Published in: Banski, Piotr/Kupietz, Marc/Liingen, Harald/Rayson, Paul/Biber, Hanno/Breiteneder, Evelyn/Clematide,
Simon/Mariani, John/stevenson, Mark/Sick, Theresa (eds.): Proceedings of the Workshop on Challenges in the
Management of Large Corpora and Big Data and Natural Language Processing (CMLC-5+BigNLP) 2017 including the
papers from the Web-as-Corpus (WAC-XI) guest section. Birmingham, 24 July 2017. - Mannheim: Institut fiir Deutsche
Sprache, 2017. Pp. 35-41

Keeping Properties with the Data
CL-MetaHeaders - An Open Specification

John Vidler
j-vidler @lancaster.ac.uk

Stephen Wattam
steve @watt.am

School of Computing and Communications
Lancaster University

Abstract

Corpus researchers, along with many
other disciplines in science are being put
under continual pressure to show
accountability and reproducibility in their
work.  This is unsurprisingly difficult
when the researcher is faced with a wide
array of methods and tools through which
to do their work; simply tracking the
operations done can be problematic,
especially when toolchains are often
configured by the developers, but left
largely as a black box to the user. Here
we present a scheme for encoding this
‘meta data’ inside the corpus files
themselves in a structured data format,
along with a proof-of-concept tool to
record the operations performed on a file.

1 Introduction

Corpora are continually increasing in size, and as
a side effect, the management of this data during
processing continues to be a pressing issue. As
researchers we are under pressure to be able to
reproduce the findings that we publish, and as the
data we use increases in magnitude this can
quickly become an onerous task. As noted in “A
Note on Rigour and Replicability” (Louridas and
Gousios, 2012), “Unfolding off-the-shelf IR
systems for reproducibility” (Di Buccio et al.,
2015) and “Who Wrote the Web?  Revisiting
Influential  Author  Identification — Research
Applicable to Information Retrieval” (Potthast et
al., 2016), tracking the transforms performed on
an input set is difficult at the best of times with
the best of intentions, but when confronted with
an unfamiliar tool or tool chain, inexperienced
users can be forgiven for accidentally performing
operations that do not achieve what they intend.

On the one hand, as a discipline, difficulties
arising from the existence of a broad tool suite are
an excellent problem to have; a multitude of
solutions are present to handle any number of
problems we may face. However, on the other
hand, having no standard interoperability level for
these tools prevents some interactions across this
space without a great deal of effort from the user.
Being aware of the file type is seldom enough to
correctly set up reader/writer operations in a tool,
especially if we consider character encoding
differences, and the overall engineering of the
tool has become very important in some cases.
Further, processes for management of text
metadata are tightly bound to the format,
resulting in the need for bespoke tooling just to
manage text flow through an NLP toolchain. An
extensive overview of the issues has been
compiled in “A critical look at software tools in
corpus linguistics” (Anthony, 2013).

Here we propose a format for metadata storage
that is sufficiently concise and flexible to be
included within existing formats, allowing for
metadata storage and processing in a manner
minimally coupled with the underlying text
storage regime.

Our approach draws upon the design principles
of UNIX’ ‘magic numbers’, most commonly
encountered in BASH (Project, 2017) scripts. In
shell scripts we see the “hash-bang” prefixed first
line of each script which identifies the interpreter
that should be used to read the file.

Such a hashbang line is a special case of a code
comment as delimited by a single hash symbol #,
normally reserved to be used to have the
interpreter simply ignore the rest of a line. In the
special “hash-bang” case, the first line of the
script includes as #! with a system path string
indicating which binary should be invoked to

35



execute the script. A common example of this is
BASH interpreted scripts using #! /bin/bash.

Without this included in the header of the file,
implementation  differences  between  shell
interpreters would quickly render scripts useless
as the behaviour would be undefined. In older
loaders  without the initial “hash-bang”
recognising capability, the loader can skip over
the line as normal as the line starts with a
comment symbol, effectively rendering it
invisible, and preserving legacy behaviour.

We can borrow from this design for our own
implementations, providing a mechanism for
metadata storage and file type disambiguation
that is flexible and simple to parse. Herein, we
address the high-level design concerns
surrounding such a format (Section 2) and the
container format selected (Section 3) before
going on to detail the mandatory fields designed
to aid processing tools (Section 4). This paper is
intended to introduce a preliminary specification,
and further steps towards standardisation and use
are discussed in Section 6 prior to an appendix
containing examples for common NLP file
formats.

2 Design

The primary aims of this specification are to
provide a mechanism for detailing text- and
toolchain-related metadata, and providing
additional information on existing files that may
affect subsequent processing stages.

Describing text metadata is a task already
competently handled by formats such as TEI, and
is primarily concerned with a rich, structured
storage format that can be mined for information
algorithmically. The need for such structure must
be balanced here with the need for compatibility
— the ability for the data to be ‘hidden’ from
other NLP tools within their comment fields —
and universality — the need for data to be
applicable to many different types of toolchain.

In line with other bottom-up approaches, here
we follow the design of assembling a minimal set
of smaller, optional, features into a common data
format. Following the lead of other minimal
formats (such as vCards (Dawson and Howes,
1998) and JSON Schema'), we take a structured
approach that assembles these components into a
key-value map.

"http://json-schema.org/

This approach permits the variation of
representations for even the most basic data
formats, providing they cover a basic subset. Here
we require only 4 data types in accordance with
the JSON specification(ECMA, 2013)?, namely:

String Defined as the ASCII-7 subset only for
reasons for character set compatibility;

Decimal Numbers Base-10, ASCII

representation;
Nil Analogous to the empty set, null, None etc.

Boolean A single bit of information, i.e. t rue or
false

These basic data types may be composed into
data structures of two types: objects, which are
key-value stores with any basic type as the key
and another as the value, and arrays: objects with
implicit, ordered integer keys. Keys are to be
specified using snake_case. Keys starting and
ending with two underscores ‘__key__’ are
reserved, using a convention similar to Python’s
PEP8(van Rossum et al., 2001).

With these as building blocks, we can construct
structures which encompass text metadata, such
as author, source, or date information, in addition
to the possibility of describing sequences of
operations - such as the tool history that has been
performed to generate the file. In order to make
the latter of these applicable to many toolchains,
we specify a subset of structures that may be used
to fulfil certain roles: this is intended to
standardise and simplify tooling.

2.1 Namespaces and Interfaces

The basic metaheader structure is a single
key-value map (Object) containing a set of keys
defined by the current version of the specification
(these are detailed later in Section 4). Each key
within this top-level object points to a value,
which may itself be a simple type or another
Object. A field containing an object at the top
level is said to provide a namespace.

Namespaces are specified separately to the core
set of fields, and allow information to be grouped
by purpose or administrator—this is similar to the
approach taken by many packaging systems such
as RubyGems® and PyPI*. Namespaces may be

2And, it should be noted, many other data formats such as
messagepack, BSON and YAML

*https://rubygems.org/
“https://pypi.python.org/pypi

36



defined by third parties in order to provide
tool-specific  key-value  pairings —  this
mechanism is intended to allow tool authors to
store information in formats that remain
compatible with other tooling, without resorting
to standoff annotation.

Because decentralised definition may lead to
these namespaces becoming difficult to integrate
and process, we reserve the capability to define a
set of interfaces. Interfaces define a set of keys
that must be provided together within a
namespace, in order to offer a given service. This
is analogous to duck typing in object-oriented
languages: a namespace providing all of the fields
required is presumed to behave according to the
interface specification.

We reserve keys beginning and ending with
two underscores (‘__key__") for this purpose, for
example, any namespace wishing to implement
semantic versioning may provide a __version__
field containing a semantic versioning compatible
string. Any tooling wishing to support versioning
of namespaces may then detect this and process
such namespaces consistently.

3 Container Format

As opposed to simpler formats such as shell
scripts, which need only know a single parameter
to be able to select the correct interpreter at
start-up, we can leverage modern structured data
formats to embed effectively any amount of data
into the header of a file. Many modern
configuration tools use formats such as
YAML(Evans, 2011) and JSON(ECMA, 2013),
to provide rich options for holding data. YAML is
commonly used, for example, as a metadata
header section for static site generators (MkDocs,
Jekyll and Hugo).

We should note that our intention is to specify
the data structure contained within any such
format, rather than the format itself, and propose
that a number of formats may be implemented if
necessary to remain within comment fields of
other files.

The examples listed here, and the tooling that
accompanies this paper, use JSON as a container
format.

JSON was selected due to the breadth of its
software support (according to json.org JSON
is supported by 63 programming and scripting
languages), and ease/speed of parsing. These

properties make it suitable for use in many NLP
contexts. Additionally, its simple data model and
whitespace-agnostic form make it particularly
suitable for representation within the comment
fields of many NLP text formats.

JSON’s popularity has lead to the existence of
binary equivalent formats already available such
as BSON(Group, 2015) and
MessagePack(Furuhashi, 2013) for cases where
data storage is in binary form.

3.1 Representation

As interoperability is key, the representation of
data within the format is unspecified as far as
possible. This means that the format may be
included in a header or standoff documentation
whilst remaining logic-compatible with all
processing and aggregation tools. Further,
inclusion in existing data formats is possible by
simply adding the format to the comments.

Such conventions allow for multiple possible
paths of information flow through NLP toolchains
(an example of which is depicted in Figure 1):
tooling that supports comments may retain the
metaheaders in-place, or headers may be
explicitly stripped out and processed in between
text processing stages.

This approach mirrors that of the UNIX
pipeline philosophy — small scripting tools may
form the ’glue’ around NLP toolchain
components by reading headers and directing data
as appropriate. This processing may be
sufficiently generic to be handled by off-the-shelf
tools (for example, the compilation of an audit
trail including timestamps and processing
arguments), or a custom processing stage using
the metaheaders as a storage format.

This approach means that, for the first time,
toolchain  management code would be
transferable throughout the community and
between resources. In turn this enables the
creation of interoperable tooling for documenting
processing stages, aiding replicability.

4 Data Structure & Current
Specification

Here we present an overview of the draft field
specification designed to provide a minimal
subset of fields to aid basic parsing and
processing. Draft version ‘1.0.2° of the
specification mandates no fields, but has 4

37



Tool A

TOO]. B lllll

Tool C

Format A, with support for metaheaders

---------- Format B, lacking metaheader support
——— Stand-off documentation, JSON

Figure 1: A sample workflow using the ‘meta’ tool to transfer annotations through a format that does not

support commenting.

optional ones, some with default values, as
described as follows:

_version__ (Optional, String) -  The
specification version that this header
complies with, if missing, assumes the latest
draft. Version numbers are specified
following Semantic Versioning
(Preston-Werner, ), making it easy to
determine compatibility.

encoding (Optional, String) - Character
encoding of current text, as defined by the
IANA list of preferred text encoding
names(Freed and Diirst, 2013). While
optional, it is strongly advised that this field
be present to avoid any ambiguity in parsing.
If absent, this implicitly defaults to UTF-8.

mime (Optional, String) - The extended
MIMEIANA, 2015) type used to describe
what this file is.

group (Optional, String or Object) - Used to
track which files belong to collections,
defined as an object conforming to the
group namespace specification.

history (Optional, Object) - A top-level
namespace conforming to the history
namespace specification that describes the
processing history of this file. Complies with
the interface specification and thus has an
inner __version__field.

For the purposes of definition we draw the
distinction between a field, where a key is
assigned a simple value, and namespace, holding
an object containing fields that themselves
conform to a sub-format. Optional namespaces
may then be assembled whilst retaining some
guarantee of compatibility.

In the case of the above, group is specified as
a namespace, which may contain:

text_id (Required, String) - A unique text
identifier assigned to this text

* (Optional, any) - Further arbitrary key-value
fields appropriate to the corpus

One simple example of where the non-string
form of the group field could be used is that of
parallel corpora; inner fields specifying a
collection and language (See Figure 2)
could be used to form the following structure to
completely identify a part of the larger corpus.

group”: {
”collection”: “OPUS”,
”language”: “en—gb”

}s

Figure 2: An example of the group field being
used as an object to identify this file as being
part of the OPUS(http://opus.lingfil.
uu. se/) UK English set.

The history namespace is intended to
describe the history of a particular text’s
processing to form an audit trail of actions in the
form of a list of actions. It is specified as:

binary (Required, String) -
executed.

The program

time (Required, String) - 1SO8601 format
datetime string describing the date and time
at which the tool was run.

args (Optional, String) - The
arguments used.

program

38



platform (Optional, String) - The
dot-delimited platform and architecture (ex.
”Linux.x64”).

md5 (Optional, String) - The md5 hash of the
binary, used to ensure the correct version is
used.

The set of features identified for inclusion in
the first draft have been selected to allow the
identification of key features of the subsequent
texts, and allow them to be correctly loaded by
software. They are common to all
machine-readable text representations, describe
necessary-yet-uninteresting  features of the
dataset, and are generally useful across many tool
types.

These  fields provide a level of
process-accounting that so far has been absent
from many NLP toolchains, and allows us to
replay the processing that created the files in use.

In addition to the namespaces above, we define
only a single interface designed to offer version
reporting on third-party namespace specifications.
Note that all fields are implicitly required for an
interface to apply:

_version__ (String) - A semantic versioning
compliant version string describing the
version of the namespace that is being used.

4.1 Tooling

In addition to the format specification here, a
proof-of-concept tool was developed, ‘meta’
(source available at http://ucrel.github.
io/CL-metaheaders/) which wraps existing
commands and records their use in the files they
generate, and can be used to validate existing
meta headers in source files. Figure 3 shows how
this command can be used to wrap existing tools
to record their actions.

$> meta tagger \
—input corpus.xml \
—output result.xml

Figure 3: Running the ‘meta’ tool on the program
‘tagger’ with some arguments included. This
would record the command in the history block
inside output.xml metadata.  Backslashes
indicate a continued line.

Once the tool has been used to produce this
history in the headers, the same tool can be used

to extract the commands for later execution by the
user.

The obvious use case for this is in cases where
the user may have forgotten the precise commands
they used, but is also useful for a second user to
process other files in the same way as the first user,
especially as part of a validation process.

Other included features of this tool are the
ability to initialise a file with the basic metadata
fields in a user-friendly way, and generate a list of
dependencies for a given file. By reading the
metadata of the file and getting the command
history we can walk the list looking for any files
that are required to generate the output given.

Furthermore, this can recurse through any
recognised file that also has metaheaders included
to create a full dependency tree which in turn can
be used as part of the packaging process when
files are to be distributed. This should aid
researchers in producing correct source packages
for distribution.

4.2 Extensions and Custom Namespaces

Further specifications and versions will be
maintained and released in an open-source
manner via the project’s website at http://
ucrel.github.io/CL-metaheaders/.

In addition to the specification (and tooling)
provided here, we have designed the namespacing
system to allow for other developers and tools to
insert arbitrary data below the top level data
structure. Proprietary fields are expected to use
nested namespaces to keep the top-level clean,
and allow developers the freedom to add their
own variants for their own purposes - we do not
expect to be able to predict all use cases for these
headers.

Figure 4 demonstrates a TEI file with an
additional ‘software’ sub-object to contain
developer specific information (See Appendix 6
for further examples). The use of ‘per-tool’
namespaces in this manner allows for the use of
standard file formats by various tools without loss
of information that otherwise would have to be
discarded after execution (or output in a
difficult-to-track and  proprietary  standoff
annotation format).

Because the software reading the files cannot
know about all possible extensions to this format,
we mandate that tools supporting the metadata
specification must pass all unknown headers from

39



<?xml version="1.0"
encoding="UTF-8”
standalone="no” 7>

single versioned canonical list of namespace
allocations.

In addition, we expect to produce further
specification details for including meta data with

»archived corpus files, providing a mechanism for
creating hierarchies of files.

Furthermore, as a living body of work, we
intend to continue to integrate more document
formats in to the standard as ‘officially recognised
types’ and provide further examples of
integration.

6 Summary

We have presented a simple method for including
the properties of a file along with the file itself in
a way that is backwards compatible with many
existing text storage formats and tools. The basic
design of this method is extensible in order to
allow tool authors to annotate files, and to allow
those building toolchains to use such data to

<TEI
xmlns="http: //www. tei—c.org/ns/1.0
<!— meta {
“version”: 1.0,
”encoding”: "UTF-8”,
"mime”: “text/xml—tei”,
”software”: {
“author”: ”Joe._Bloggs”,
“tool”: 7Jo’s_Awesome.Software”,
“"window”: “+—5_words”,
“stoplist”: true
}
[
<teiHeader>
<fileDesc>
Figure 4: JSON data including an additional

software description fields. Note that this is still
version ‘1.0’ compliant, as there is no restriction
on additional data in the meta header. Newlines
presented here are for the benefit of the reader, and
can be entirely omitted for a single-line meta entry.

input to output without modification. They are, of
course, free to change the fields and namespaces
that account for any change applied to the text.

5 Further Work

Stated in Section 4, the standard is intended to
provide only the barest minimum set to enable
better communication between tools, and we fully
expect to extend the format with additional data
as future tools develop.

What we define here forms a ‘core’ field set,
forming a number of reserved keys and associated
namespace definitions. It is the authors’ intent to
allow developers the freedom to extend the
standard with their own additions and as such we
welcome any comments, suggestions regarding
these extensions for inclusion in later standard
releases.

One organisational addition is the creation of a
registry of top-level namespaces.  This will
eliminate any potential issues with collision of
third-party namespace definitions leading to
incompatible implementations by offering a

manage existing tools. Using these capabilities,
we present a proof-of-concept toolchain auditing
application.

The specification outlined here is being
actively developed, and a canonical reference
(along with proof-of-concept and production
tooling) are available at http://ucrel.
github.io/CL-metaheaders/. Continued
discussion of the specification, including bugs
and feature requests can be done via the Github
issues page at https://github.com/
UCREL/CL-metaheaders/issues.

References

Laurence Anthony. 2013. A critical look at software
tools in corpus linguistics. August.

F Dawson and T Howes. 1998. RFC 2426 - vCard
MIME directory profile. https://www.ietf.
org/rfc/rfc2426.txt, September.

Emanuele Di Buccio, Giorgio Maria Di Nunzio,
Nicola Ferro, Donna Harman, Maria Maistro, and
Gianmaria Silvello. 2015. Unfolding off-the-shelf
IR systems for reproducibility. In Proc. SIGIR
Workshop on Reproducibility, Inexplicability, and
Generalizability of Results (RIGOR 2015).

ECMA. 2013. Ecma-404 -
data  interchange  format.
WWww.ecma-international.org/
publications/files/ECMA-ST/
ECMA-404.pdf, October.

the json
http://

40



Clark C. Evans. 2011. Yaml - yaml ain’t markup
language. http://yaml.org/, November.

Ned Freed and Martin Diirst. 2013. Iana,
character  sets. http://www.iana.
org/assignments/character—-sets/
character—sets.xhtml, 12.

Sadayuki Furuhashi. 2013. Messagepack - it’s like
json, but fast and small. http://msgpack.org.

BSON Group. 2015. Bson - binary json. http://
bsonspec.org/.

TIANA. 2015. Media types. http://www.
iana.org/assignments/media-types/
media-types.xhtml, 10.

Jinho Choi, Universal Dependencies contributors.
2014. CoNLL-U Format. http://
universaldependencies.org/format.
html. Online; accessed June 2017.

Panos Louridas and Georgios Gousios. 2012. A note
on rigour and replicability. SIGSOFT Softw. Eng.
Notes, 37(5):1-4, September.

Martin Potthast, Sarah Braun, Tolga Buz, Fabian
Dufthauss, Florian Friedrich, Jorg Marvin Giilzow,
Jakob Kohler, Winfried Lotzsch, Fabian Miiller,
Maike Elisa Miiller, Robert PaBmann, Bernhard
Reinke, Lucas Rettenmeier, Thomas Rometsch,
Timo Sommer, Michael Triger, Sebastian
Wilhelm, Benno Stein, Efstathios Stamatatos,
and Matthias Hagen, 2016. Who Wrote the Web?
Revisiting Influential Author Identification Research
Applicable to Information Retrieval, pages 393—407.
Springer International Publishing, Cham.

Tom Preston-Werner.  Semantic versioning 2.0.0.
http://semver.org/.

The GNU Project. 2017. Bash - the gnu bourne-
again shell. https://tiswww.case.edu/
php/chet/bash/bashtop.html.

Guido van Rossum, Barry Warsaw, and Nick
Coghlan. 2001. Pep 8: Style guide for
python code. https://www.python.org/
dev/peps/pep-0008/#1d50.

A Further Examples For Common
Formats

A.1 ARFF

% {”version”:71.0”,” encoding”:” utf —8”,\

9,9

“mime”:” application /x—weka”}
% 1. Title: Iris Plants Database
%
% 2. Sources:
% (a) Creator: R.A. Fisher
%0 (b) Donor: Michael Marshall
% (c) Date: July, 1988
%

@RELATION iris

@ATTRIBUTE sepallength NUMERIC
@ATTRIBUTE sepalwidth NUMERIC
@ATTRIBUTE petallength NUMERIC
@ATTRIBUTE petalwidth NUMERIC
@ATTRIBUTE class

{Iris —setosa ,Iris —versicolor , Iris—virginica}

@DATA ...

A.2 CoNLL-U

Note that implementations dealing with the
CoNLL-U format are required to pass the
contents of comments through their processing

pipelines unaltered(Jinho Choi,  Universal
Dependencies contributors, 2014).
# {”version”: 71.0”,”encoding”:” utf —8”,\

“mime”:” text/csv”}
# sent_id = 1
# text = Sue likes
likes books

coffee and Bill \

1 Sue Sue

2 likes like

3 coffee coffee
4 and and

5 Bill Bill

41



