:
o the preprocessor
o the scanner
o the parser

— The output function displays the resulting parse tree in different user-definable styles and performs textual
conversions to the terminal nodes of the parse tree to meet user-specific needs.

Figure 1 illustrates the architecture of the LEXPARSE system.

The configuration file is a pure ASCII text file, maintained by a standard text editor,
which contains all settings, commands and the dictionary entry grammar. The configuration file
may be split into several files if a separation between general settings controlling the general
parse process and dictionary-specific settings (the dictionary entry grammar and control of the
scanner and the preprocessor) is desired.

At runtime, LEXPARSE reads and interprets the configuration file, verifies the grammar and
checks all settings for completeness. If no errors did occur so far, the program opens the
specified input file for parsing.

The preprocessor reads the input file on a line-by-line basis and converts tape specific
format sequences and codes, i.e., removes superfluous control codes and changes escape
sequences into readable characters.

The scanner splits the lines being read by the preprocessor into atomic items, the so-called
tokens. These tokens may represent textual elements (e.g. words, numbers, punctuation

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 181

LEXPARSE

.INI File
Handler

s S
L + ot o]
[Directives | ——={ Postprocessor
R :
| | r
. | | °
| isplay Set. |—— Output | r
Lo e e — — — — J H
I ——— ,a,
(oA poer |
|
T Accumulator| e
\ ' ! r
| I |
| | |
— | ! —
[Oirectives |——={ Preprocessor [<—[Logfie prep | B

I e J

| T | I | | | I | | | ! | |

Typesetting Tape

Figure 1: The Design of the LEXPARSE Program

characters) or structure indicators (which may be defined as XCodes; cf. the next section for
details).

The parser matches these tokens with the rules of the dictionary entry grammar and cre-
ates a parse tree by expanding the starting symbol of the grammar.

The postprocessor applies textual conversions to the terminal nodes of the parse tree, i.e.,
the representation of the lexicographic items. For instance German ‘Umlaute’ may be con-
verted into the respective TEX or L TEX representation.

The program displays the parse tree according to user-defined style settings. Entries being
marked as non-wellformed are displayed with a maximum parse tree so that the source for the
error is almost immediately apparent (cf. example D2 in the appendix).

All actions performed by the system are logged in different protocol files in order to facili-
tate debugging. The user can specify whether the protocol shall comprise all entries or only
those which were marked as non-wellformed. A final status report informs the user about the
total number of correct and incorrect entries and the time spent on parsing.

LEXICOGRAPHICA 9/1993

182 Ralf Hauser / Angelika Storrer

3.2. LEXPARSE Concepts

After having applied all preprocessor directives, the scanner splits the input into fokens, i.e.,
atomic strings being enclosed by token delimiters. LEXPARSE distinguishes two classes of
tokens, the so-called XCode tokens and the so-called literal tokens. XCodes are predefined -
symbols which are generally used to represent S/s. A literal is a string containing a word, a
number or a punctuation character.

Tokenization is controlled by the following principles:

- Word delimiters always separate consecutive tokens. Word delimiters are:'?
o the space character (ASCII 32),
o the newline/linefeed characters (ASCII 10 resp. 13),"
o the formfeed character (ASCII 12), and
o the tabulator character (ASCII 9)."
~ A change from a letter to a digit and vice versa results in separate tokens."®
— A change from a letter to a punctuation character and vice versa results in separate tokens.
~ An occurence of an XCode being introduced by a preprocessor directive results in separate tokens.

The difference between XCodes and literals is crucial to the LEXPARSE approach and will be
dicussed in more detail in the following sections.

3.2.1. XCode Tokens

XCodes are predefined symbols provided by the LEXPARSE system which are generally used to
represent S/s. In the typesetting representation of the dictionary text, SIs are represented either
as control codes (this applies to all S/s,,) or as ordinary characters (this applies to most
STsnyp).

In general, the grammar writer assigns XCodes to all patterns denoting SIs* and, in spe-
cific cases, also to the patterns denoting SIs™.'

The grammar writer who is in charge of this assignment has to consider the predefined se-
mantics of the XCodes:'” Punctuation characters must be assigned to the appropriate XCodes
(e.g. the colon ‘ :) must be assigned to the XCode XPCOL denoting the punctuation character
‘colon’ (:)) and control codes must be assigned to their appropriate XCodes (e.g. a control
code £234&16 indicating the beginning of a new dictionary entry in the typesetting tape must
be assigned to the XCode XFLBE denoting the beginning of dictionary entries).

LEXPARSE offers, aside from user-definable XCodes, a wide variety of predefined XCode
label, each of which consists of a combination of exactly five letters and belongs to a specific
XCode class:

The configuration option [Scanner] AddLetters can be used to restrict the set of delimiters by
expanding the set of characters which are regarded as ‘letters’.

The configuration switch [Settings] SkipNLChar determines whether these characters act as de-
limiters or whether they are simply ignored.

The configuration switch [Settinga] TabAsXCode determines whether the tabulator character is re-
garded as an XCode or whether it is simply a delimiter.

By default the set of characters being considered as ‘letters’ contains all uppercase letters 4-Z and all
lowercase letters a-z. This set may be further expanded using the configuration option [Scanner]
AddLetters.

A detailed discussion of strategies for the assignment of XCodes to SIs"™ can be found in HAUSER 1993.
This does not apply to XCodes of class Xu*+**, i e., user-definable XCodes.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 183

XCodes |Class

XB*** |Brackets

XP*** |Punctuation characters
XC*** |(Other) Characters

XF*** |Format

XFT** |Format: Typefaces (Subclass)
XU*** |User-definable

X EOF |(End Of File

A complete list of all predefined XCodes and their semantics can be found in the appendix.
Various operators provided by the LEXPARSE grammar formalism allow for a differenci-

ated treatment of XCodes: The skip operators consume XCode tokens whereas the $ operators

block the consumption of XCode tokens.'® In section 4.2. we will show how this can be ap-

plied to the functional disambiguation of S/s™.

3.2.2. Literal Tokens

All tokens not assigned to XCodes are regarded as literal tokens or literals. These literals can
be words, numbers or punctuation characters; a word is defined as being any sequence of
‘letters’. The set of characters being regarded as ‘letters’ contains all uppercase letters A-Z, all
lowercase letters a—z, and and all characters as defined by the configuration option
[Scanner] AddLetters. '

Any sequence of digits (0-9) is regarded as being a number.

All characters which are neither digits nor letters and which are not defined as XCodes are
treated as punctuation characters which always result in single literal tokens.

In contrast to XCodes, literals are consumed by both skip operators and $ operators.

3.2.3. Typeface Changes and Typeface States

Typesetting tapes represent typographic information in the form of control codes which indi-
cate transitions from one typeface to another typeface." In most cases, the end of a specific
typeface is not explicitely encoded but rather implicitely indicated by various types of events,
e.g., the end of a paragraph, the end of an entry or the beginning of another typeface. The
scope of a specific typeface thus reaches from the occurence of the respective control code up
to one of these events.

All control codes indicating typographic information are assigned to XCodes of class XFT**.
LEXPARSE provides a large set of XCodes to cover all possible typefaces and supports two
alternative approaches to the handling of typographic information:

~ Operation mode ‘TypefaceChanges’: Within the operation mode ‘TypefaceChanges’®, XCodes denoting
typefaces (XCodes of class XFT* *) are treated like all other XCodes: if an XCode is specified as a termi-
nal in a grammar rule, the parser expects (and consumes) the respective XCode token in the input. The
rule fails, if the next token available in the input does not match this XCode terminal.
An example grammar which makes use of the ‘TypefaceChanges’ mode is given in (1) :

For a detailed discussion of these operators refer to section 4.2.

In this paper, we use the term ‘typeface’ meaning both fonts and typefaces.

This operation mode is the default mode and corresponds to the configuration switch [Settings]
TypeFaceStates = Off.

LEXICOGRAPHICA 9/1993

184 Ralf Hauser / Angelika Storrer

(1) 8 -> XFTbo, A
| XFTit, B
| [XFTst] C.
According to the syntax and semantics of the LEXPARSE grammar formalism to be specified in the follow-
ing section, this rule is interpreted in the following way: Category 8 is expanded to category A if the con-
trol code for a typeface change to ‘bold’ (which is assigned to the XCode XFTbo) is available as the next
token in the input; category S is expanded to category B if the control code for a typeface change to
‘italics’ (XCode XFTit) is available as the next token, and category S is expanded to category C if the
control code for a typeface change to ‘standard’ (XCode XFTat) is available as the next token in the in-
put. Since the terminal XFTst is optional, S may also be expanded to category C if no XCode token is
available at all. This optionality is needed for cases in which the transition to typeface ‘standard’ has oc-
cured before the rule is applied, because in these cases the respective XCode token is no longer available in
the input.

— However, the optionality of category C may yield undesired results: If a transition to typeface ‘bold’ or
‘italics’ has occured before the rule is applied, S will mistakenly be expanded to C, because the XFTbo or
XFTit tokens are no longer available in the input and an expansion to A or B is, therefore, prevented.

Operation mode ‘TypefaceStates’: When the operation mode ‘TypefaceStates’?' is set, XCodes denot-
ing typographic information (i.e. all XCodes of the class XFT**) cannot be used as terminals in the
grammar. Instead they are interpreted as conditions controlling whether a rule may be expanded or not.

The parser maintains an internal ‘typeface indicator’ which stores the current typeface state. Each
XFT** token occuring in the input is consumed immediately and the value of the ‘typeface indicator’ is
changed accordingly. Thus, the system can retrieve at any time the current value of the ‘typeface indica-
tor’.

In order to emphasize the special role of these XCodes, the grammar formalism demands that colons
are placed right after all XFT** codes. The rule following the colon can be expanded only if the condition
(expressed by the XFT** code and the colon) is true, i.e., if the ‘typeface indicator’ is set to the value cor-
responding to this XFT** code. An example is given in (2):

(2) A -> XFTst: X.
Category A may be expanded to category X if and only if the ‘typeface indicator’ has the value ‘standard’,
i.e., if the last XCode token XFT+** which occured in the typesetting tape so far was XFTst. In contrast to
the mode ‘TypefaceChanges’, it is of no importance whether the ‘typeface indicator’ has reached this state
right before the expansion of category A to category X or at an earlier time. The crucial thing is that
XFTst was the last XET** token occurring in the typesetting file, which means that the ‘typefaces indica-
tor’ has the typeface ‘standard’ as its current value.

With the help of operation mode ‘TypefaceStates’, we can now reformulate the example grammar

(1) in the following way:
(3) S -> XFTbo: A

| XFTit: B

| XFTst: C.
Category S may be expanded to category A if the parser has reached typeface state ‘bold’; s may be ex-
panded to B if the parser has reached typeface state ‘italics’ and 8 may be expanded to C if the parser has
reached typeface state ‘standard’. If the ‘typeface indicator’ is in any other state, category S cannot be ex-
panded by the rules given in (3).

Typeface changes and the scope of typographic information cannot be directly expressed in
context-free rewrite rules; this is why specific facilities overcoming these limitations are re-
quired. Managing typeface states with a ‘typeface indicator’ is more suitable than using termi-
nal symbols for typeface changes, because it allows for a deterministic description of typo-
graphic information in the dictionary entry grammar. Moreover, this approach reflects the
difference between the semiotic status of STy, and S/,,,, as discussed in section 2.2.3.

2 This operation mode must be explicitly set by the configuration switch [Settinga] TypeFace-

States = On.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 185

3.2.4. The Accumulator

Preterminal categories of dictionary entry grammars may be expanded by rules containing
terminals and/or operators. Terminals may match with tokens being generated by the parser’s
scanner; operators are symbols which represent specific patterns of terminals and may match
with a single token or a sequence of tokens.

Tokens or sequences of tokens, which match the terminals or operators specified within a
rule, are consumed by the parser and are collected in a container object called accumulator.
Each category has its own accumulator which consecutively ‘collects’ all tokens that can be
matched and consumed from the input while expanding this category. The result of the accu-
mulation process for each category is finally displayed in the parse tree.”> The management of
the accumulator takes care that all tokens are correctly assigned to the accumulator of a cate-
gory resp. to the accumulators of its daughter categories.

The following example illustrates how the accumulators of the category A and B are man-
aged:

(1) A -> ss n.n B ss LI
B -> n(" ss lv)vv_

(2) abc: (de £) ghi.
(3) [a] [b] [e] [:1 [(] [d] [e]l [£] D)1 [g] [h] [i] [.]
(4) +--> A: "abec: ghi ."

+-->B: "(de £)"
(5) Accumulator of A: "abc : ghi ."
(6) Accumulator of B: "(de £)"

In (1), category A may be expanded to any sequence of literals (expressed by the $$-opera-
tor), a colon, category B, a second sequence of literals, and a dot. Category B as in (2) may
be expanded into any sequence of literals enclosed by parentheses. The input (2) thus results
in the token list (3) . Expanding category A with this token list results in the parse tree (4) .

By default, literal tokens are added to the accumulator of a category and displayed in the
parse tree, whereas XCode tokens are not added to the accumulator and are thus not shown in
the parse tree. This reflects the conceptual status of XCodes denoting S/s which — in contrast
to items — are not elements of the hierarchical microstructure of a dictionary entry. In particu-
lar cases, this default setting may be inverted by marking an XCode or a string terminal with
the circumflex character (*). Literal tokens, for example, which function as S/s™ and are thus
not assigned to XCodes, may be marked with the circumflex so as to prevent them from being
displayed in the parse tree. The effect of applying the circumflex character can be demonstrated
by the following example:

(7) Al -> XBRPO * XBRPC.
A2 -> XBRPO* * XBRPC".
(8) (a b c)
(9) [XBRPO] [a] [b] [c] [XBRPC]
(10) +--> Al: "a b c"
+==> A2: "(abec)"

In (7), both categories A1 and A2 cover a sequence of literal tokens, which is enclosed by the
XCode tokens XBRPO (BRacketParenthesisOpen) and XBRPC (BRacketParenthesisClose)
denoting a pair of parentheses. The input chain (8) results in the token list (9). As shown in

2 In the configuration’s option [Display] Format the variable $$ represents the contents of the cate-

gory’s accumulator and may be used in the format string accordingly.
LEXICOGRAPHICA 9/1993

186 Ralf Hauser / Angelika Storrer

(10), the resulting parse tree for category Al only displays the literal tokens, whereas the parse
tree for category A2 also contains the parentheses ‘(" and ‘)’, because the respective XCodes
are marked with the circumflex character in the expansion rule for A2. More examples for the
application of the circumflex character are given in section 4.3.

4. The LEXPARSE Grammar Formalism

4.1. Formal Description of the LEXPARSE Grammar

In essence, the LEXPARSE grammar formalism uses simple context-free production rules sup-
plemented by additional features for the handling of optionality, alternation and multiple repe-
tition of rules as well as for the specification of closed sets of terminals. In addition, the formal-
ism allows parser directives to be built into the grammar, e.g., to reset counters or to designate
a dictionary entry as being incorrect.

4.1.1. Formal Syntactic Description

In the following, we describe the LexParse grammar formalism using an EBNF (Extended
Backus Naur Form)™ notation:

Category = CatSpec "->" [Exceptions ":"]

[SimpleRule "->"] Rules ".".
Exceptions = Exception { "," Exception }.
Exception = "=" XCode

| "+" XCode.

Rules = Rule { "|" Rule }.
Rule = SimpleRule { "?" TermSpec] ["@"].
SimpleRule = RuleNode { "," RuleNode }.
RuleNode CatSpec

TermSpec

"[" SimpleRule "]"
"<" SimpleRule ">"
TextOp

Counter

"#" DermSpec

u*\u Termspec

n\n Temspec

TexrmSpec = Terminal
"{" TerminalSet "}".

TerminalSet = Terminal ("," Terminal }.
TextOp = ngn

| "$$"

I "#II.

2 This Extended BNF uses the following additional meta characters: The definition character “=" replaces

the BNF definition characters “: :=". Square brackets “ [1” indicate optionality of an item whereas curly
brackets “{ }” indicate the possible repetition of an item. A dot terminates each rule. Cf. JENSEN & WIRTH
1985.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 187

Counter = "%" ["R"] CounterType.
CounterType = "I"
I LU i n
I " A"
I ” a n
I n 1 n .
CatSpec = Letter { Char }.
Char = Letter
| Digit
I n " .
String = SlLetter { Sletter }
| Digit { Digit }.
| PunctuationChar
| RegularExpression.

The term Letter denotes an element out of the set of letters A to Z and a to z.

The term Digi t denotes an element out of the set of digits O to 9.

The term SLetter denotes an element out of the set of letters A to Z, a to z and all
characters as defined by the configuration option [Scanner] AddLetters.

The term PunctuationChar denotes any other character not being a SLetter or a
Digit.

The term RegularExpression denotes a regular expression rep which must be of
the form ~rep$. All special characters being part of a regular expression are described to-
gether with their semantics below.

Within the mode ‘TypefaceChanges’ an additional rule is defined:

Terminal = XCode ["4"]
l nwnnn string nHunn [A] .

The term XCode denotes an element out of the set of XCodes. The complete list of all
XCodes and their semantics can be found in the appendix.
Within the mode ‘TypefaceStates’ an additional rule is defined:

Terminal = XCode ["*"]
| XCodeFT ":"
| XCodeFT "™
I nunn string nnnn [nAn] .

The term XCode denotes an XCode of any class but class XFT**. The term XCodeFT de-
notes an XCode of class XFT**.

4.1.2. Semantic Description

Note: All parser directives are € productions, that is, they do not consume any tokens from the
input.
XCode-Exceptions: All XCODE-Exceptions are parser directives.

C -> -XCODE: R.

Within the scope of category C, the XCode XCODE is considered to be a literal and not an
XCode.

C -> +XCODE: R.

LEXICOGRAPHICA 9/1993

188 Ralf Hauser / Angelika Storrer

Within the scope of category C, the XCode XCODE is considered to be an XCode and not a
literal.
Note: XCode exceptions may be nested up to any level.

Rule Abbreviation:
C ->X ->Rl | R2.
This rule will be replaced by the rule
C->X, Rl | X, R2.
which means that both rules are equivalent.
Generals:
C -> Rl | R2.
If the expansion of category C to R1 fails, C may be expanded to R2.
C -> [Rl] R2.

Category C may be expanded to R1 R2 or solely to R2. (R1 is optional and may be expanded
at this position once.)

C -> < Rl > R2.

Category C may be expanded to multiple instances of R1 followed by R2 or solely to R2. (R1
is optional and may be expanded at this position several times.)

C->{ t1, t2, t3 }.
Category C expands to one of the three terminals t1, t2 or t3.
C > *t.
Category C expands to a sequence of tokens up to and including a specific token which
matches the terminal t.
C -> *\ t.

Category C expands to a sequence of tokens up to a specific token which matches the terminal
t. However, this matching token is not consumed by the parser and added to the accumulator
of category C but remains in the input.**

cC->\1¢t, R.

If the next token available in the input does not match the specified terminal t, category C
expands to R. The token matching the specified terminal t is not removed from the input.

c-> 3.

Category C expands to a single literal token.
c -> §§.

Category C expands to a sequence of (at least one) literal tokens.
c -> #.

24 The LEXPARSE rule C -> *\ t. with C e N, t € T corresponds to the contextsensitive rule Ct —» at

with C € N, t € T where o covers any sequence of tokens except the token matching ¢.
LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 189

Category C expands to a single literal token which must be a number, i.e., a sequence of digits.
C -> "string".
Category C expands to a literal token which matches the quoted string.

Note: The string is considered to be a regular expression rep only, if it is specified in
the form “rep$.

C->R?t.
Category C expands to R if and only if C could be expandedto R t.%*
Counters:

C -> 8I.

Category C expands to a single literal if this literal matches an uppercase roman number (i.e.,
I, I1, III, IV.).

C -> %i.

Category C expands to a single literal if this literal matches a lowercase roman number (,i.e.,
i, ii, iii, iv.).
C -> ®A.

Category C expands to a single literal if this literal matches an uppercase latin letter (,i.e., A,
B, C, D.).

Category C expands to a single literal if this literal matches a lowercase latin letter (i.e., a,
b, ¢, d.).

C => %1.

Category C expands to a single literal if this literal matches an arabic number (,ie,1, 2, 3,
4.)

Note: If a specific counter symbol could be derived successfully, the corresponding
counter is incremented.

Resetting the Counters:
C -> %RI, R.

The counter for uppercase roman numbers is reset to I before category C is expanded to R.
C -> 8Ri, R.

The counter for lowercase roman numbers is reset to i before category C is expanded to R.
C -> 8RA, R.

The counter for uppercase latin letters is reset to A before category C is expanded to R.
C -> %Ra, R.

The counter for lowercase latin letters is reset to a before category C is expanded to R.

2 The LEXPARSEruleC -> R ? t. withC € N, R € T*, t € T corresponds to the contextsensitive rule Ct

——> RtwithCe N, ReZ* Rz¢teT

LEXICOGRAPHICA 9/1993

190 Ralf Hauser / Angelika Storrer

C -> %R1l, R.

The counter for arabic numbers is reset to 1 before category C is expanded to R.
Note: All directives resetting a counter are parser directives.

Typeface States:
C -> XFT** : R.

Category C is expanded to R if and only if the internal indicator for typeface states is in the
state of XFT* *.

C -> XFT** ! R.

Before category C is expanded to R, the internal indicator for typeface states is set to the
specified value XFT* *,

Note: All directives handling typeface states are parser directives.
Additional Parser Directives:
Cc > tA.

Category C expands to a token matching the specified terminal t. If this token is an XCode
token and it is marked as indicated, it will be added to the accumulator of category C. By de-
fault, all XCode tokens are not added to the accumulator. If this token is a literal token and it
is marked as indicated, it will not be copied to the accumulator. By default, all literal tokens are
added to the accumulator.

C ->R Q.

Category C expands to R After C has been expanded, the current entry is marked as being
non-wellformed and backtracking is terminated for the parsing of this entry.

4.1.3. Regular Expressions in LexParse

The LEXPARSE program supports the following characters as being part of a regular expres-
. 26
sion.

A

This expression matches the beginning of the source string.

$ This expression matches the end of the source string.

. This expression matches any character.

[abcA-2] This expression matches a set consisting of the characters a, b, ¢ and the
sequence of characters A to 2.

[*abcA-2Z] This expression matches any character except the set consisting of the charac-

ters a, b, ¢, and the sequence of characters A to Z.

\c This expression matches the character c. This may be used to override any
special meaning given to a character.
* If one of the expressions as given above is followed by this character, then this

expression matches a sequence of zero or more instances of this expression.

Note: A regular expression rep as being used within the specification of terminals for the

% The term ‘source string’ denotes a line as being read from the input data file as far as the regular expres-

sion is used in the context of a preprocessor or a postprocessor directive. The term ‘source string’ denotes
a literal token as far as the regular expression is used within the specification of string terminals for the
grammar.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 191

grammar must always be specified in the form “rep$ so that it can be distinguished from
other strings.
4.2. Annotations to the Formalism

The LEXPARSE grammar formalism uses several features in writing dictionary entry grammars
and in handling the special requirements of dictionary entry parsing. In this section, these fea-
tures will be explained in detail.

4.2.1. Single and Multiple Optional Rules

The grammars in (1) and (2) generate the same language.

(1) A -=> [X].
(2) A -> Xaux.
Xaux -> X

However, the resulting parse trees differ in that the parse tree in (2) contains an additional
node Xaux, whereas in (1) category A expands directly to category X. Optional rules, thus,
simplify the grammar and lead to a representation of the dictionary entry structure, which is
more adaquate because the semantically empty category Xaux is not needed.

The grammars in (3) and (4) also generate the same language.

(3) B -> < X >.

(4) B -> Xaux.

Xaux -> X, Xaux

However, the resulting parse trees differ in that the parse tree in (4) contains additional nodes
Xaux, whereas in (3) category B expands directly to category X. Due to the right-recursion
used in (4), the derivation of category B results in an asymmetric parse tree with a depth of n,
whereas the expansion of category B in (3) results in a symmetric parse tree with a uniform
depth of 2 and n nodes being immediate constituents of B. This greatly simplifies the grammar
and leads to a representation of the dictionary entry structure, in which no auxiliary category
Xaux is required. The parse trees (5) and (6), both obtained by deriving X X X from cate-
gory B, may illustrate the difference: The parse tree in (5) corresponds to the grammar given
in (4); the parse tree in (6) corresponds to the grammar given in (3).

(5) +--> B (6) +--> B
+--> Xaux +--> X
+--> X +-->X
+--> Xaux +--> X
+--> X
+--> Xaux
+--> X

Another example is the category Number which can be defined by a pure context-free gram-
mar, as in (7), or — much more easily — by using the LEXPARSE formalism, as in (8) :”
(7) Number -> Sign, Digit, Digits.

sign -> non
|

2 The category Digi t will be defined in the next section.

LEXICOGRAPHICA 9/1993

192 Ralf Hauser / Angelika Storrer

Digits -> Digit, Digits
.
(8) Number -> ["-"] Digit < Digit >.
4.2.2. Using a Set of Terminals
The grammars in (1) and (2) generate the same language:

(1) A => X { t1, t2, t3 }.
(2) A -> X, Tset.
Taset -> tl
| t2
| t3.

Set descriptions as used in (1) lead to an additional simplification of the grammars and to a
representation of the dictionary entry structure, which is more adequate because additional
categories like Tset are avoided. In (1), category A may be directly expanded to one of
those terminals which are a member of the respective set.

Set descriptions offer the possibility to specify finite sets with a given domain, as used for
the definition of the notion digit in (3):

(3) Digit _.> { llol" lll", "2"’ "3"’ "4", "5"1 "6"’ "7", "e", "9").
Using a regular expression for the terminal string, one could also replace rule (3) by rule
(4):

(4) Digit -> "A[0-9]18".
In the context of dictionary entry parsing, a distinction between numbers and words is quite
helpful. Therefore, the LEXPARSE grammar formalism offers a special operator to consume

numerical tokens, which makes the derivation rule for category Digits again more simple.
The #-operator in (5) corresponds to the regular expression string in (6) .

(5) Digits -> #.
(6) Digits -> "A[0-9]*$".

Therefore, the rule in example (8) of the previous section can be replaced by the following
rule:

(7) Number -> ["-"] #.

4.2.3. Using the ‘Skip’ Operators

The skip-operators enable the derivation of sequences of tokens up to a specific ‘delimiter’
token. ‘Delimiter’ tokens generally function as S/s marking the boundary of a lexicographic
item and can be both, XCode or literal tokens. Two types of skip-operators are provided:

— The inclusive skip-operator (*) reads up to and including the ‘delimiter’ token.

~ The exclusive skip-operator (*\) reads up to the ‘delimiter’ token without removing it from the input. In
contrast to the inclusive skip-operator, the ‘delimiter’ token remains in the input and may be consumed by
another operator.

The inclusive skip-operator is useful for error handling routines — as in (1) — or for categories
covering any sequence of tokens enclosed by two tokens representing SIs*, asin (2).

(1) A -> X1, X2, X3 "

l *n:n.

(2) B -> n(n * ")".

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 193

In (1), category A may be expanded to a sequence of categories X1 X2 X3, and a trailing
colon. If this expansion fails, an alternate rule can be applied: A expands to any sequence of
tokens (expressed by the inclusive skip-operator *) up to the colon which terminates the con-
sumption. This enables the expansion of A although the constituents X1, X2 and X3 could not
be derived from A In this case, the alternate derivation rule for A serves as an error handler
rule.

In (2), category B expands to a left parenthesis and the inclusive skip-operator which
consumes all tokens up to the next literal token matching the right parenthesis.

The inclusive skip-operator is quite useful for the step-by-step development of dictionary
entry grammars: the grammar writer can rough in the dictionary entry structure and deal with
the structural details of complex item classes at a later stage.

The exclusive skip-operator leads to the expansion of a category into an arbitrary sequence
of tokens up to a specific ‘delimiter’ token, which is not included by the expansion but indi-
cates the next token of the input stream.

(4) s -> A, X1
| A, x2
| A, X3.
(5) A => *\ { (", "gm, ").
(6’ x1 _> N(I! ‘t Il)ll'
x2 => ngn oW nnw

X3 -> n[n % wyw,

In (4), category S may be expanded to category A followed by either category X1, X2, or
X3. X1, X2, and X3 can be distinguished by the delimiter tokens specified in (6). If the ex-
clusive skip-operator is used, category A covers any sequence of tokens up to one of the de-
limiter tokens (defined in the set under (5)) which terminate the consumption of this se-
quence. However, the delimiter token is not consumed by the parser but remains in the input.
In the consecutive expansion of either X1, X2, or X3 this specific token will be consumed and
either X1, X2, or X3 may be further expanded.

Note: If an XCode token X_EOF (EndOfFile) occurs during a skip operation, the current
entry is marked as being erroneous. The skip operation terminates, the current rule fails, and
the parser issues an error message (error #404: Critical XCode detected while
skipping). .

Note: If an XCode token XFLEN (FormatLemmaEnd) occurs during a skip operation, the
skip operation terminates and the current rule fails. In this case, the configuration switch
[Parser] SkipCriticalIsError determines whether the current entry is marked as
being erroneous and whether an error message will be issued or not.

4.2.4. Using the ‘Except’ Operator

The except-operator (\) — also called the accept-all-except-operator — offers the possibility to
specify a condition on which rules may be applied as an exception. By naming a terminal or a
set of terminals, a rule may be expanded only if a token is not available as the next token of the
input.

(1) A => """ X1
| X2.

(2) B =>\ ":" x2
| X1.

The grammars in (1) and (2) generate the same language in that they both expand a cate-

LEXICOGRAPHICA 9/1993

194 Ralf Hauser / Angelika Storrer

gory A to a category X1 if the next token available in the input is the literal ‘:’. If the next
token available in the input is not the literal ‘:’ (but any other literal token), category A is
expanded to category X2.

But there is a semantic difference between the grammars in (1) and in (2): If the next
token available in the input were the literal ‘:’, grammar (1) would derive this token directly
from category A, and the literal ‘:’ would be added to the accumulator of category A. The
grammar in (2), by contrast, would derive the literal ‘:’ from category X1, because the first
rule of category B in (2) cannot be expanded with this token being available in the input.®

4.2.5. Using the ‘Test’ Operator

The test-operator (?) can be used to test whether the next token available in the input is of a
specific token. If the test is positive, i.e., the next token available is of the specified type, it is
not consumed by the parser but remains in the input until it can be consumed by another opera-
tor.

(1) a -> XBRPO * XBRPC ? "!".

In (1), category A expands to any sequence of tokens enclosed by the XCodes XBRPO
(BRacketParenthesisOpen) and XBRPC (BRacketParenthesisClose) only, if the next token
following this sequence is the literal ¢1’. The parser does not consume this token,; it remains in
the input and can be consumed by another operator.

Note that the test-operator can occur only at the end of a rule. Only the Error-directive
may be placed right after the test-operator.

4.2.6. Using the ‘Error’ Directive

The error-directive (@) offers the possibility to construct error handler routines which mark
dictionary entries as being incorrect (non-wellformed) even if they were completely derived.

An error handler routine is a category with a single derivation rule expanding to the skip-
operator and the error-directive. Error handler routines enable the parser to generate maximum
parse trees.

(1) A -> X1, X2, X3, XPCOL
| * XpPcoL, @.

In (1), category A may be expanded to a sequence of categories X1, X2, X3, and a trailing
colon which is assigned to the XCode XPCOL (PunctuationCOLon). If this expansion fails, an
alternate rule may be applied: A expands to the skip-operator (*) and the colon (XPCOL). If
this expansion succeeds, the error-directive is applied to the current entry, i.e., the current
entry is marked as being incorrect.

This construction offers the possibility to continue the parsing of the entry, even when it is
regarded as being non-wellformed because the categories X1, X2, and X3 could not be derived
froma

Marking an entry as being non-wellformed is also necessary if the derivation of a specific
rule indicates an invalid input.

(2) B -> XPCOL, X
| XPSEM, X, @.

In (2), category B may be expanded to category X if the required XCode token XPCOL is

% Assuming - of course — that X1 can expand a *: token at all.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 195

available as the next token of the input. However, if the next token being available is the inva-
lid XCode token XPSEM, then B also expands to X but the current entry must be marked as
being incorrect.

4.2.7. Using Counters

Dictionary entries describing homonymous and/or polysemous lemma signs generally use dif-
ferent types of counters to identify different levels of homonym and sense distinctions. Each of
these levels correspond to a different degree of semantic proximity.

If homonym/sense counters are treated as ‘normal’ categories within a context-free gram-
mar, they cannot be incremented after being derived and, therefore, cannot be checked for
correctness.

For this reason, LEXPARSE offers several built-in counters each of which can be incre-
mented and reset automatically or manually by using a directive in the grammar. In example
(1), we assume a three level sense distinction, in which roman numbers are used at the first
level, arabic numbers at the second, and lowercase letters at the third level.

(1) I.
1.
a)
b)
2.
a)
b)
II.
1.
2.

During the parsing process, LEXPARSE must set the counters to their initial value each time a
deeper sense level is reached. The procedure is illustrated in (2):

(2) I. {(Reset the counter: arabian numbers}
1. (Reset the counter: lowercase letters)
a)
b)
2. {Reset the counter: lowercase letters}
a)
b)
II. {Reset the counter: arabian numbers}
1. {Reset the counter: lowercase letters}
2. {Reset the counter: lowercase letters}

The three-level system of sense counters in (1) can be described using the LEXPARSE gram-
mar formalism by the rules given in (3) :%

(3) NUOM -> 8I, ".", 8R1 [NUM]
| %1, ".", %Ra [NUM]
| sa, ")" .

4.2.8. Using the ‘$$’ Operator
The $$-operator consecutively consumes literals and adds them to the category’s accumulator.

2 For reasons of clarity, this example is kept simple. It is incomplete since category NUM would also accept

invalid input pattens such as ‘I. II. 1. 2. 3. a) b)’

LEXICOGRAPHICA 9/1993

196 Ralf Hauser / Angelika Storrer

The 3-operator does not consume any XCode tokens, i.e., if an XCode token occurs in the
input it stops the consumption of tokens.

Input (1) thus results in the token list (2). The consumption of this token list by the
grammar in (3) resultsin (4) 30

(1) (This-and more- is text!)

(2) [XBRPO) [This] [-] [and] [more] (-] [is] [text] [!] [XBRPC]
(3) A -> XBRPO $$ XBRPC.

(4) +--> A: "This - and more - is text !"

As illustrated in (5) and (6), the $3-operator may be followed by a string constant. In this
case, all literals up to and including this string constant are consumed by the parser.

(5) B1 -> 8§ n";".

(6) B2 -> 8§ ..

(7) examplel; example2; example3.

(8) [examplel] [;] [example2] [;] [example3] [.]

(9) +--> Bl: "examplel ;"

(10) +--> B2: "examplel ; example2 ; example3 ."

The input (7) results in the token list (8). Given this input, the expansion of B1 results in
(9) , whereas the expansion of B2 results in (10).

Note that there is no upper limit on the number of literals that may be consumed by the 3-
operator, but at least one literal is required for its successful application.

4.2.9. Using the ‘$’ Operator

The $-operator consumes single literals and may therefore be used to derive a specific number
of literals from a category.

(1) A > §, $3.

In (1), category A can be expanded only if at least two literals are available in the input. The
first literal is consumed by the $-operator, the next and all consecutive literal tokens are con-
sumed by the 3-operator.

4.2.10.Using XCode Exceptions

XCode exceptions are required when a S/, assigned to an XCode, does not function as S/ in
a specific and limited context. Within this context, XCode exceptions can be used to disable
XCodes with the effect that the scanner, instead of generating XCode tokens, generates one
(or more) of those literal tokens which are denoted by the respective XCode. XCode excep-
tions may be nested without any restrictions, i.e., an XCode being disabled by a specific cate-
gory may be enabled again by a nested daughter category.

(1) s -> X1, A, X2 [B].
A -> -XPcoL: [B] $§.
B => +XPCOL: " (" * XPCOL * "),

Assuming that the colon is defined as the XCode XPCOL, the derivation rule for category A in
(1), disables XPCOL, i.e., in the scope of category A, the colon will not be generated as the
XCode token XPCOL but as the literal token *:’.

% As already mentioned in section 3.2.4., XCode tokens are by default not added to the accumulator and,

thus, do not appear in the resulting parse tree in (4).
LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 197

Within the scope of category B (which is an immediate daughter of category A), the
XCode XPCOL is treated in the usual way: when the token XPCOL occurs in the input, the
consumption of tokens for the inclusive skip-operator is terminated because the colon func-
tions as a S/ny, within this context.

XCode exceptions can only be specified for XCodes of the type XB*** (brackets),
XP*** (punctuation characters) or XC*** (other characters), i.e., defined XCodes the deno-
tation of which is known to the scanner. Disabling or enabling undefined XCodes does not
change the parser’s behaviour in any way.

4.3. Applying the LEXPARSE Grammar Formalism

In the following, we will show how the LEXPARSE grammar formalism can be applied. The
examples are taken from the LEXPARSE grammar developed for the DUDEN-STILWORTERBUCH
(cf. ENGELKE 1994).

With respect to the DUDEN-STILWORTERBUCH, the symbol ‘semicolon’ is considered to be
a Slfrfp and is therefore assigned to the correspondmg XCode XPSEM
(PunctuationSEMicolon). The symbol ‘colon’ is an S]Z,,,,, which, in the majority of its oc-
curences, functions as S/ and is, in consequence, also assigned to its corresponding XCode
XPCOL (PunctuationCOLon).

4.3.1. Applying Optional and Multiple Optional Rules

The application of (multiple) optional rules can be illustrated by the derivation rule for cate-
gory BeiGA (Beispielgruppenangabe).

BeiGA -> [UGrA] BeiA < XPSEM [UGXrA] BeiA > ["."*]

BeiGA expands to an optional instance of category UGrA (Unspezifizierte Grammatische
Angabe) followed by one instance of category BeiA (Beispielangabe). This sequence can be
repeated any number of times; the sequences are separated from each other by the Slffﬁ,
‘semicolon’ (XPSEM) the series is terminated by an optional dot. The series of sequences of
UgrA BeiA is expressed using the symbols for multiple optionality < >.

With respect to the DUDEN-STILWORTERBUCH, the symbol ‘dot’ is an Sll.,,,, which, in most
cases, is part of a lexicographic item and not a S/,,,. In consequence, the dot is not assigned to
an XCode, but treated as a string terminal. In the scope of the category BeiGA, however,
where the dot actually functions as S/, the token representing the dot must be suppressed in
the resulting parse tree by means of the ‘’ operator.

In the dictionary entry for the lemma treiben, the category BeiGA is expanded to cate-
gory BeiA, category UGrA, and another BeiA:

+--> BeiGA

+--> BeiA "ich lieB mich von den Verhialtnissen treiben"
+--> UGrA "jmdm. etwas treiben; mit Raumangabe"
+--> BeiA "der Sturm trieb mir den Schnee ins Gesicht"

A series of six BeiA derived from BeiGA can be found in the entry for the lemma Treffen:

+--> BeiGA
+--> BeiA "regelmiBige, seltene Treffen"
+~-> BeiA "ein Treffen der Abiturienten"
+--> BeiA "ein Treffen der AuBSenministexr"
+~-> BeiA "ein Treffen verabreden, veranstalten"
+--> BeiA "an einem Treffen teilnehmen"

LEXICOGRAPHICA 9/1993

198 Ralf Hauser / Angelika Storrer

+--> BeiA "zu einem Treffen kommen"

4.3.2. Applying a Set of Terminals

Sets of terminals are useful for item classes having a closed set of possible values. In the
DUDEN-STILWORTERBUCH, the gender of German nouns is specified by means of the definite
articles der, die, and das. Therefore, the rule for category GA (Genusangabe) which denotes a
class of items giving the gender of nouns contains the following set description:

GA -> XFTst: { "der", "die", "das" }.

Category GA (Genusangabe) expands to one of the string constants specified in the set de-
scription. Note that GA can be expanded only if the current value of the typeface indicator is in
the typeface state ‘standard’. This condition is expressed by the typeface condition XFTst:.

4.3.3. Applying the ‘Skip’ Operators

Category UGrA (Unspezifizierte Grammatische Angabe) occurs within the scope of category
BeiGA (Betsptelgruppenangabe) and denotes a class of items which are enclosed by angle
brackets. Angle brackets are SIs,,,,,, with regard to the DUDEN-STILWORTERBUCH and are
therefore assigned to the XCodes XBRAO (BRacketAngleOpen) and XBRAC
(BRacketAngleClose) respectively. Brackets generally appear in pairs enclosing items of spe-
cific item classes — in our example the class of items giving information on grammatical prop-
erties. The derivation rule for category UGrA may thus be formulated as follows:

UGrA -> XBRAO * XBRAC.

The inclusive skip-operator consumes all tokens up to and including the XCode token XBRAC;
as a consequence, UGrA expands to any sequence of tokens beginning with an XCode token
XBRAO and ending with an XCode token XBRAC.

An application of the exclusive skip-operator will be shown in the following section and in
section 4.3.5.

4.3.4. Applying the ‘Test’ Operator

In the dictionary grammar for the DUDEN-STILWORTERBUCH, the test-operator was used in the
derivation rule for category BeiA (Beispielangabe), which may be expanded to a sequence of
tokens and the optional category SAA (Sprechaktangabe) enclosed by two slashes. Examples
for items belongmg to the class BeiA contalmng ‘embedded’ items belonging to the class SAA
are givenin (1) and (2):

(1) ‘du kriegst die Tiir nicht zu! /ugs.; Ausruf des Erstaunens/;’

(2) ‘meiner Treu! /veraltet; Beteuerungsformel/;’

(3) “an die Tiir/an der Tiir klopfen;’

(4) “er tat so, als wire nichts gewesen, als ob/als wenn/wie wenn er nichts wiiite, als wiiBte er nichts;’

Examples (3) and (4) show, that slashes do not always enclose SAA items; they are also
used to separate two lexical or morphological variants within an example sentence. But SAA
items can automatically be distinguished from lexical/morphological variants: category SAA is
always enclosed by two slashes and can occur only at the end of an example sentence, which
means that a semicolon must follow immediately. This semicolon may not be covered by cate-
gory SAA itself, but rather by its mother category BeiGA; a constellation which cannot be
expressed by means of context-free rules. This is where the test-operator comes into play.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 199

(5) (a) BeiA -> * \ "/ SAA
(b) I * \ XPSEM.
(c) SAA -> "/"~ §§ XPSEM~ $$ "/"~ ? XPSEM.

In (5a), BeiA may be expanded to any sequence of tokens up to the literal ‘/’ possibly indi-
cating category SAA (acting as SIL,,,,, the symbol ‘slash’ is not assigned to an XCode). How-
ever, due to the exclusive skip-operator, the literal ‘/’ is not derived from category BeiA, but
from category SAA.

In (5c), category SAA expands to the literal ‘/’ followed by a sequence of literals, a
semicolon (XPSEM), more literals, and a terminating literal ‘/’. Both instances of the symbol
‘slash’ should be marked with the ‘*’ character so as to prevent the corresponding literal to-
kens from being displayed in the resulting parse tree. The test-operator makes sure, that SAA is
expanded if and only if the next token which is available in the input after the expansion of
SAA is an XCode token XPSEM. However, this XCode token is not added to the accumulator
for category SAA but remains in the input.

If the application of the rules in (5a) and (Sc) fails, BeiA expands to a sequence of to-
kens up to (but not including) the XCode token XPSEM, as in (5b) .

Given the grammar in (5), the examples (1) to (4) result in the structures (6) to (9):

(6) +--> BeiA : "du kriegst die Tir nicht zu!"
+--> SAA : "ugs.; Ausruf des Erstaunens"
(7) +--> BeiA : "meiner Treu!"
+--> SAA : "veraltet; Beteuerungsformel"
(8) +--> BeiA : "an die Tiir/an der Tir klopfen"
(9) +--> BeiA : "er tat so, als ware nichts gewesen, als ob/als
wenn/wie wenn er nichts wiiBte, als wiilBte er nichts"

4.3.5. Applying the ‘Error’ Directive

In the typesetting tape for the DUDEN-STILWORTERBUCH, the beginning and the end of dic-
tionary entries is indicated by specific control codes. These control codes can be used to spec-
ify error recovery rules which help the parser in locating the beginning of the next entry when
an error has occured.

(1) WA -> XFLBE, FK, SK [XPAST, PKP] XFLEN

| WA _Err.
(2) WA Err -> * XFLEN @.

Category WA (Worterbuchartikel), representing dictionary entries, is expanded to an XCode
indicating the beginning of an entry (XFLBE), the category FK (Formkommentar), the cate-
gory SK (Semantischer Kommentar), the optional category PKP (Postkommentar zur Phrase-
ologie) being preceeded by an asterisk (‘*’; XPAST), and an XCode indicating the end of the
dictionary entry (XFLEN).

If the derivation of the first rule in (1) fails, an alternate rule is applied: In this case, WA
expands to a category WA_Err which itself expands to the inclusive skip-operator, the XCode
indicating the end of the dictionary entry (XFLEN) and the error-directive (2). The use of the
inclusive skip-operator together with the XCode XFLEN leads to the consumption of all tokens
up to and including the XCode indicating the end of the entry, i.e., the consumption of the
complete current entry up to the beginning of the next entry. The inclusive skip-operator does
not assign any structure to this sequence but collects the flat stream of tokens in the accumula-
tor of category WA_Err.

The error-directive, as being part of the derivation rule for category WA_Err, has two

LEXICOGRAPHICA 9/1993

200 Ralf Hauser / Angelika Storrer

consequences:

— The current entry is marked as being non-wellformed and an appropriate error message is generated by the
parser.
— Backtracking is rejected, i.e., all categories derived so far are displayed as a maximum parse tree.

Another error recovery rule can be built for category PKP (Postkommentar zur Phraseologie)
of the DUDEN-STILWORTERBUCH by using the exclusive skip-operator:
(3) PKP -> X1, X2, X3

| PKP_Err.
(4) PKP_Err -> *\ XFLEN @.

If none of the daughter categories X1, X2, or X3 of category PKP can be derived, PKP ex-
pands to an error handling category PKP_Err which itself expands to any sequence of tokens
up to the XCode indicating the end of the dictionary entry XFLEN, as in (4). However, this
XCode token XFLEN is not consumed by the parser and derived from category PKP_Err.
Instead, it remains in the input and may be consumed by another operator, e.g., the one to be
found in the derivation rule for category WA in (1) . The XCode terminal XFLEN being part of
this derivation rule matches with the XCode token XFLEN and may then be consumed by the
parser.

4.3.6. Applying Counters

The DUDEN-STILWORTERBUCH distinguishes between three different levels of semantic prox-
imity. This distinction is indicated by means of three different types of counters: roman num-
bers, arabian numbers, and lowercase letters. The LEXPARSE grammar for the DUDEN-
STILWORTERBUCH reflects these levels as follows, using three distinct built-in counters:

PAR -> XFTbo: 8I, ".", 8Rl.
PAA -> XFTbo: %1, ".", S%Ra.
PAB -> XFTbo: %a, XBRPC.

The categories PAR, PAA, and PAB denote the different homonym/sense levels. Each category
can be expanded if and only if the typeface state condition XFTbo: is met, i.e., the typeface
indicator is in the state ‘bold’.>' All categories cover a separate counter symbol and provide
the following counting scheme:

I. {Reset the counter: arabian numbers}
1. {Reset the counter: lowercase letters)
a)
b)
2. {Reset the counter: lowercase letters}
a)
b)
II. {Reset the counter: arabian numbers}
1. ({Reset the counter: lowercase letters}
2. {Reset the counter: lowercase letters}

The counter for roman numbers, like all other counters, is reset automatically by the parser at

3" Since the counter symbol must be in typeface ‘bold’, tokens covering the counter cannot be confused with

tokens covering abreviated lemmata which can, in principle, also appear at this position. This is particu-
larly useful for lemmata with initial letters / or ¥ which are abbreviated as “I.” and “V.” and could be eas-
ily confused with roman counter symbols.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 201

the beginning of a new dictionary entry.*?

4.3.7. Applying the ‘$$’ Operator

As pointed out already, example groups (denoted by the category BeiGA) may consist of
several example sentences (denoted by the category BeiA) which are separated by the Slf,,,,,
‘semicolon’. Simplified versions of the derivation rules for BeiGA and BeiA are given in
(1):
(1) BeiGA -> BeiA < XPSEM BeiA > ["."*] .
BeiA -> §§.
(2) This is example 1;
This is example 2;
This is example 3.
(3) [This] [is] [example] [1] [XPSEM]
[This] [is] [example] [2] [XPSEM]
[This] [is] [example] [3] [.]
(4) +--> BeiGA:
+--> BeiA: "This is example 1"
+--> BeiA: "This is example 2"
+--> BeiA: "This is example 3"

Category BeiA expands to the $$-operator consuming any sequence of literals up to the next
XCode token; input (2) thus results in the token list (3). Using the grammar in (1), one
can successfully expand BeiGA and obtain the structure in (4).

All literal tokens being covered by category BeiA are collected in the accumulator of
BeiA. Note that neither the semicolon nor the dot are added to the accumulators of the cate-
gories BeiGA or BeiA This is due to the fact that, on the one hand, XCode tokens like
XPSEM are, by default, not added to accumulators and that, on the other hand, the dot is ex-
plicitly marked with the ‘** character not to be added.

4.3.8. Applying the ‘$’ Operator

The application of the $-operator can be illustrated by the expansion rule for the category
LZGA (Lemmazeichengestaltangabe) which denotes items giving the form of the lemma sign.

LZGA -> XFTxb: $ [","*].

Category LZGA expands to a single literal token followed by an optional comma. The comma
is an SIﬁ,,y,,, with regard to the DUDEN-STILWORTERBUCH and is not assigned to an XCode. In
order not to be added to the accumulator, the comma must be marked with the ‘*’ character.

Note that LZGA can be expanded only if the typeface indicator is in the state ‘extra bold’
at the time of the expansion. This is expressed by the typeface condition XFTxb:.

4.3.9. Applying XCode Exceptions

The colon is a SIZ,'};’,,, with respect to the DUDEN-STILWORTERBUCH which, in most cases, func-
tions as S1,,, separating items or groups of items from each other. For this reason, the colon is
assigned to its corresponding XCode XPCOL. In particular cases only, the colon occurs as part
of an example group, like in the example sentence ‘die beiden Mannschaften trennten sich
0:0’, being part of the dictionary entry for trennen.

32 The configuration switch [Parser] AutoResetCounter determines this behaviour. This switch is

enabled by default.
LEXICOGRAPHICA 9/1993

202 Ralf Hauser / Angelika Storrer

To cope with these cases, the XCode XPCOL may be disabled by an XCode exception in
the scope of category BeiA. Herein, the colon is generated as a literal token ‘.’ rather than as
an XCode XPCOL.

In the following example, semicolons and parentheses are considered to be S, ,,f,.,,, and are
therefore assigned to their corresponding XCodes. The colon, as well, is considered to be a
SI:.,,,,, and is assngned to the XCode XPCOL. Category BeiGA can then be derived using the
simplified grammar in (1):

(1) BeiGA -> BeiA < XPSEM, BeiA > ["."*].
BeiA -> -XPCOL:
[PragA] $$.
PragA -> +XPCOL:
XBRPO $$ XBRPC.
(2) (sl.) This is example 1;
The teams left 0:0;
This is example 3.
(3) [XPBRPO] [sl] [.] [XBRPC]
[This] [is] [example] [1] [XPSEM]
[The]) [teams] [left] [0] [:] [0] [XPSEM]
[This] [is] [example] [3] [.]
(4) +--> BeiGA:
+--> BeiA: "This is example 1"
+--> PragA: "sl."
+--> BeiA: "The teams left 0:0"
+--> BeiA: "This is example 3"

Category BeiGA expands to a sequence of at least one BeiA (Beispielangabe). Category
BeiA expands to an optional category PragA (Pragmatische Angabe) and the $$-operator.
Within the scope of BeiA, the XCode XPCOL is disabled by the XCode exception ~XPCOL:
in the second rule of (1). Within the scope of category PragA however, the colon functions
as Sl,yyp, therefore it must be enabled by the XCode exception +XPCOL: in the third rule of
(1) (as well as in other rules for daughter categories of BeiA).

The input (2) results in the token list (3) . Using the grammar in (1), one can success-
fully expand BeiGA and obtain the structure givenin (4).

5. The Implementation

LEXPARSE Version 1.10 is implemented in the C++ language and was developed using the
BORLAND C++ Compiler for OS/2 Version 1.0. This compiler supports the full AT&T C++
standard version 2.1 (incl. streams and templates). The source code is compatible with the
BORLAND C++ Compiler for DOS Version 3.1 and with the GNU C++ Compiler Version
24.1.

The development took place on an IBM compatible PC with Intel ‘486 CPU under OS/2
2.0. From the beginning, the program was designed to be easily ported to other platforms. The
program currently runs under the MS-DOS, 0S/2, and UNIX (SUN OS 4.1) operating sys-
tems.

The LEXPARSE program consists of several modules. Each module defines at least one object.
Each object allows several operations to be applied, the so-called methods. The set of methods
which may be applied from outside of a module are called interface methods. An interface

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 203

method consists of a name, an arity or argument list, a return value and — sometimes — of a
precondition.

The object-oriented design has several advantages: Modules are easier to maintain and
may be improved or replaced subsequently as long as the interface methods do not change.
Furthermore, this design supports concepts such as data abstraction/encapsulation and struc-
tural/behavioral inheritance.

In the following, we give an overview of all program modules, the objects they define and
their most important interface methods.

5.1. Module LEXPARSE

This module contains the main routine which initializes data structures and installs signal and
error handlers. It reads and interpretes the configuration file by consulting the object inifile.
The grammar as described in the configuration file is passed to the object grammar. The main
routine then opens the file containing the typesetting tape and executes a loop in which the
parsing engine reads the input file and identifies consecutive entries according to the user-
supplied grammar (cf. module PARSE). A special mechanism detects endless loops and aborts
the program upon detecting one. All parse trees being generated by the parsing engine and
being stored in the object output are sent to the output file if the corresponding entry is well-
formed. If an entry is non-wellformed or if it is marked as being so, it is sent to the error out-
put file.

The main routine counts all well-formed and non-wellformed entries and runs a timer to
measure the time elapsed for parsing. At the end of the parsing process, the program generates
a status report to inform the user about the process.

5.2. Module GRAMMAR

This module receives the grammar from the configuration file, converts each rule and stores all
rules in the object grammar. The object grammar consists of an object ‘starting symbol’ and a
set of objects ‘non-terminals’. Each object ‘non-terminal’ consists of a list of objects ‘alternate
rules’. Each object ‘alternate rule’ consists of a list of objects ‘nodes’. Each object ‘node’
corresponds to a specific element of the language as being defined by the grammar.

The following table gives an overview of all nodes which are distinguished by the object
grammar and which must be treated by the parsing engine according to their semantics.

Table of all Grammar Nodes
Node Function
typ_error Error directive (@)
typ_xcode XCode
typ_category Category
typ_It_single A single literal ($-operator)

typ_It_multiple A sequence of literals ($$-operator)
typ_It_numerical | Numerical literal (\ #-operator)
typ_It_expect A specific literal (string constant)

typ It rep A specific literal (regular expression)
typ_skip_incl Inclusive skip operator (*)
typ_skip_excl Exclusive skip operator (*\)
typ_except Except operator (\)

typ tf state Typeface state

typ tf state set Set a typeface state

LEXICOGRAPHICA 9/1993

204

Ralf Hauser / Angelika Storrer

Table of all Grammar Nodes
Node Function
typ optional Optional rule
typ_opt end End of an optional rule
typ_mul_optional | Multiple optional rule
typ_mul opt end | End of a multiple optional rule
typ_set terms Set of terminals

typ_set_terms_end

End of a set of terminals

typ_cnt_roman

Counter: i, ii, iii, iv, ...

typ_cnt ROMAN | Counter: I IL IIL IV, ...
typ cnt latin Counter: a, b, c, d, ...

typ cnt LATIN Counter: A,B,C, D, ...
typ_cnt_arab Counter: 1,2, 3,4, ...
typ_res_roman Reset counter (i, ii, iii, ...)
typ res ROMAN | Reset counter (I, II, III, ...)
typ res latin Reset counter (3, b, ¢, ...)
typ res LATIN Reset counter (A, B, G, ...)
typ_res_arab Reset counter (1, 2, 3, ...)
typ res all Reset all counters

The object grammar does not rearrange grammar rules, i.e., grammar does not transform an
optional rule as specified under (1) into a pure context-free rule as specified under (2) by
generating an additional category AUX.

1)y A -> [X].
(2) A -> AUX.
AUX -> X

This forces the parsing engine to handle all specified grammar nodes, especially the nodes
typ_optional, typ mul_optional or typ_set terms. This procedure is taken up
with a view to greater clarity: The parser does not automatically generate new categories
which might confuse a user on reading the logfiles during the development (or debugging) of a
grammar. The grammar may be read in the logfiles as it was specified by the user.

The object grammar offers several interface methods such as add rule/2,
add_label/2 and add_start/1 with which rules, labels or a starting symbol may be
added to the grammar. The object grammar may be passed to other modules as a constant
object, i.e., a ‘read-only’ object which cannot be modified.

5.3. Module PPROCESS

This module implements the generic object pprocess for replacing string patterns. The pre-
processor and the postprocessor are derived from this object. The object supports four differ-
ent actions to be applied on a string:

Delete a specific pattern within a string.

Delete the whole string in which a specific pattern could be found.
Replace a specific pattern by another pattern within a string.
Delete a specific range of columns from a string.

The pattern specified for an action may be either a string constant or a regular expression
string.
pprocess offers the interface method add_action/2 with which complete actions may

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 205

be specified.

5.4. Module PREP

This module contains the preprocessor (object prep) for the parsing engine. The preprocessor
reads the input file on a line-by-line basis and is able to apply seven different kinds of actions
(directives) to the input:

Delete: Delete a specific pattern in the input line.

DeleteRep: Delete a specific regular expression in the input line.

DelLine: Delete the whole input line in which the specified pattern could be found.

DelLineRep: Delete the whole input line in which the specified regular expression could be found.
Change: Replace a specific pattern by another pattern within the input line.

ChangeRep: Replace a specific regular expression by a replace pattern within the input line.
DeleteCol: Delete a specific range of columns from the line.

Note: The order of all directives as specified in the configuration file is preserved during exe-
cution.

The Change directive offers the possibility of inserting XCode tokens into the input
stream. For doing so, the desired XCode must be enclosed by two “\ #’ characters.

Change = "&12&34" -> "#XFLBE# #XFTxbi"

prep offers the interface method add_action/2 with which complete directives may be
specified.

The interface method get_next/1 returns the next line as being read from the input file
and being worked on by the preprocessor.

5.5. Module SCAN

This module contains the scanner (or tokenizer) of the parser. The scanner object scan receives
lines of characters from the preprocessor and splits them into separate tokens. The scanner
distinguishes two classes of tokens: XCode tokens and literal tokens.*

By configuring the scanner, each XCode may be defined by specifying a pattern which is
replaced by an XCode token if it occurs in the input. The object scan supports a large table of
XCodes which all can be connected with a pattern.**

scan offers the interface method add_xcode/2 to define an XCode together with its
pattern.

The interface method 1ookahead/1 tells the caller the next token, that is available in the
input. The token is not removed from the input so that subsequent calls to 1ookahead/1 all
result in the same token.

get/1 reads the next token from the input. The token is removed from the input.

unget/1 puts the specified token back onto the input, so that the next call to get/1
results in this token. There are no limits concerning the number of calls to unget/1.

The object scan also supports several interface methods to expand abbreviations: ex-
pand_define/2 allows the definition of a string which is returned as a literal token when-
ever a sequence of the initial letter of this string followed by a dot occurs in the input. This
expansion must be enabled using expand_enable/0 before any calls to get/1 and may be
disabled using method expand_disable/O0 after such a call.

33

For a complete discussion of these different tokens refer to section 3.2.
34

A list of all supported XCodes can be found in section A in the appendix.
LEXICOGRAPHICA 9/1993

206 Ralf Hauser / Angelika Storrer
5.6. Module PARSE

This module contains the object parse representing the parsing engine. The parsing engine
consults the grammar representation stored in the object grammar and reads tokens from the
scanner. All categories which can be expanded are sent to the object output in the module
OUTPUT.

The parsing engine uses the algorithm of recursive descent parsing. This is a top-down,
depth-first algorithm which heavily uses backtracking, i.e., reading and consulting the tokens
repeatedly.

parse offers the interface methods accept/1 and accept_eof/0. accept/1, is a
polymorphic function and may be executed with the following different arguments: grammar,
category, rule and grammar node. Both methods have a boolean return value indicating
whether the specified argument could be accepted or not. This enables the following main loop
for parsing:

WHILE (parser.accept eof() = false) DO
result := parser.accept(Grammar)

display parse tree

END

5.7. Module OUTPUT

This module contains the object output which is capable of storing and displaying the gener-
ated parse trees. The object output supports many switches and options to control the style of
display not to be mentioned here in more detail.

output offers the interface methods cat_announce/3 (call whenever a category is pre-
dicted by the parsing engine) and cat_complete/1 (call whenever a category could be
completed by the parsing engine) to construct the parse tree. Each time a category has to be
removed from the parse tree (,e.g., because of backtracking) the method cat_undo/1 may
be called to remove subtrees from the whole parse tree. The complete parse tree may be
displayed by sending the object output to an output stream (,e.g., logfile or console).

The object output is partly derived from the object pprocess which represents the post-
processor of the output.

5.8. Module ERROR

This module contains the error handler of the LEXPARSE program. The object error distin-
guishes between six different error classes.

Panic: Serious error — the program terminates immediately. Output files and logfiles are unusable.

Critical: Serious error — the program terminates immediately. Output files and logfiles may be incomplete.
Internal: Internal program error — the program terminates immediately. Output files and logfiles may be
evaluated.

Fatal: Program error — the program terminates immediately. Output files and logfiles may be evaluated.
Normal: Program error — the program terminates later on because of this error condition. Output files and
logfiles may be evaluated.

Warning: Warning message only — the program does not terminate because of this message. Output files
and logfiles may be evaluated completely.

35 For a detailed discussion of this refer to AHO, SETHI & ULLMAN 1988 p. 181 ff.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 207

error offers the interface method add_error/6 with which an error message and an error
condition may be raised. exec/0 displays all messages accumulated so far and executes the
corresponding action, e.g., the program termination if a normal error was generated.

Each error message consists of an error class (see above), the name of the module in which
the error occured, an error code, an error description and an error location.

The error code contains three digits whereby the first digit identifies the module in which
the error occured:

Error Code Classes

Error codes | Error occured in module:
0xx Could not identify module
1xx Error in module LEXPARSE
2xx Error in module PREP
3xx Error in module SCAN
4xx Error in module PARSE
S5xx Error in module GRAMMAR
6xx Error in module QUTPUT
Txx Error in module INI
8xx Error in module PPROCESS
9xx Error in module GREP

5.9. Module GREP

This module contains the object grep, a generic object to search for regular expressions in
strings.

5.10. Module INI

This module contains the object inifile handling the . INI configuration files. The object
offers several interface methods to access the sections and options of the configuration file.

5.11. Module TOOLS

This module contains additional generic functions, e.g., string functions and (simple) user inter-
face functions.

6. Conclusion and Outlook

The LEXPARSE program is a powerful tool for dictionary entry parsing and the developing of
dictionary entry grammars. The grammar formalism offers various features to meet the specific
needs of dictionary entry parsing, e.g., the handling of structure indicators, font codes and
counters. LEXPARSE promotes a quick development of dictionary entry grammars providing a
rich set of facilities for identifying inadequate grammars as well as detecting non-wellformed
dictionary entries. The parse trees being generated by the LEXPARSE program may be dis-
played in different, user-definable styles, offering both easy-to-read and comprehensive graphi-
cal representations and tagged structures for a computer evaluation.

Depending on the complexity and the size of the grammar and the entries, the parser runs
at a speed of up to 10 entries per second on a PC with ‘486/33 CPU under the OS/2 operating
system,

The program was tested on several dictionaries: a grammar was developed for the DUDEN-

LEXICOGRAPHICA 9/1993

208 Ralf Hauser / Angelika Storrer

STILWORTERBUCH at the Department of Linguistics at the University of Tiibingen. This gram-
mar covers over 98% of all entries.*® A grammar for the DUDEN-BEDEUTUNGSWORTERBUCH is
currently being worked out at the same institute. Another LEXPARSE grammar is being devel-
oped within the project “DEUTSCHES RECHTSWORTERBUCH” carried out at the Academy of
Science in Heidelberg. In the German Department of the University of Heidelberg work has
begun in elaborating a grammar for the “FRUHNEUHOCHDEUTSCHES WORTERBUCH”.*

We have several plans for enhancing the LEXPARSE system in the future:

— We are aiming at an integration with the ELWIS-TOOLBOX - a collection of different programs for intel-
lectually analyzing dictionary entry structures.

— An elegant and efficient handling of nesting and niching dictionaries will be integrated into the system.

- An interactive debugger facilitating an easier development of dictionary grammars will soon be added to
the program.

We hbpe that the experiences gathered in future applications of the system on varied types of
dictionaries will assist us in further developing LEXPARSE into a flexible, efficient, multi-task
tool in dictionary entry parsing.

7. References

ALFRED V. AHO, Ravi SETHI & JEFFREY D. ULLMAN (1988): Compilers, Principles, Techniques and Tools.

 Reading, Massachusetts: Addison Wesley.

BRIGITTE BLASER & MATTHIAS WERMKE (1990): Projekt ‘Elektronische Worterbiicher / Lexika’ Ab-
schluBbericht der Definitionsphase. IWBS Report 145. Wissenschaftliches Zentrum / Institut fiir Wissens-
basierte Systeme der IBM Deutschland GmbH.

CHRISTOPH BLASI & HEINZ-DETLEV KOCH (1991): Maschinelle StrukturerschlieBung von Wérterbuchartikeln
mit Standardmethoden. In: Lexicographica. Vol. 7, (1991) 1992, pp. 182-201. Tiibingen: Niemeyer.

BRAN BOGURAEV (1991): Building a Lexicon: The Contribution of Computers. In: International Journal of
Lexicography Vol. 4, (1991), pp. 227-260

BRAN BOGURAEV & TED BRISCOE (Eds.) (1989): Computational Lexicography for Natural Language Process-
ing. London, New York: Longman.

MARTIN BRYAN (1988): SGML - An Author’s Guide to the Standard Generalized Markup Language.
Waltham, Massachusetts: Addison Wesley.

GONTHER DROSDOWSKI (Ed.) (1988): DUDEN STILWORTERBUCH der deutschen Sprache. Mannheim: Duden.

SABINE ENGELKE (1994, forthcoming): Grammatikentwicklung fiir Worterbiicher mit dem LEXPARSE Formal-
ismus. SfS Report, Universitit Tibingen.

RALF HAUSER (1993): LEXPARSE User’s Manual. SfS Report 10-93, Seminar fiir Sprachwissenschaft der Uni-
versitit Tiibingen. .

RALF HAUSER & ANGELIKA STORRER (1993): LEXPARSE — Ein Parser zur maschinellen Analyse von Worter-
buchstrukturen. SfS Report 9-93, Seminar fiir Sprachwissenschaft der Universitit Tibingen.

FRANZ JOSEF HAUSMANN, OSKAR REICHMANN, HERBERT ERNST WIEGAND & LADISLAV ZGUSTA (Eds.) (1989):
Wérterbiicher. Ein internationales Handbuch zur Lexikographie. Berlin: de Gruyter.

FRANZ JOSEF HAUSMANN & HERBERT ERNST WIEGAND (1989): Component Parts and Structures of General
Monolingual Dictionaries: A Survey. In: Worterbiicher. Ein internationales Handbuch zur Lexikographie.
Edited by FRANZ J. HAUSMANN, OSKAR REICHMANN, HERBERT E. WIEGAND & LADISLAV ZGUSTA. Berlin:
de Gruyter, Vol. 1, pp. 328-360.

K. JENSEN & N. WIRTH (1985): Pascal User Manual and Report. Berlin, New York: Springer.

MARY S. NEFF & BRANIMIR K. BOGURAEV (1990): From Machine-Readable Dictionaries to Lexical Data Bases.
Research Report RC \#16080 (71353) 8/31/90, IBM THOMAS J. WATSON Research Center, Yorktown

36 About 10% of the entries were non-wellformed, i.e., structure indicators were absent or counters were

invalid. Cf. ENGELKE 1994.

3 Asfar as can be seen right now, both grammars will cover distinctly more than 90% of all entries.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 209

Heights, New York..

MARY S. NEFF, R. J. BYRD & O. A. Rizk (1988): Creating and querying lexical data bases. In: Proceedings of
the Second ACL Conference on Applied Natural Language Processing Austin, Texas; pp. 84-92.

ANGELIKA STORRER (1994, forthcoming): Methodisches Vorgehen beim Entwickeln von Artikelstrukturgram-
matiken. SfS Report, Universitit Tibingen.

ANGELIKA STORRER, HELMUT FELDWEG & ERHARD HINRICHS (1993): Korpusunterstiitzte Entwicklung lexi-
kalischer Wissensbasen. To appear in: Sprache und Datenverarbeitung 17, 1993. pp. 59-72.

HERBERT ERNST WIEGAND (1989a): Aspekte der Makrostruktur im allgemeinen einsprachigen Wérterbuch:
alphabetische Anordnungsformen und ihre Probleme. In: Wérterbiicher. Ein internationales Handbuch zur
Lexikographie. Edited by FRANZ J. HAUSMANN, OSKAR REICHMANN, HERBERT E. WIEGAND & LADISLAV
ZGUSTA. Berlin: de Gruyter, Vol. 1, pp. 371-409.

HERBERT ERNST WIEGAND (1989b): Der Begriff der Mikrostruktur: Geschichte, Probleme, Perspektiven. In:
Worterbiicher. Ein internationales Handbuch zur Lexikographie. Edited by FRANZ J. HAUSMANN, OSKAR
REICHMANN, HERBERT E. WIEGAND & LADISLAV ZGUSTA. Berlin: de Gruyter, Vol. 1, pp. 409-462.

HERBERT ERNST WIEGAND (1989¢): Formen von Mikrostrukturen im allgemeinen einsprachigen Worterbuch.
In: Worterbiicher. Ein internationales Handbuch zur Lexikographie. Edited by FRANZ J. HAUSMANN,
OSKAR REICHMANN, HERBERT E. WIEGAND & LADISLAV ZGUSTA. Berlin: de Gruyter, Vol. 1, pp. 462-501.

HERBERT ERNST WIEGAND (1989d): Die deutsche Lexikographie der Gegenwart. In: Worterbiicher. Ein inter-
nationales Handbuch zur Lexikographie. Edited by FRANZ J. HAUSMANN, OSKAR REICHMANN, HERBERT E.
WIEGAND & LADISLAV ZGUSTA. Berlin: de Gruyter, Vol. 2, pp. 2100-2246.

HERBERT ERNST WIEGAND (1991): Printed Dictionaries and their Parts as Text. An Overview of More Recent
Research as an Introduction. In: Lexicographica. Vol. 6, (1990) 1991, pp. 1-124. Tiibingen: Niemeyer.

Ralf Hauser, Seminar fur Sprachwissenschaft der Universitat Tabingen, e-mail: affie@sfs.nphil.uni-
tuebingen.de

Angelika Storrer, Institut far deutsche Sprache Mannheim, e-mail: storrer@ids-mannheim.de

Appendixes

A List of All Available XCodes

The following table contains a list of all XCodes available in the LEXPARSE system together with a description
of their semantics.®®

Note: All pre- and userdefined XCodes are case sensitive.

List of All Available XCodes
XCode | Character | Description
¥BRPO (BracketParenthesisOpen
XBRPC) BracketParenthesisClose
XBRCB { BracketCurlyOpen
XBRCE } BracketCurlyClose
XBRAO < BracketAngleOpen
XBRAC > BracketAngleClose
XBRSO [BracketSquareOpen
XBRSC] BracketSquareClose
XPDOT . PunctuationDot
XPCOM , PunctuationComma
XPSEM H PunctuationSemicolon
XPCOL : PunctuationColon
XPEXC ! PunctuationExclamationMark

38 The list of all available XCodes may be extended in future releases of LEXPARSE.

LEXICOGRAPHICA 9/1993

mailto:affie@sfs.nphil.uni-tuebingen.de
mailto:affie@sfs.nphil.uni-tuebingen.de
mailto:storrer@ids-mannheim.de

210 Ralf Hauser / Angelika Storrer

List of All Available XCodes
XCode | Character | Description
XPQUE ? PunctuationQuestionMark
XPHYP - PunctuationHyphen
XPRDT . PunctuationRoundedDot
XPCDT . PunctuationCenteredDot
XPAST * PunctuationAsterisk
XCSLA / CharacterSlash
XCBSL \ CharacterBackslash
XCAMP & CharacterAmpersand
XCPAR § CharacterParagraph
XCSEP | CharacterSeparator
XCARR A CharacterArrow
XCQUO “ CharacterQuoteOpen
XCQUC » CharacterQuoteClose
XCcsco CharacterUnderscore
XCTIL ~ CharacterTilde
XCACC ’ CharacterAccent
XCATS @ CharacterATSign
XFLBE FormatLemmaBegin
XFLEN FormatLemmaEnd
XFPBE FormatParagraphBegin
XFPEN FormatParagraphEnd
XFTAB FormatTabulator
XFTst FormatTypefaceStandard
XFTit FormatTypefaceltalic
XFTsl FormatTypefaceSlanted
XFTti FormatTypefaceTiny
XFTca FormatTypefaceCapital
XFTtt FormatTypefaceTypewriter
XFTsp FormatTypefaceSuperscript
XFTsb FormatTypefaceSubscript
XFTbo FormatTypefaceBold
XFTxb FormatTypefaceExtraBold
XFTwi FormatTypefaceWide
XFT£0 FormatTypefaceFont0
XFT£1 FormatTypefaceFont1
XFT£2 FormatTypefaceFont2
XFT£3 FormatTypefaceFont3
XFT£4 FormatTypefaceFont4
XFT£5 FormatTypefaceFont5
XFT£6 FormatTypefaceFont6
XFT£7 FormatTypefaceFont7
XFT£8 FormatTypefaceFont8
XFT£9 FormatTypefaceFont9
X EOF EndOfFile

Note: The semantics of XCodes of classes XF*** (Format) and XU*** (User-definable) cannot be expressed by
a character.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 211

B A Sample ‘.INI’ Configuration File for LEXPARSE

; General INI file for LEXPARSE
H sections PREPROCESS, SCANNER, PARSER
; and GRAMMAR are exported to include file

include = STILWORT.19 ; grammar
[Settings]
; Debug =A

TypefaceStates = On
Preprocess = On
SkipNLchar = No
; StepEntry = Yes

; StepSingle = Yes

FirstEntry = 3

LastEntry =9

[Logfiles]

preprocess = c:\tmp\prep.log
scan = c:\tmp\scan.log
parse = c:\tmp\parse.log
output = parsed\output.log
error = parsed\error.log

ErrorsOnly = Yes

[Display] ; for a display in TREE style
Parselevel = Yes

Mode =T

Unlabeled = Yes

EmptyCat = Yes

Tree =" | "

TreeS =" $-=>"

TreelD m " 4D

Title = Yes

Header = "——— parseTree ---\n"
Footer L \n"
Format =" 8¢ - 811[\"88\"]\n"
RMargin =179 ; for 80 column display
Progress = Off

ToParseLog = Yes

C A Sample LEXPARSE Grammar

The following sample grammar describes a very small fragment of the DUDEN STILWORTERBUCH.

[PreProcess]
ChangeRep = "}}$" -> " " ; end-of-line marker
; begin of a lemma and boldface

Change = "dT20654" ~> "#XFLBE# #XFTxbi#"
DeleteRep = "}-}§" ; hyphen
Delete = "$vrloa" ; italic correction

LEXICOGRAPHICA 9/1993

212 Ralf Hauser / Angelika Storrer

[Scanner]

AddLetters = "aduAOUA"
XPSEM = ;"

XPCOL = ":"

XFLEN = "a"

; control codes for typefaces ('Settings:TypefaceStates')
XFTsat = "J14"

XFTit = "324d"
XFTbo = "$34"
XFTxb = "&5d"
[Parser]

Start = WA

IndentlLog = On
RecoverCounterError = Yes
ExpandAbbrev = LZGA
SkipCriticallIsError = Yes

[Grammar]

;=== Wérterbuchartikel

WA ~> XFLBE, FK, SK, XFLEN
| WA _Err.

WA _Err -> * XFLEN Q.

;=-~- Formkommentar

error handler
error handler

~e ~e

FK -> LZGA [GrA] XPCOL
| FK_Err. ; error handler
FK_Err -> * XPCOL Q. ; error handler
LZGA > XFTxb: § [","~]. ; Lemmazeichengestaltangabe
GrA -> GA. ; Grammatische Angabe
GA => XFTst: { "der", "die", "das" }.
;=== Semantischer Kommentar
SK -> < PAA, PragSemA, BeiGA >.
;--- Typen von Polysemieangaben
PAA -> XFTbo: %1, ".", %Ra. ; Polysemieangabe (arabisch)

;--- Pragmatisch Semantische Angabe
PragSemA-~> BPA.

;=--- Bedeutungsangaben

BPA -> XFTit: * XPCOL.

;--- Beispielgruppenangabe

BeiGA ~> BeiA < XPSEM, BeiA > ["."].

;=-- Beispielangabe

BeilA -> =XPCOL: ; no XCodes XPCOL herein!
XFTst: $$.

[Labels]

WA = "Wérterbuchartikel”

WA_Err = "Fehler in Wérterbuchartikel"

FK = "Formkommentar"

FK_Exr = "Fehler in Formkommentar"

LZGA = "Lemmazeichengestal tangabe"

GA = "Genusangabe"

GrA = "Grammatische Angabe"

SK = "Semantischer Kommentazr"

PAA = "Polysemieangabe (arabisch)"

PragSemA = "Pragmatisch-Semantische Angabe"

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 213

BPA = "Bedeutungsparaphrasenangabe"
BeiGA = "Beispielgruppenangabe"
BeiA = "Beispielangabe"

D Sample Sessions

In the following we present several sample sessions of running the LEXPARSE program to parse
dictionary entries being part of a typesetting tape for the Duden-Stilwérterbuch.

D.1. Treffen, DUDEN-STILWORTERBUCH, Page 703

The following dictionary entry was parsed by LEXPARSE successfully. The parse tree for the entry Treffen is
complete. Abbreviated lemma signs were expanded automatically by the program.

[D: \FOR\SNS\LEXPARSE]lexparse /entry -1 lexparse.ini data\9-entries.dat
LEXPARSE V1.10 [Nov 05 1993) <DEBUG-SRC> A Dictionary Entry Parser
(C) 1992,1993 Seminar fir Sprachwissenschaft der Universitit Tibingen (C) 1992,1993
(C) 1992,1993 Ralf Hauser
Created by 'Affie' (kx.f. c|o)
Reading configuration: lexparse.INI
LEXPARSE: (W-303) Warning occurred in module 'Scanner':
Unknown XCode results in a new user-defined XCode:

" XURED"
Inputfile........: data\9-entries.dat
Parsing..........: Enabled
Pirst Entry......: 1
Last Entry : 1

Time of day......: Fri Nov 05 12:22:22 1993

Entry #1 accepted.

--- ParseTree -------=--= e ettt
WA - Woérterbuchartikel

+--> FK - Formkommentar

| +=--> LZGA - Lemmazeichengestaltangabe "Treffen"

| +--> GrA - Grammatische Angabe

| +--> GA - Genusangabe "das"

+-=> SK - Semantischer Kommentar
+--> 88K1 - Semantischer Subkommentar 1. S8tufe

+--> PAA - Polysemieangabe (arabisch) "1."

+--> Prag8emA - Pragmatisch tische Angab
| +--> BA - Bedeutungsangabe
| +--> BPA - Bedeutungsparaphrasenangabe '2Zu kunft, Begegnung"

|

|

|

I

| +--> BeiGA - Beispielgruppenangabe

| +--> BeiA - Beispielangabe "regelmifige, seltene Treffen'
| +--> BeiA - Beispielangabe "ein Treffen der Abiturienten"
| +--> BeiA - Beispielangabe "ein Treffen der AuBSenminister"
| +--> BeiA - Beispielangabe "ein Treffen verabreden, veranstalten"
| +--> BeiA - Beispielangabe "an einem Treffen teilnehmen"
| +--> BeiA - Beispielangabe "zu einem Treffen kommen"
+--> 88K1 - Semantischer Subkommentar 1. Stufe

| +=-> PAA - Polysemieangabe (arabisch) "2."

| +=--> PragS8emA - Pragmatisch-8 tische Angab

} | +--> PragA - Pragmatische Angabe "militir. veraltet"
| | +--> BA - Bedeutungsangabe

[+--> BPA - Bedeutung raphra be "Gefecht"
|

|

+--> BeiGA - Beispielgruppenangabe
+--> BeiA - Beispielangabe "frische Truppen ins Treffen fihren"

+--> 88K1 - 8 tisch 8ubk tar 1. 8tufe
+--> PAA - Polysemieangabe (arabisch) "3."
+--> PragS8emA - Pragmatisch tische Angab

| +--> PragA - Pragmatische Angabe "Sport"

|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
| | +--> BA - Bedeutungsangabe

LEXICOGRAPHICA 9/1993

Ralf Hauser / Angelika Storrer

| | +--> BPA - Bedeutungsparaphrasenangabe "Wettkampf"
| +--> BeiGA - Beilspielgruppenangabe
| +--> BeiA - Beispielangabe "ein faires, spannendes Treffen"
| +--> BeiA - Beispielangabe "das Treffen endete unentschieden"
| +--> BeilA - Beispielangabe "sie konnte das Treffen fiir sich entscheiden"
+--> PKP - Postkommentar zur Phraseologie
+-=> 8KP - Subkommentar zur Phraseologie
+--> PragA - Pragmatische Ang '"geh."
+--> PhrasA - Phrasemangabe "etwas ins Treffen fihren"
+--> KPB - Kommentar zur Phrasembedeutung

+--> PBA - Phra bedeutung be "etwas als Argument vorbringen"

Entry #1: Accepted!

Inputfile........: data\9-entries.dat

First entry......: 1

Last entry..... 1

Entries parsed. 1

Brrors...........: o

Time of day......: Fri Nov 05 12:22:23 1993
Time of start....: Fri Nov 05 12:22:22 1993
Blapsed time.....: OOh OOm O1s

LERXPARSE V1.10 [Nov 05 1993] <DEBUG-8RC>
Program terminated successfully

LEXPARSE: (W-105) Warning occurred in module 'LEXPARSE':
Parsing terminated due to 'LastEntry' specification

D.2. trennen, DUDEN-STILWORTERBUCH, Page 704

The following dictionary entry was parsed by LEXPARSE successfully. The parse tree for the entry trennen is
not complete. Abbreviated lemma signs were expanded automatically by the program.

The entry is not well-formed since the item Beispielangabe (Beid) ein Gebirgszug trennt das Land in
zwei Regionen. does not contain a trailing semicolon although there are more categories BeiA.

LEXPARSE generated a maximum parse tree and all tokens which could be consumed by the parser follo-
wing the error were collected in the accumulator of category Fehler in Worterbuchartikel (WA_Exr).

[D:\FOR\SNS\LEXPARSE)lexparse /entry 7-7 lexparse.ini data\9-entries.dat
LEXPARSE V1.10 {Nov 05 1993] <DRBUG-8RC> A Dictionary Entry Parser
(C) 1992,1993 Seminar fiir Sprachwissenschaft der Universitit Tubingen
(C) 1992,1993 Ralf Hauser
Created by 'Affie' (k.f. clo)
Reading configuration: lexparse.INI
LEXPARSR: (W-303) Warning occurred in module 'Scanner':
Unknown XCode results in a new user-defined XCode:

"XURRD"
Inputfile........: data\9-entries.dat
Parsing.......... : Bnabled
Pirst Bntry......: 7
Last Bntry.......: 7
Time of day......: Pri Nov 05 12:25:06 1993

6 Bntries skipped!
N O T B: Entry #7 could not be accepted by grammar!
--~ ParseTree - --- meem-meeecccccececcecococanacas
WA - Wérterbuchartikel
+--> FK - Formkommentar
| +=--> L2GA - Lemmazeichengestaltangabe "trennen"
+--> 8K - 8 tisch K tar
+--> 8SK1 - tisch Subk tar 1. Stufe
| +-~-> PAA - Polysemieangabe (arabisch) "1."
| +--> PragSemA - Pragmatisch-Semantische Angabe
| +--> 88SK2 - 8 tisch Subk tar 2. Stufe
|
|

| +--> PAB - Polysemieangabe (Buchstabe) "a"

|
|
|
|
|
| | +--> PragSemA - Pragmatisch-Semantische Angabe

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System

215

|
|
+
|
|
|
1
|
|
|
!
|
I
|
|
+
[
|
|
|
|
|
|
|
1

|
+

+
+
|
|
+
|

|
|
|
|
|
!
+

|
|
!
I
|
|
|
|
|
|
|
|
+==>
|
|
|
|
|
|
|
|
|
|
1
!
|
|

| +=--> GrA - Grammatische Angabe

| | +--> 8mA - Satzmusterangabe "jmdn., sich, etwas von jmdm., von etwas/ aus\

etwas trennen"
| +4--> BA - Bedeutungsangabe
| +--> BPA - Bedeutungsparaphrasenangabe "l&6sen, entfernen, abtrennen"
+--> BeiGA - Beispielgruppenangabe

+--> BeiA - Beispielangabe "eine Borte vom Kleid, das Putter aus dem Mantel\

trennen"
+--> BelA - Beispielangabe "den Kopf vom Rumpf trennen"
| +--> G2B - Glossat zur deutung "abschl "

+--> BeiA - Beispielangabe "ein Tier von der Herde trennen"

+--> BeiA - Beispielangabe "das Kind von seiner Mutter, von seiner Familie\

trennen"
+--> BeilA - Beispielangabe "das Brz vom Gestein trennen"
+--> BeiA - Beispielangabe "das RBigelb vom Eiwei8 trennen"
-=> 88K2 - Semantischer Subkommentar 2. Stufe

+--> PAB - Polysemieangabe (Buchstabe) "b"
+--> PragS8emA - Pragmatisch- tische Angab
| +4-=> GrA - Grammatische Angabe
! | +--> 8mA - S8atzmusterangabe "jmdn., etwas trennen"
| +--> BA - Bedeutungsangabe
| +--> BPA - Bedeutungsparaphrasenangabe "auseinanderbringen"
+--> BeiGA - Beispielgruppenangabe

+--> BeiA - Beispielangabe "Eigelb und Eiweif trennen"

+--> BeiA - Beispielangabe "S8auerstoff und Wasserstoff trennen"

+--> BeilA - Beispielangabe "die Bestandteile einer Mischung sorgfiltig trennen"

+--> BeiA - Beispielangabe "die Nihte trennen"
+--> BeiA - Beispielangabe "die S8treitenden mufSten getrennt werden"
--> 88K2 - tisch bk tar 2. Stufe
+--> PAB - Polysemieangabe (Buchstabe) "c"
+--> PragS8emA - Pragmatisch-S8emantische Angabe
| +4--> GrA - Grammatische Angabe
| | +--> SmA - Satzmusterangabe "etwas trennen"
| +--> BA - Bedeutungsangabe
! +--> BPA - Bedeutungsparaphrasenangabe "in seine Bestandteile zerlegen"
+--> BeiGA - Beispielgruppenangabe
+--> BeiA - Beispielangabe "ein Kleid trennen"
+--> BeiA - Beispielangabe "ein Stoffgemisch chemisch, durch Kondensation\
trennen"
+--> BeilA - Beispielangabe "ein Wort nach S8ilben trennen"
-=> 88K2 - tisch 8ubk tar 2. Stufe
+--> PAB - Polysemieangabe (Buchstabe) "d"
+--> PragSemA - Pragmatisch-S8emantische Angabe
| +=-=> GrA - Grammatische Angabe
] | +--> 8mA - S8atzmusterangabe "jmdn. trennen"
| +--> BA - Bedeutungsangabe
| +--> BPA - Bedeutungsparaphrasenangabe "auseinanderreifen"
+--> BeiGA - Beispielgruppenangabe

+--> BelA - Beispielangabe "die beiden Geschwister sollten nicht getrennt werden"

+--> BelA -~ Beispielangabe "der Krieg hat die Familie getrennt"
+--> BeiA - Beispielangabe "nichts konnte die Liebenden trennen"
8SK1 - Semantischer Subkommentar 1. Stufe
--> PAA - Polysemieangabe (arabisch) "2."
--> PragS8emA - Pragmatisch-8 tische Angab
+--> BA - Bedeutungsangabe

+--> BPA - Bed gsparaphra be "klar unterscheiden, auseinanderhalten"

--> 88K2 - Semantischer Subkommentar 2. Stufe
+--> PAB - Polysemieangabe (Buchstabe) "a"
+--> PragS8emA - Pragmatisch-8 tische Angab
| +4-=> GrA - Grammatische Angabe
| +--> S8mA - S8atzmusterangabe "jmdn., etwas trennen"
+--> BeiGA - Beispielgruppenangabe
+--> BelA - Beispielangabe "die Begriffe klar, sauber trennen"
+--> BeiA - Beispielangabe "wir milssen Person und Sache strikt trennen"
--> 88K2 - Semantischer Subkommentar 2. 8tufe
+--> PAB - Polysemieangabe (Buchstabe) "b"

LEXICOGRAPHICA 9/1993

216 Ralf Hauser / Angelika Storrer

| +--> PragS8emA - Pragmatisch tische Angab

| | +--> GrA - Grammatische Angabe

| | +--> 8mA - 8atzmusterangabe "jmdin., etwas von etwas trennen"
] +--> BeiGA - Beilspielgruppenangabe
|
|

4+-=> BelA - Beisgpielangabe "wir milssen die Person streng von der S8ache trennen"
+-=> BeiA - Beispielangabe "mein Beruf kann von meiner Freizeit nicht streng\
getrennt werden"

+--> 88K1 - Semantischer Subkommentar 1. Stufe

+--> PAA - Polysemieangabe (arabisch) "3."

+=--> PragSemA - Pragmatisch tische Angab

+--> 88K2 - 8 tisch 8Subk tar 2. stufe

| +-=> PAB - Polysemieangabe (Buchstabe) "a"

| +--> Prag8emA - Pragmatisch-Semantische Angabe

| | +-=>GrA - Gr tische Angab

I 1 | +--> SmA - S8atzmusterangabe "sich trennen"

| | +--> BA - Bedeutungsangabe

[+--> BPA - Bedeutungsparaphrasenangabe "auseinandergehen"

| +--> BeiGA - Beispielgruppenangabe

| | +--> BeiA - Beispielangabe "wir trennten uns am Bahnhof"

| | +--> BeiA - Beispielangabe "unsere Wege trennen sich hier"

|

|

|

|

|

|

|

|

| | +--> G2B - Glossat zur Bedeutung "jeder nimmt einen anderen Weg"
| +--> BeiA -~ Beispielangabe "nach drei S8tunden Diskussion trennte man sich"
+--> KSV - Kommentar zur speziellen Verwendung
+--> S8KSV - Subkommentar zur speziellen Verwendung
+--> VSA - Ver dungsspezifizierende A b

| +--> FGA - Pachgebietsangabe "Sport."
+--> BeiGA - Beispielgruppenangabe
+--> BeiA - Beispielangabe "die beiden Mannschaften trennten sich 0: 0"
+--> 88K2 - 8 tisch Subk tar 2. Stufe
+--> PAB - Polysemieangabe (Buchstabe) "b"
+--> PragSemA - Pragmatisch-Semantische Angabe
| +--> GrA - Grammatische Angabe
| | +-=-> SmA - S8atzmusterangabe "sich von)mdm. trennen"
| +--> BA - Bedeutungsangabe
| +--> BPA - Bed gsparaphra be "weggehen”
+--> BeiGA - Beispielgruppenangabe
+--> BeiA - Beispielangabe "vor der Haustiir trennte er sich von mir"
+--> 88K1 - 8 tisch Subk tar 1. stufe
+--> PAA - Polysemieangabe (arabisch) "4."
+--> PragS8emA - Pragmatisch-S8emantische Angabe
+--> 88K2 - 8 tisch Subkommentar 2. Stufe
| +--> PAB - Polysemieangabe (Buchstabe) "a"
| +--> PragSemA - Pragmatisch-Semantische Angabe
! | +=-=-> GrA - Grammatische Angabe
|
|
|

| | +--> 8mA - Satzmusterangabe "sich trennen"
| +--> BA - Bedeutungsangabe
| +--> BPA - Bedsutungsparaphrasenangabe "eine Partnerschaft, Gemeinschaft)\
auflésen" '
I | | +--> BeiGA - Beispielgruppenangabe
I I | | +--> BeiA - Beispielangabe "wir haben uns endlich, nach zwei Jahren,\
freundschaftlich, im guten getrennt"
| +--> BeiA - Beispielangabe "die beiden Teilhaber haben sich getrennt"
+--> KSV - Kommentar zur speziellen Verwendung
+--> SKSV - Subkommentar zur speziellen Verwendung
+--> VSA - Verwendungsspezifizierende Angabe
| +--> WKA - Wortartenkonversionsangabe "ad)."
| +=-> WKA - Wortartenkonversionsangabe "Part."
+--> BeiGA - Beispielgruppenangabe
+--> BeilA - Beispielangabe "die Eheleute leben getrennt"
+--> 88K2 - 8 tisch Subk tar 2. Stufe
+--> PAB - Polysemieangabe (Buchstabe) "b"
+--> PragS8emA - Pragmatisch-Semantische Angabe
| +--> GrA - tische Angab
| | +-=> 8mA - Satzmusterangabe "sich von jmdm. trennen"
| +--> BA - Bedeutungsangabe
| +--> BPA - B tungsparaphra 1gabe "sich loslésen'

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 217

| | +--> BeiGA - Beispielgruppenangabe

| | | +--> BeiA - Beispielangabe "siehat sich von ihrem Mann getrennt"

] | | +--> BeiA - Beispielangabe "von meinem Gesangspartner habe ich mich getrennt"

| | +--> K8V - Kommentar zur speziellen Verwendung

| | +--> SKSV - Subkommentar zur speziellen Verwendung

| | +--> VSA - Verwendungsspezifizierende Angabe

] | | +--> MA - Metaphernangabe "{ibertr."

| | +--> PragA - Pragmatische Angabe "verhiull."

| | +--> BeiGA - Beilispielgruppenangabe

| | +--> BeiA - Beispielangabe "die Firma hat sich von diesem Mitarbeiter\

getrennt"

+--> 88SK1 - Semantischer Subkommentar 1. Stufe

| +--> PAA - Polysemieangabe (arabisch) "5."

| +--> PragSemA - Pragmatisch-Semantische Angabe

| | +--> GrA - Grammatische Angabe

! | | +--> SmA - Satzmusterangabe "sich von etwas trennen"

| | +--> BA - Bedeutungsangabe

[+--> BPA - Bedeutungsparaphrasenangabe "etwas hergeben"

| +--> BeiGA - Beispielgruppenangabe

| | +--> BeiA - Beispielangabe "sich von Erinnerungssticken nur ungern trennen, nicht\
trennen kénnen"

| | +--> BeiA - Beispielangabe "sich von jeglichem Besitz trennen"

| +--> KSV - Kommentar zur speziellen Verwendung

| +--> 8KSV - Subkommentar zur speziellen Verwendung

| +--> VSA - Verwendungsspezifizierende Angabe

|

|

I

| +--> MA - Metaphernangabe "ibertr."
+--> BeiGA - Beispielgruppenangabe
+--> BeiA - Beispielangabe "sich von einem Gedanken, einem Wunsch, einer\
Vorstellung trennen milssen"
| +--> BeiA - Beispielangabe "sich von einem Anblick nicht trennen kénnen"
+--> 88K1 - Semantischer Subkommentar 1. Stufe
+--> PAA - Polysemieangabe (arabisch) "6."
+--> PragSemA - Pragmatisch-Semantische Angabe
+--> 88SK2 - Semantischer Subkommentar 2. Stufe
| +--> PAB - Polysemieangabe (Buchstabe) "a"
| +--> PragSemA - Pragmatisch-Semantische Angabe
| | +--> GrA - Grammatische Angabe
|
|
|

| | +--> SmA - S8atzmusterangabe "etwas trennt etwas"

| +--> BA - Bedeutungsangabe

| +--> BPA - Bedeutungsparaphrasenangabe "etwas bildet eine Grenze, ein\

Hindernis zwischen etwas"

| +--> BeiGA - Beispielgruppenangabe
| | +--> BeiA - Beispielangabe "ein Stacheldraht trennt die Grundstucke"
| | +--> BeiA - Beispielangabe "ein Zaun trennt die Girten"
| +--> K8V - Kommentar zur speziellen Verwendung
| +--> SKSV - Subkommentar zur speziellen Verwendung
| +--> VSBA - Vervendungsspezifizierende Angabe
|
|
|
|
1

| +--> MA - Metaphernangabe "{ibertr."
+--> BeiGA - Beispielgruppenangabe
+--> BeiA - Beispielangabe "uns tr Welten"
| +--> GZB - Glossat zur Bedeutung "wir sind duBerst verschieden"
+--> BeiA - Beispielangabe "die verschiedene Herkunft trennte sie"
+--> 88K2 - 8 tisch Subk tar 2. Stufe
+--> PAB - Polysemieangabe (Buchstabe) "b"
+--> PragS8emA - Pragmatisch-Semantische Angabe
| +4--> GrA - Grammatische Angabe
| | +--> SmA - Satzmusterangabe "etwas trennt jmdn., etwas von jmdm., von etwas"
| +--> BA - Bedeutungsangabe
| +--> BPA - Bedeutungsparaphrasenangabe "etwas grenzt jmdn., etwas gegen\
imdn., etwas ab"
| +--> BeiGA - Beispielgruppenangabe
| +--> BeiA - Beispielangabe "der Kanal trennt England vom Kontinent"
| +--> BeiA - Beispielangabe "nur ein Graben trennt die 2ocbesucher von den\
Elefanten"
| +--> BeiA - Beispielangabe "eine Glaswand trennt ihn von seinem Verteidiger"
| +--> UGrA - Unspezifizierte grammatische Angabe "auch ohne Prip.- Obj."

LEXICOGRAPHICA 9/1993

218 Ralf Hauser / Angelika Storrer

| +--> BeiA - Beispielangabe "ein Gebirgszug trennt das Land in zwei Regionen"

+--> WA_Brr - Fehler in Wérterbuchartikel "{ibertr.: nur noch wenige Tage trennen uns von den\
Wahlen. XFTbo 7. XFTst(Rundf.)< etwas trennt etwas; mit Artangabe> XFTit etwas besitzt\
eine bestimmte Trennschirfe: XFTst das Radio trennt die Sender gut, scharf, nicht\
richtig, genligend. XFTbo 8. XFTst< jmdn., etwas trennen> XFTit(eine telefonische\
Verbindung unterbrechen: XFTst die Verbindung wurde getrennt: man hat uns getrennt."

Entry #7: Brror caused by directive ('€' Operator)

Inputfile........: data\9-entries.dat

First entry......: 7

Last entry.......: 7

Entries parsed...: 1

Brrors...........: 1

Time of day......: Pri Nov 05 12:25:12 1993
Time of start....: Pri Nov 05 12:25:06 1993

Blapsed time..... : 00h OOm 06s

LEXPARSE V1.10 [{Nov 05 1993} <DEBUG-8SRC>
Program terminated successfully

LEXPARSE: (W-105) Warning occurred in module 'LEXPARSE':
Parsing terminated due to 'LastBntry' specification

D.3. iiberhaupt, DUDEN-STILWORTERBUCH, Page 716

The following dictionary entry was parsed by LEXPARSE successfully. The parse tree for the entry iiberhaupt is
complete. Abbreviated lemma signs were expanded automatically by the program.

However, the entry is not well-formed since the enumeration in the item Polysemieangabe (PAR) is inva-
lid. The parser did find an invalid symbol 5 instead of the expected symbol ‘4’ in the scope of the forth in-
stance of item Semantischer Subkommentar (3SK).

Nevertheless, the parser generated a complete parse tree and issued an error message (warning #403)
indicating the invalid enumeration.*

[D: \FOR\SN8\LEXPARSE] lexparse lexparse.ini data\counter_error.dat
LEXPARSE V1.10 [Nov 05 1993} <DRBUG-SRC> A Dictionary Entry Parser
(C) 1992,1993 Seminar fUr Sprachwissenschaft der Universitit Tibingen
(C) 1992,1993 Ralf Hauser
Created by 'Affie' (k.f. cl|o)
Reading configuration: lexparse.INI
LEXPARSE: (W-303) Warning occurred in module 'Scanner':
Unknown XCode results in a new user-defined XCode:

"XURED"
Inputfile........ : data\counter_error.dat
Parsing..........: Bnabled

First Bntry......: 1

Last Bntry....... : no spec.

Time of day......: Pri Nov 05 12:28:42 1993

N O T B: Entry #1 could not be accepted by grammar!
--- ParseTree ----- ——- -
WA - Woérterbuchartikel
+--> FK - Formkommentar
| +--> LZGA - Lemmazeichengestaltangabe "{iberhaupt"
+--> 8K - 8 tischer K tar
+--> SSKO - Semantischer Subkommentar 0. Stufe
| +--> PAR - Polysemieangabe (roemisch) "I."
| +--> PragSemA - Pragmatisch-8 tische Angab
| | +=--> GrA - Grammatische Angabe
|| +--> WAA - Wortartangabe "Adverb"
|
I
|
|

+--> 88SK1 - Semantischer Subkommentar 1. Stufe

| +--> PAA - Polysemieangabe (arabisch) "1."

| +--> PragSemA - Pragmatisch-Semantische Angabe
| | +--> BA - Bedeutungsangabe

3 The switch [Parser] RecoverCounterError = Yes does achieve such a behaviour.

LEXICOGRAPHICA 9/1993

Dictionary Entry Parsing Using the LEXPARSE System 219

[+--> BPA - Bedeutungsparaphrasen be "insgesamt, aufs Ganze gesehen'

| +--> BeiGA - Beispielgruppenangabe

| +--> BeiA - Beispielangabe "ich habe ihn gestern nicht angetroffen, er ist\
{iberhaupt selten zu Hause"

] +--> BelA - Beispielangabe "mir gefillt es in Madrid, {berhaupt in Spanien"

+--> 88K1 - Semantischer Subkommentar 1. sStufe

| +--> PAA - Polysemieangabe (arabisch) "2."

| +--> PragSemA - Pragmatisch-Semantische Angabe

| | +=--> GrA - Grammatische Angabe

I | | +=-=> UGrA - Unspezifizierte grammatische Angabe "verstirkend bei Verneinungen"

| | +--> BA - Bedeutungsangabe

[+--> BPA - B gsparaphra be "ganz und gar"

| +--> BeiGA - Beispielgruppenangabe

1 +--> BeiA - Beispielangabe "das ist iberhaupt nicht mdéglich, nicht wahr"

| +--> BelA - Beispielangabe "davon kann iberhaupt keine Rede sein"

] +--> BeiA - Beispielangabe "er hat heute tberhaupt noch nichts gegessen"

|

+-

|

|

|

|

|

|

+--> BeiA - Beispielangabe "das geht ihn Uberhaupt nichts an"
-> 88K1 - Semantischer Subkommentar 1. Stufe
+--> PAA - Polysemieangabe (arabisch) "3."
+--> PragSemA - Pragmatisch-Semantische Angabe
| +--> BA - Bedeutungsangabe
| +--> BPA - Bedeutungsparaphrasenangabe "abgesehen davon, iberdies"
+-~> BeiGA - Beispielgruppenangabe
+--> BeiA - Beispielangabe "du kannst einmal nachfragen, und iberhaupt solltest\
du dich/ und Uberhaupt, du solltest dich mehr darum kiimmern"
+--> 88K1 - Semantischer Subkommentar 1. Stufe
+-~-> PAA - Polysemieangabe (arabisch) "5."
+--> PragS8emA - Pragmatisch-Semantische Angabe
| +--> BA - Bedeutungsangabe
I +--> BPA - Bedeutungsparaphrasenangabe "gerade, besonders"
+--> BeiGA - Beispielgruppenangabe
+--> BeiA - Beispielangabe "wir gehen gerne im Wald spazieren, Uberhaupt im\

Herbst"
| +--> BeiA - Beispielangabe "man wird, tberhaupt im Alter, nachlissiger"
+--> 88KO - 8 tisch 8Subk tar 0. Stufe

+--> PAR - Polysemieangabe (roemisch) "II."

+--> PragSemA - Pragmatisch-Semantische Angabe

| +--> GrA - Grammatische Angabe

| | +--> UGrA - Unspezifizierte grammatische Angabe "Partikel"

| +--> BA - Bedeutungsangabe

| +--> BPA - Bedeutungsparaphrasenangabe "eigentlich"

+--> BeiGA - Beispielgruppenangabe
+--> BeiA - Beispielangabe "was willst du (berhaupt hier?"
+--> BeiA - Beispielangabe "wie ist das iberhaupt passiert?"
+--> BeiA - Beispielangabe "du kénntest Uiberhaupt etwas freundlicher sein"

+--> G2B - Glossat zur Bedeutung "ruhig"

Entry #1: Error caused by an invalid counter value
LEXPARSE: (W-403) Warning occurred in module 'Parser':

Prabably incorrect value for counter detected:

"5" :

I‘l
Inputfile........: data\counter_error.dat
First entry......: 1
Last entry.......: 1
Entries parsed...: 1
Brrors...........: 1
Time of day......: Pri Nov 05 12:28:43 1993
Time of start....: Pri Nov 05 12:28:42 1993
Elapsed time.....: OOh OOm Ol1s

LEXPARSE V1.10 [{Nov 05 1993) <DEBUG-SRC>

Program terminated successfully

LEXICOGRAPHICA 9/1993

