
D ifferent V iew s on M arkup

Distinguishing Levels and Layers

Daniela Goecke, Harald Liingen, Dieter Metzing, Maik Stiihrenherg,
and Andreas Witt

Abstract In this chapter, two different ways of grouping information represented in
document markup are examined: annotation levels, referring to conceptual
levels of description, and annotation layers, referring to the technical realisation of
markup using e.g. document grammars. In many current XML annotation projects,
multiple levels are integrated into one layer, often leading to the problem of having
to deal with overlapping hierarchies. As a solution, we propose a framework for
XML-based multiple, independent XML annotation layers for one text, based on
an abstract representation of XML documents with logical predicates. Two realisa-
tions of the abstract representation are presented, a Prolog fact base format together
with an application architecture, and a specification for XML native databases. We
conclude with a discussion of projects that have currently adopted this framework.

Keywords Concurrent markup • XML • Annotations

1.1 Introduction

An annotated text document firstly contains the primary information, i.e. the text,
and secondly, meta information, i.e. its annotation. Typically, the meta information
structures the text according to a certain view on the text. Since language is a highly
complex object of investigation, linguists often want to express more than a single
view on a text. This chapter deals with problems that can arise when annotating
multiple, different views on a text. We propose a practical and terminological dis-
tinction between aspects related to modelling issues and aspects related to the actual
annotations. Such a distinction helps overcome problems that are often encountered
when dealing with heterogeneously structured text.

This chapter is organised as follows: In Section 1.2, the terms level and layer
are introduced, the relationship between levels, layers, and markup languages is

D. Goecke (ta)
Bielefeld University, Bielefeld, Germany
e-mail: daniela.goecke@uni-bielefeld.de

I

Published in: Witt, Andreas/Metzing, Dieter (eds.): Linguistic Modeling of Information
and Markup Languages. Contributions to Language Technology. - Dordrecht: Springer,

2010. pp. 1-22. (Text, Speech and Language Technology 41)

mailto:daniela.goecke@uni-bielefeld.de

2

described in Section 1.3. In Section 1.4 approaches to XML-conformant annotation
of multiple levels are presented. In Section 1.5 the need for an abstract represen-
tation of XML markup is motivated and two approaches are presented: In Sec-
tion 1.5.1, inference tools for concurrent markup that have been developed during
the first phase of the project Sekimo - Secondary structuring o f information, are
introduced. Here, an architecture for the integration of heterogeneous resources,
which utilises the set of Sekimo tools, is described. In Section 1.5.2, it is demon-
strated how text data with concurrent markup can be represented and stored in XML
databases. The chapter concludes with a discussion of the relevance of the distinc-
tion between level and layer with references to selected publications.

1.2 Levels and Layers

Markup expresses additional information about text, e.g. authorship, or the part
of speech of each word in it. Often it makes implicit information explicit, e.g.
information encoded in the physical layout structure (such as paragraph and word
boundaries).

The amount of information that is associated with text by means of markup has
been constantly growing over the past few years. This development involved an
organisation and structuring of the multitude of information. Structuring informa-
tion by means of markup implies a conceptual process as well as a technical one.
The conceptual and the technical process do not necessarily result in identical com-
binations of the pieces of information. We introduce the following terminology to
clarify the two principally different ways of grouping units of information occurring
in markup structures.

• Annotation level - referring to the conceptual level of information represented in
markup

• Annotation layer - referring to the technical realisation of markup

For short, the term “level” refers to a model involving theoretical concepts e.g.
of a research discipline. In linguistics, there are several subdisciplines which inves-
tigate different aspects and modalities of natural language and natural language
description such as phonology, morphology, syntax, and semantics, which are often
called the linguistic levels o f description. Thus, an annotation unit (an XML element
or attribute) will refer to one level while another annotation unit may refer to another
level of linguistic description. In that sense, different levels o f markup can be found
in one annotated text. But even on one linguistic description level, different types
of analyses can be represented which we still consider as different conceptual lev-
els of markup. On the level of syntax, for example, alternative analyses according
to different syntactic theories (e.g. Lexical Functional Grammar, Tree Adjoining
Grammar, Categorial Grammar) may exist, and the annotation used to express any
one of them refers to its own level of markup.

The term “layer”, on the other hand, refers to the technical realisation of a
modelling task. What it means exactly thus depends on the annotation system

3

employed. In transcription systems based on the annotation graph framework (Bird
and Liberman 2001), for example, a layer corresponds to a single labeled path which
spans the transcribed text. Typically, an annotation graph consists of several such
paths, thus multiple layers can be realised in one annotation graph. Another example
of a technical realisation is the use of different XML documents to store annotations
of one text (Witt 2005), each XML file then corresponds to one annotation layer.

Distinguishing between levels and layers calls for an explication of the possi-
ble relations between the two. Does one annotation layer always correspond to one
annotation level and vice versa? A closer look at the theoretical conceptualisations
of annotations and their practical realisations reveals that levels and layers can stand
in an 1 : 1,1 : m, n : 1, or an n : m relation (where n, m > I). Examples of these
relations are shown in Fig. 1.1.

In an 1 : 1 relation, one conceptual level is mirrored by exactly one annotation
layer, and each technical layer realises exactly one annotation level. Given an I : 1
relation, one layer can be easily removed or exchanged without changing other lay-
ers. In an I : m relation, units of one level are distributed over several layers, e.g.
for the POS level, a different layer might be created for each word class. In an n : I
relation, two or more descriptive levels are integrated into one annotation layer, e.g.
syntax and morphology annotations are often encoded in one XML document. An
n : m relation involves both the splitting and the mixture of conceptual levels and is
seldom found in annotated corpora.

concept
(level)

technical realization
(layer)

Example: XML elements <prefix> <word> <NP> <n>

<suffix> <VP> <pronoun>

<stem> <PP> <det>

<v>

Fig. 1.1 Possible relations between level and layer

1.3 Levels, Layers, and Markup Languages

Markup Systems are formally defined. Consequently all markup languages are con-
strained. For SGML and XML, two restrictions are relevant when one aims at mark-
ing up information stemming from different linguistic levels of description:

4

• Firstly, they require that the elements used in a document instance must nest
properly, i.e. the beginning and the end of a range of text annotated by one ele-
ment must be contained in the same parent element.

• Secondly, one document instance can be associated with at most one document
grammar.

The first restriction concerns the modelling aspect in a document instance and
often results in the question of how to arrange different elements of a single layer in
XML. Because a string annotated by one element must either be fully included in or
totally separate from a string annotated by another element,1 i.e. elements must not
overlap, this problem is also called the overlap problem.

The second restriction often leads to difficulties when different levels are to be
represented in one single XML document and thus addresses properties of markup
systems. This problem concerns the use of document grammars, therefore we refer
to it as the document grammar problem.

Ideally, an annotation level should be formally defined in one document gram-
mar and a document grammar should only define one level of annotation in order
to allow for a clear identification of the ontological status of the elements under
consideration. Nevertheless, quite often a document grammar defines an annotation
inventory for several levels. E. g., some versions of the DTDs for HTML allow for
annotating both the text structure (paragraphs, headings, hypertext relations, etc.)
and features that are intended to be used by the rendering engine when displaying
the text (font-size, color, etc.). In the same way, one could try to merge different
annotation vocabularies into one integrated document grammar. In order to define
a common document grammar which permits the representation of units from sev-
eral levels, the interrelation of the concepts of the different levels that one wants
to express using markup has to be analysed. An integrated document grammar,
however, is not recommended for a clear identification of the ontological status of
elements.

Soon after the standardisation of XML the need for disentangling annotation
vocabularies arose, since XML is not only used for annotating documents but
also for as different purposes as programming (e.g. XSLT), the definition of doc-
ument grammars (e.g. XSchema, Relax NG), and - through SVG - even for vector
graphics.

The namespace standard was thus introduced to prefix element and attribute
names for indicating the annotation level to which they belong. Hence, in principle,
namespaces can be used to disentangle subsets of markup which belong to differ-
ent linguistic levels of description. Other markup languages, e.g. LMNL (Cowan
et al. 2005), provide a similar mechanism to refer to different levels. This approach
is better suited than the construction of an integrated document grammar, since dif-
ferent annotation levels are associated with different namespace prefixes.

However, especially in XML, integrating different linguistic levels into one anno-
tation often leads to the first problem, the overlap problem.

Despite the different nature of the two kinds of problems, the overlap problem
and the document grammar problem, both often occur together. The reason for

5

this is obvious: When different levels are annotated and their document grammars
have been designed independently, overlaps are bound to occur frequently. Hence,
it might be helpful to try and solve both problems at once.

A solution to both problems was provided by XML’s predecessor SGML. When
the additional SGML feature “concur” is enabled, it is possible to independently
annotate a text according to different document grammars. In recent years, new
proposals to introduce this feature in XML, too, have been put forward (Hilbert
et al. 2005, Schonefeld and Witt 2006). In this context the development of tech-
niques for the definition of document grammars for concurrent markup has been
started (Sperberg-McQueen 2006, Schonefeld and Witt 2006, Tennison 2007).

Moreover, some non-SGML-based markup languages have been designed which
allow for the annotation of overlapping elements as well as for the annotation on
different levels, e.g. TexMECS (Huitfeld and Sperberg-McQueen 2(X)I) and LMNL
(Cowan et al. 2005).

1.4 XML-Conformant Annotation of Multiple Levels

Since there is often a need for annotating structures which would result in overlap-
ping XML elements, several solutions have been proposed. The two most frequently
employed techniques to avoid overlap are firstly the so-called milestone elements
and secondly the fragmentation of elements.

• Milestone elements: This term describes the use of empty elements to mark
only the boundaries of a text range which would otherwise be contained in a
non-empty element.2 Since elements with text content can in principle also be
used as empty elements, there is a variant of the milestone technique in which
it is recommended to use all elements which originally were not intended to be
empty (e.g. the element < l in e >) as milestone elements. Special attributes then
indicate the status of these elements. This approach is known under at least three
different names: Trojan Milestones, Horse and CLIX (cf. DeRose 2004).

• Fragmentation: A text sequence included in an element which would otherwise
be affected by overlap is artificially split into several text sequences. Each of the
resulting strings is included in a fragment element. An element which marks up
a fragment content (e.g. a part of a < s e n te n c e > has attributes that indicate its
special status and point to the preceding and the following element fragment(s).

The second problem, caused by the single document grammar constraint, can
also be tackled by different strategies:

• Find a new integrated document grammar. In order to define a common doc-
ument grammar which permits the representation of units from several levels,
the interrelation of the concepts on the different levels that one wants to express
using markup has to be analysed.

6

• Use different markup vocabularies for an annotation according to different docu-
ment grammars. The namespace technique can be used to point to the document
grammar from which an element or attribute is taken.

Standoff annotation, introduced by Thompson and McKelvie (1997) as a tech-
nique to split annotations from the textual data, can be used both to separate multiple
linguistic levels from each other and to avoid overlapping structures. Standoff anno-
tation has been primarily intended to present a solution to read-only textual data,
copyright issues and overlapping structures. Instead of embedding markup in the
text, markup and text are separated. Technically, standoff annotations are realised by
referencing textual data through character offsets, e.g. an element <s> begins at the
17th and ends at the 42nd character of the text in a given file “transcripl.txt". More
often than raw text data a primary annotation is used as the target of a reference,
e.g. a primary annotation annotates all the tokens of a text and introduces identifiers
which can be used as link targets by the standoff annotation.

Standoff markup is often regarded as appropriate markup technique when lin-
guists have to deal with complex annotations (see Pianta and Bentivogli 2004). For
real annotation tasks, however, standoff annotations easily become quite complex
and therefore they are only editable and even human readable with specialised soft-
ware (Dipper et al. 2007).

An alternative way to solve the problems is the simplest solution to represent
multiple, possibly overlapping hierarchies: The same text is annotated several times,
and for each level of description, a separate markup layer is introduced, resulting in
an I: I relation between markup levels and layers. Obviously, the creation of redun-
dant copies of the textual base might be conceived as a drawback, because if changes
to the textual base have to made, they have to be repeated for each annotation layer.
On the other hand, this approach offers a range of possibilities for working with
multiple description levels, especially in the field of humanities computing where it
is the rule that one text is associated with manifold analyses and interpretations.

In this solution, care has to be taken that all layers contain the same primary data
(i.e. the text which is to be annotated): When editing multiply annotated text, the
identity of the primary data has to be maintained. If the text base is changed in one of
the XML layers but not in another one, identity conflicts may arise, and a connection
between the different XML layers could be no longer established. However, several
editors have been developed that facilitate the editing of multiply annotated text, see
Witt (2005) for a detailed description of the tools that have been implemented in the
Sekimo project. Further editors that support multi-layered annotations are described
in Schmidt (2004), Dipper and Götze (2005) and Schonefeld and Witt (2006).

Despite the need to ensure the identity of the primary data, the proposed solu-
tion offers the advantage that representations of different description levels may be
developed independently of each other. A distributed development of XML layers
allows experts to create markup independently of categories and structures from
different levels. Furthermore, markup for additional levels may be added at any
time without changing already existing XML layers.

7

1.5 Modelling, Representation, Annotation

In the previous section we have reviewed multiple annotations as a way to represent
multiple, possibly overlapping hierarchies. To obtain a common view on the textual
data and their multiple annotations, all markup is separated from its textual base.
In order to split markup and text, an abstract representation of XML markup in
logical predicates has been developed. Making a distinction between the textual base
(primary data) and (possibly) multiple markup has been proposed in Witt (2002a,b),
and has been further developed in Bayerl et al. (2003).

In the NITE project, the Nile Object Model (NOM. Carletta et al. 2003) has been
defined, which is similar to DOM, the standardised W3C Document Object Model,
used for the representation of HTML and XML documents. The most important
difference between DOM and NOM is that a DOM corresponds to a tree with a
single root node for the outermost element in an XML document and the leaf nodes
for the textual content of the elements. The underlying data structure of a NOM,
however, is not one tree with a single root, but several interconnected trees. Since
each of their roots (indirectly) spans the same leaves, i.e. the textual data, we use
the term multi-rooted tree to refer to this data structure.

In the Sekimo project, two approaches to the realization of an abstract repre-
sentation have been developed: In Section 1.5.1 Prolog-based inference tools for
concurrent markup are introduced. Section 1.5.2 describes the Sekimo Generic For-
mat (SGF), an abstract XML-based representation format. In contrast to NOM, SGF
uses a single-rooted tree but allows for several annotation levels corresponding to
the same primary data using the formal model of a multi-rooted tree.

1.5. 1 Multi-Layered XML Documents and Prolog

In the following, both a realization of an abstract representation as well as an appli-
cation of multiple annotations is presented. The realization is done in terms of a
Prolog fact base, the application of the Prolog fact base focuses on the analysis and
combination of different layers.

The Prolog fact base format is an extension of previous work by Sperberg-
McQueen et al. (2(X)0). In this approach, all XML markup is translated into Prolog
predicates that describe both the textual data as well as XML markup in terms of
elements or attributes. The original format of Sperberg-McQueen et al. (2000) (see
also Sperberg-McQueen et al. 2002a), which we consider as an intra-layer approach,
has been extended in order to allow both for intra-layer analyses as well as for
inter-layer analyses (see Witt et al. 2005 for details). In the original format, each
XML element is translated into a Prolog fact with two arguments, e. g.

n o d e ([1 , 5 , 2] , e l e m e n t (p)) .

8

Attributes are translated into facts with three arguments, e. g.

a t t r ([1 , 5 , 2] , i d , i m p l i e d) .
(examples taken from Sperberg-McQueen et al. (2000), p. 219).

When representing multiple annotations, it must be recorded for each element or
attribute to which layer it belongs. The multiple annotations can be connected using
the identical textual content as a link between the separate layers. Therefore the
original n o d e and a t t r facts have been extended with arguments including layer
information as well as information on the start and end position of the elements
under consideration. In addition, the PCDATA (i.e. the underlying textual data) is
translated into separate facts with three arguments (start position, end position, and
the character at that position). These facts have been included for the purpose of
reconverting the Prolog fact base into an XML representation. Thus, there are three
types of Prolog predicates with their argument positions:

• Predicates for XML elements:
n o d e (Layer,; StartPosition, EndPosition, Posit ionDocumentTree, ElementName) .

• Predicates for XML attributes:
a t t r (Layer, StartPosition, EndPosition, PositionDocumentTree, AttributeName, Attribute-
Value) .

• Predicates for PCDATA:
p c d a ta .n o d e (StartPosition, EndPosition, Character) .

A simple sentence like the one in Fig. 1.2 shall be used as an example to
demonstrate the architecture of the application of multiple annotations. The textual
content is represented character-wise by the multiple occurrence of the predicate
p cd a ta _ n o d e , which has the arguments start position, end position and the char-
acter at that position as shown in Fig. 1.3. The offset of the character position is
used on the one hand as a reference for different layers of markup and on the other
hand in order to generate new XML output from the Prolog fact base.

00 101 I 02 I 03 I 04 I 05 I 06 I 07 | 08 I 09 I 101 111 121 131 141 151 161 171 181 19
T h i s i s a s e n t e n c e .

Fig. 1.2 A simple sentence

1 pcdata_node(0, 1, ’T ’) .
2 pcdata.node (1, 2, ’h ’) .
3 pcdata.node (2, 3, ’i’) .
4 pcdata.node(3, 4, ’s’) .
e pcdata.node(4, 5, ’u ’) .

7 pcdata.node (18 , 19

Fig. 1.3 PCDATA nodes in the Prolog fact base

9

1 < s x m l : l a n g - " e n " >

2 < n p >

3 < p r o n > T h i s < / p r o n >

4 < / n p >

5 < v p >

0 < v > i s < / v >

7 < n p >

8 < d e t > a < / d e t >

9 < n > s e n t e n c e < / n >

10 < / n p >

11 < / v p > .

12 < / s >

1 < s y l l >

2 < s > T h i s < / s >

3 < s > i s < / s >

4 < s > a < / s >

5 < 8 > s e n < / s >

U < s > t e n c e < / s > .

7 < / s y l l >

Fig. 1.4 Formatted markup of POS/syntactic (above) and syllable (below) level of the same text
segment

For the example sentence we have created XML markup for the levels Syllable
Structure (Layer s y l l) and POS/syntactic Information (Layer p o s) (see Fig. 1.4).
In Fig. 1.5, the Prolog fact base of all nodes representing element instances and
attributes from the layers p o s and s y l l is shown. The word This (character posi-
tions 0-4, see lines \ ^ \ in Fig. 1.3), for example, is annotated as a pronoun on the
layer p o s and as a syllable on the layer s y l l (Fig. 1.4, above on line 3, and below
on line 2). In the Prolog representation in Fig. 1.5, these elements can be found on
lines 3 and 10.

1
2

3

4

Ü

7

8

9

10

11

12

13

14

15

10

n o d e (’pos .xml ’ , 0, 19, [1], e l e m e n t (’s ’)).

n o d e (’pos .xml ’ , 0, 4, [1, 1], e l e m e n t (’n p ’)).

n o d e (’pos .xml ’ , 0, 4, [1, 1, 1], e l e m e n t (’p r o n ’))

n o d e (’pos .xml ’ , 5, 18, [1, 2], e l e m e n t (’v p ’)).

n o d e (’pos .xml ’ , 5, 7, [1, 2, 1], e l e m e n t (’v ’)) .

n o d e (’p o s .xml ’ , 8, 18, [1, 2, 2], e l e m e n t (’n p ’)) .

n o d e (’pos .xml ’ , 8. 9, [1, 2, 2, 1], e l e m e n t (’det ’)) .

n o d e (’pos .xml ’ , 10, 18 , [1, 2, 2, 2], e l e m e n t (' n ’)) .

n o d e (’s y 11 . xml ’ , 0, 19 , [1], e l e m e n t (’s y l l ’)) .

n o d e (’syll . xml ’ , 0, 4, [1, 1], e l e m e n t (’s ’)).

n o d e (’syll . xml ’ , 5, 7, C l , 2], e l e m e n t (’s ’)).

n o d e (’syll . xml ’ , 8, 9, [1, 3], e l e m e n t (’s ’)).

n o d e (’syll . xml ’ , 10, 13, [1, 4], e l e m e n t (’s ’)).

n o d e (’syll . xml ’ , 13, 18, [1, 5], e l e m e n t (’s ’)) .

a t t r (’p o s .xml ’ , 0, 19, [1], ’ x m l : l a n g ' , ’ en ’) .

Fig. 1.5 Element and Attribute information in the Prolog fact base

10

The Prolog representation of the XML markup can be used in order to query the
corpus, e.g. for an analysis of the relation between elements from different layers.
Taking the start and end positions of two (or more) elements from separate anno-
tation layers into account, different relations between these elements can be identi-
fied, e.g. the element np from layer p o s includes the element s from layer s y l l .
The information on relations between elements from different layers is important
in order to create an annotation merger, i.e. for a markup unification of different
annotation layers. The process of markup unification is described in detail in Witt
et al. (2005). Basically, the merger contains all markup from the input layers and the
interrelationship of elements determines the hierarchical structure of the intended
merger. Besides unifying different annotation layers by markup unification to merge
different annotation layers it is also possible to split a single annotation layer into
different partitions. However - unlike merging - splitting is already possible with
standard XML tools (e.g. XSLT or XQuery). Thus, the Prolog fact base format has
mainly been extended for the purpose of markup unification.

The Prolog fact base representing the merger of the facts in Fig. 1.5 is shown in
Fig. 1.6; an XML output file generated from the merged fact base and the textual
content is shown in Fig. 1.7. In order to avoid merging conflicts caused by identically
named elements on different layers, each element name is provided with a prefix
indicating its original layer.

An XML layer is the realisation of a data model, i.e. of a conceptual level. When
having different layers that describe different aspects of the data, an analysis of
the data should give answers to the question of how the different layers interact,
i.e. which relations hold between the markup elements. The possible relationships
between elements from two layers have been arranged and classified in Durusau
and O’Donnell (2002). They are of central interest for the merging process as they
give information as to what the hierarchical structure of the merged XML annotation
should look like. In the overview given in Fig. 1.8, some of the relationships given in
Durusau and O’Donnell (2002) have been collapsed and renamed for the illustration
of our approach.

1 n o d e (* o u t p u t * , 0, 19, [11, e l e m e n t (* p o s . x m l _ 8 ’)).

2 a t t r (* o u t p u t *, 0, 19, [1], ’x m l :lang * , 1en ’).

3 n o d e (’o u t p u t ’ , 0, 19, [1, 1], e l e m e n t (* s y l l .x m l _ s y 1 1 ’)).

4 n o d e (* o u t p u t ' , 0, 4, [1, 1, 1], e l e m e n t (’p o s .x m l _ n p ’)) .

5 n o d e (* o u t p u t * , 0, 4, [1, 1, 1, 1], e l e m e n t (’p o s .x m l . p r o n ’)) •

G n o d e (* o u t p u t * , 0, 4, [1, 1, 1, 1, 1], e l e m e n t (1s y l l .x m l . s ’)).

7 n o d e (’o u t p u t ’ , 5, 18, [1, 1 , 2], e l e m e n t (’p o s .x m l _ v p ’)).

8 n o d e (* o u t p u t *, 6, 7, [1, 1, 2, 1], e l e m e n t (’p o s .x m l . v ’)).

Ü n o d e (* o u t p u t * , 6, 7, [1, 1, 2, 1, 1], e l e m e n t (’s y l l .x m l _ s ’)).

1(1 n o d e (* o u t p u t * , 8, 18, [1, 1 , 2, 2], e l e m e n t (’p o s .x m l . n p ’)) •

11 n o d e (’o u t p u t ’ , 8, 9, Cl, 1, 2, 2, 1], e l e m e n t (’p o s .x m l . d e t ’))•

12 n o d e (* o u t p u t ', 8. 9, [1, 1, 2, 2, 1, 1], e l e m e n t (' s y l 1 . x m l _ s ’)) .

13 n o d e (* o u t p u t *, 10, 18, [1, 1, 2, 2, 2], e l e m e n t (’p o s .x m l . n ’)) .

14 n o d e (* o u t p u t * , 10, 13, [1, 1, 2, 2, 2, 1], e l e m e n t (’s y l l .x m l _ s ')).

15 n o d e (’o u t p u t ’ , 13, 18, [1, 1, 2, 2, 2, 2], e l e m e n t (’s y l l .x m l _ s ’)).

Fig. 1.6 The merged Prolog fact base

, < p o s_ s x m l: l a n g “ " e n " >
2 < s y l l _ s y l l >
3 <pos_np>
4 < p o s_ p ro n >
5 < 8 y l l_ s > T h i s < / s y l l_ s >
G < /p o s _ p ro n >
7 < /p o s_ n p >
8 <pos_vp>
U < pos_v>

1(1 < s y l l _ s > i s < / s y l l _ s >
11 < /p o s_ v >
12 <pos_np>
13 < p o s _ d e t >
14 < s y l l_ s > a < / 8 y l l _ s >
15 < /p o s _ d e t >
1G <pos_n>
17 < s y l l_ s > s e n < / s y l l_ 8 >
18 < s y l l _ s > t e n c e < / s y l l _ s >
1U < / pos_n>
20 < /p o s_ n p >
21 < /p o s _ v p > .
22 < / s y l l . s y l l >
23 < /p o s _ s >

Fig. 1.7 The merged output XML file

Using the tools described in Witt et al. (2005) interrelationships between differ-
ent annotation layers can be analysed, and also two layers can be merged into a
single XML document via the process of markup unification. Bayerl et al. (2003)
describe the inter-layer analysis for three XML layers: the text’s document structure
on the one hand and the XML markup of two kinds of semantic levels on the other
hand (the thematic level, i.e. topics in the text world that the article is about, and

start point identity: <a>

end point identity: <a>
.......

inclusion: <a>
....

identity:

A
A

cr
pi

V
V

overlap: <a>

independent elements: <a>....
.........

Fig. 1.8 Possible relations between pairs of element instances (cf. Durusau and O'Donnell 2002)

12

the functional or rhetorical level). Goecke and Witt (2006) describe the inter-layer
analysis of a text’s document structure and the anaphoric relations that hold within
the text. Apart from analysing elements from different layers, elements within one
layer (intra-layer analysis) may be compared, too. In case of an n: I relation between
n levels and one layer, for example, an analysis of the relations between elements
might help to split the layer into several layers, i.e. one for each level.

1.5.2 Multi-Layered Documents and XML-Databases

A different way of viewing and working with multi-layered documents is avail-
able when using an XML-based abstract representation format in connection with
a native XML database. An XML-based format permits the application of several
XML-related tools such as XPath, XSLT or XQuery. Dealing with multi-layered
documents, however, bears the problem of overlapping structures which cannot be
handled in plain XML (cf. Section 1.3). For this reason, we propose the abstract
XML representation format SGF (Sekirno Generic Format) for multi-layered XML
documents to be stored in a native XML database.3 An overview of the architecture
is shown in Fig. 1.9.

SGF is similar to the Prolog representation (cf. Section 1.5.1) in that the same
mechanism for referencing characters and whitespaces is used: the offset position
of each character. These are used to span sequences of character data over the text,
which can be referred to in a second step as tokens in the annotation process.
The root element corpus contains the element corpusData with its required
attribute xml: id, the value of which is a unique identifier of the given input text,
and a type attribute, determining the type of corpus data (textual or multimodal).

The different annotation layers appear in a structured fashion as child elements
of the annotation element. Each layer belongs to a namespace indicating it.
A mandatory primaryData element is used to store and structure the primary
textual data. The abstract representation of the example sentence shown in Fig. 1.2
can be seen in Fig. 1.10.

The primary layer is flat in hierarchical terms. The primaryData element
contains the complete whitespace-normalised textual input including whitespace
and punctuation characters (for shorter texts) or a reference to a file in which the
whitespace-normalised textual input is stored in (via the location element -
not shown in the example). In the latter case an optional element checksum can
be used to protect the integrity of the input data, providing both the computed
checksum and the algorithm used. The element segments is used to store sev-
eral segment elements, each of which contains an identifier, the segment type
(in this case character) and the segment span (ranging from the start to the end
attribute, referring to the offset of the first and last character of the string. Additional
occurrences of the empty element segment can be used to define the position of
whitespace character data, including a character reference. Relying on character
offsets allows for dealing with different possible tokenisations (e.g. output from
different text analysis tools).

13

I J
l l
Hi • g Sfi■8 i i ;

<
S'

14

2

3
4
5
0
7
S
1>

1»
11

12

13

14

<base:corpus xmlns-"http://www.text-technology.de/sekimo"
xmlnsibase-"http://www.text-technology.de/sekimo">
cbase:corpusData xml:id-"cl" type»"text”>
<base:meta>
< !— [■■■] —>
</base:meta>
<base:primaryData start-"0" end»"19" xml:lang="en">
<base:textualContent>This is a sentence.</textualContent>

</base:primaryData>
</base:corpusData>
<base:corpusData xml:id-"c2" type-"text">
<! — [. ■ ■] — >
</base:corpusData»

</base:corpus >

Fig. 1.10 The root element of the abstract XML representation format

Instead of using the s t a r t and en d attributes, a use of the XPointer xpointer()
Scheme (and especially the string-range function) would have been possible (e.g. as
in the PAULA format, cf. Dipper et al. 2007). However, the xpointerf) Scheme has
been pending in the working draft status since the end of 2002, and implementations
of the string-range function are rare.4 We believe that using the simpler concept of
two attributes could speed up processing and ease the (semi-)automatic annotation
process.

The textual content of the input document is converted to the above described pri-
mary layer. In the next step segments have to be defined (see Fig. 1.11). Afterwards,
annotation layers can be added.

1 < base: corpus xmlns-"http://www.text-technology.de/seklmo”
2 xmlns:base-"http://www.text-technology.de/sekimo">
3 <base: corpusData xml:id-"cl" type-"text">
4 cbase: meta>
5 A 1 1 •— 1 1 V

6 </base: meta >
T Cbase: primaryData start-"0" end«"19" xml: lang*" en" >

8 cbase:textualContent»This is a sentence.c/textualContent>

0 c/base:primaryData»
10 <ba8e:segment8>
11 Cbase: segment xml: id*" segl" type*"char" start*"0" end-"19"/>
12 cbase: segment xml: id-" seg2" type*"char" start*"0" end*"4"/>
13 cbase: segment xml: id-" seg4" type*"char" start*"5" end-"18"/>
14 cbase: segment xml: id-" seg5" type-"char" start-"5" end-"7"/>
15 cbase: segment xml: id-" seg7" type-"char" start-"8" end-"18"/>
16 cbase: segment xml: id-" seg8" type-"char" start-"8" end-"9"/>
17 cbase: segment xml: id-" seglO" type-"char" start-"10" end-"18"/>
18 c/base:segments»
1Ü c/base:corpusData»
20 </base: corpus >

Fig. 1.11 Adding segments in the instance document

http://www.text-technology.de/sekimo
http://www.text-technology.de/sekimo
http://www.text-technology.de/seklmo%e2%80%9d
http://www.text-technology.de/sekimo

15

In case that already existing inline annotation layers shall be used, the following
steps have to be done for conversion:

1. A namespace referring to a converted representation of the schema of the anno-
tation level is also added, following the notation http://www.text-technology.
de/sekimo/[layer], and all elements of the imported layer are prefixed with the
corresponding namespace prefix. If there are multiple annotations referring to
the same schema (e.g. in case of an analysis of intra-layer relations), different
namespace prefixes for the same namespace shall be used.5 For this reason we
refer to the prefix as annotation layer prefix rather than namespace prefix.

2. An optional m e ta element can be used to describe the annotation layer (e.g.
its origin, the annotator, etc.). Apart from the d e s c r i p t i o n element, other
elements derived from different namespaces are allowed as children of the meta
element.

3. The attribute seg m en t of the primary layer is added to each element.
4. Elements with a PCDATA content model are converted to empty elements, mixed

content elements are converted to container elements. This is possible because all
character content is already stored in the pr imaryData element of the primary
layer or in another file.

A conversion of the annotation layers that were given in Fig. 1.4 would result in
the representation shown in Fig. 1.12. Each annotation layer is stored in a layer
element which is a child of the annotation element of the primary layer. Note,
that only two more segments have been defined in order to represent the additional
syllables layer.

The annotation levels can be prioritised by means of the optional attribute
priority to allow for correct nesting in case of overlapping structures.

Keeping the explicit structural information of the non-terminal elements is a
benefit provided by the XML-based representation format in contrast with other
possible representation formats, allowing validation of annotation layers with only
slightly changed version of the original document grammars (including cross-layer
validation). As a second advantage, the XML-based representation format allows
for storing meta-data such as the language of a sentence. Nontextual elements
like images and figures can be embedded in special elements (e.g. cnontext
type=" image" src=" image. jpg"/>). Since the scope of this work is the
annotation of textual documents, the treatment of non-textual elements is not pur-
sued further here. However, this framework can be used for the annotation of multi-
modal corpora, too, by using timecode or frame positions as values for the start
and end attributes and using multimodal as value for the type attribute of the
corpusData element. In addition, it should be mentioned that constructing larger
segments by referencing to other segments is possible as well (including disjoint
segments). In this case the value of the type attribute of the segment element is
set to seg and instead of start and end attributes a segments attribute is used
(containing the identity references of the corresponding segments).

http://www.text-technology

16

1 <base:corpus xmlns-’http://vvv.text-technology.de/sekimo”
2 xmln3:base-"http://vvv.text-technology.de/sekimo">
3 <base:corpusData xml:id-"cl" type-"text”>
4 <base:primaryData start-"0" end-"19" xml:lang-"en">
5 <base:textualContent>Thls Is a sentence.</textualContent>
0 </base:primaryData >
7 <base:segments»
8 <base:segment xml:id-"segl" type-"char" start-"0" end-"19"/>
0 <base : segment xml: id-" seg2 " type-"charw start-"0" end-M4"/»
111 <base:segment xml:id-"seg4" type-"char" start-"5" end-"18"/>
11 <base:segment xml:Id-"seg5" type-"char" start-”6" end-"7"/>
12 <base:segment xml:Id-”seg7" type-"char" start-"8" end-"18"/>
13 <base:segment xml:id-"seg8" type-"char" start-"8" end-"9"/>
14 <base:segment xml:id-”seglO" type-"char" start-"10" end-"18"/>
15 <base:segment xml:id-"seg11" type-"char" start-"10" end-"13"/>
10 <base : segment xml: id-" seg 12 " type-" char " 8tart-"13w end-"18"/»
17 </base:segments >
18 <base:annotation>
10 <base:level xml:id-"pos" priorlty«"0">
21» <base:layer xmlns:pos-”http://vvv.text-technology.de/pos"

xs1:schemaLocation-"http://vvv.text - technology.de/posup.xsd">
21 <pos:s base:segment-"seg1">
22 <pos:np base:segment-"seg2">
23 <pos:pron base:segment-"seg2"/>
24 </pos:np>
25 <pos:vp base:segment-”seg4">
20 <pos:v base:segmentseg5"/>
27 <pos:np base:segment-"seg7">
28 <pos:det base:segment«"seg8"/>
2 0 <pos:n base:segment-"seg10"/>
3li </po 8:np >
31 </pos:vp>
32 </pos:s >
33 </base:layer >
34 </ba8e:level>
35 </base:annotation»
30 <base:annotation»
37 <base:level xml:id-"sy11" priority-H0 " »
38 <base:layer xmln8:8yll«"http://vvv.text-technology.de/syll"

xsi:schemaLocation-"http://uvv.text-technology.de/syllus.xsd">
3 0 <syll:syll base:segment-"segl">
40 <syll:s base:segmentseg2 "/>
41 <syll:s base:segment-"seg5M/»
42 <syll:s base:segment-"seg8"/>
4 3 <syll:s base:segment-”segll"/>
44 <syll:s base:segment*"segl2 "/>
45 </syll:syll>
40 </base:layer»
47 </base:level»
48 </base:annotation»
4 0 </base:corpusData»
50 </base:corpus »

Fig. 1.12 The converted SGF representation of the two annotation layers

http://vvv.text-technology.de/sekimo%e2%80%9d
http://vvv.text-technology.de/sekimo
http://vvv.text-technology.de/pos
http://vvv.text
http://vvv.text-technology.de/syll
http://uvv.text-technology.de/syllus.xsd

17

A successor of SGF, called XStandoff, is already available as development
release (Stührenberg and Jettka 2009). For sustainability reasons, the current version
of the Sekimo Generic Format has undergone a feature-freeze in that way that the
format and its corresponding tools are considered as stable.

Storing the multi-layered documents in a native XML database allows for using
query and analysis mechanisms which are similar to those provided for the Prolog
fact base. Most native XML database systems support XPath and at least a subset
of XQuery and some sort of update mechanism (e.g. XUpdate as defined by the
XML:DB Initiative6) or the upcoming XQuery Update Facility which is capable
of processing and updating instances of the XQuery/XPath Data Model (XDM)
(Chamberlin et al. 2008). The W3C is working on the extension of XQuery 1.0
with full-text search capabilities (Amer-Yahia et al. 2006).

Tests with the Open Source native XML databases eXist,7 the Berkeley DB
XML8 and the commercial but freely available IBM DB2 Express-C9 showed a
good performance. Mechanisms like the above mentioned XUpdate or the upcom-
ing XQuery Update Facility allow for updating the instance files. By now the use
of a native XML database allows for easy intra- and inter-layer analysis. Having
a powerful query language like XQuery allows for quite complex analyses. For a
more detailed description of the Sekimo Generic Format and performance mea-
sures on a per-file basis in a real-world application (cf. Stührenberg and Goecke
2008).

1.6 Conclusions

Information contained in textual markup can be grouped according to two dis-
tinct principles: On the one hand, (annotation) level refers to a conceptual level of
information such as the phonological, syntactic and semantic levels of description
familiar from linguistics. (Annotation) layer, on the other hand, refers to the tech-
nical realisation of markup, e.g. one document grammar or one labelled path in an
annotation graph defines one annotation layer. The ideal case in text-technological
information modelling is that of a 1:1 correspondence between levels and layers.
However, due to the single document grammar restriction for SGML-based markup
languages, linguistic levels are often integrated into one annotation layer, result-
ing in a need to solve the so-called overlap problem. We showed that previous
solutions to the overlap problem exhibit some drawbacks, so that we vote for a
framework of XML-based multi-layer annotation where the same text is annotated
several times, and a separate markup layer is introduced for each description level.
That way, experts can create and maintain markup for their description levels inde-
pendently of the structures defined for the same text by the experts for a differ-
ent description level. Markup for additional levels can be added without having
to make changes to existing markup layers. The use of special editors guaran-
tees the identity of the primary data of each layer. An abstract representation in
terms of logical predicates defines a common view on multiply annotated lay-
ers of one text. We presented two realisations of such abstract representations,

IK

firstly a Prolog fact base format, and secondly, a realisation that makes use of
existing XML database facilities. For the Prolog fact base, we presented an appli-
cation architecture in which multiply XML-annotated documents can be unified,
and relations between element types in annotation layers can be inferred. We also
showed that utilising XML databases for a realisation of the abstract represen-
tation format SGF, XML standards and tools such as XPath, XQuery and XUp-
date can be used conveniently for retrieving and updating annotations within this
framework.

Our framework of XML-based multiple annotations is currently applied in sev-
eral text-technological projects for the automatic linguistic analysis of XML-
annotated texts.

The annotations of the different levels of discourse structure described in Liingen
et al. (in this volume), for example, have been annotated separately in a corpus of
scientific journal articles. The discourse parser described is realised in Prolog and
takes the Prolog fact base derived from the multiple annotations of one document
as its input and adds the independent annotation layer of rhetorical structure as its
output.

Stührenberg et al. (2006) apply the framework within the context of anaphora
resolution. Necessary resources for the resolution process (e.g. morphology, syntax,
logical document structure, ontological knowledge) have been annotated separately
and the resulting annotation layers are combined in the representation format. On
the basis of the combined XML data, feature vectors have been extracted that serve
as input for corpus analyses and the resolution process.

Both, the Sekimo Generic Format and its currently developed successor, XStand-
off, are freely available under the LGPL 3 license including the accompanied
tools, other interested parties and projects are invited to use and enhance this
framework.10

For a broader discussion of the issue of sustainability of multiply structured lin-
guistic data see Stührenberg et al. (2CX)8), Rehm et al. (2(X)9), and Witt et al. (2(X)9).

Notes

1. This is the reason for stating that SGML or XML documents form an "ordered hierarchy of
content objects” (OHCO).

2. E.g. instead of using the element < l in e > such that it contains the text of a single print line,
two empty elements < lb /> could be employed to annotate the line breaks before and after a
line.

3. Storing on a per-file basis or in a relational database is possible as well.
4. Cf. http://www.w3.org/XML/2000/09/Linkinglmplementations.html
3. It would also be possible to declare multiple namespaces as an ad hoc solution, but this would

be against the intention of the XML namespace standard.
6. Cf. http://xmldb-org.sourceforge.net/xupdate/
7. Cf. http://www.exist-db.org
8. Cf. http://www.sleepycat.com/products/bdbxml.html
9. Cf. http://www.ibm.com/software/data/db2/express/

10. Cf. http://www.xstandoff.net for further details.

http://www.w3.org/XML/2000/09/Linkinglmplementations.html
http://xmldb-org.sourceforge.net/xupdate/
http://www.exist-db.org
http://www.sleepycat.com/products/bdbxml.html
http://www.ibm.com/software/data/db2/express/
http://www.xstandoff.net

19

References

Amer-Yahia, S.. Botev, C„ Buxton, S„ Case, P„ Doerre, J„ Holstege, M„ McBeath.
D„ Rys, M., and Shanmugasundaram, J. (eds.) (2006). XQuery 1.0 and XPalh 2.0
Full-Text. W3C Candidate Recommendation 16 May 2008 http://www.w3.org/TR/2008/
CR-xpath-full-text-10-20080516/

Barnard. D„ Burnard. L„ Gaspart. J., Price. L. A.. Sperberg-McQueen, C. M.. and Varile, G. B.
(1995). Hierarchical encoding o f text: technical problems and SGML solutions. In: Computers
and the Humanities. 29:211-231.

Bayerl. P. S.. Goecke, D.. Liingen, H., and Witt. A. (2003). Methods for the semantic analysis o f
document markup. In: Roisin, C., E. Munson and C. Vanoirbeek (eds.). Proceedings of the 3rd
ACM Symposium on Document Engineering (DocEng), Grenoble: 161-170.

Bird. S. and Liberman. M. (2001). A format framework for linguistic annotation. In: Speech Com-
munication 33(1,2):23-60.

Carletta, J.. Kilgour, J.. O’Donnnell. T., Evert. S., and Voormann, H. (2003). The NITE Object
Model Library for Handling Structured Linguistic Annotation on Multimodal Data Sets. In:
Proceedings of the EACL Workshop on Language Technology and the Semantic Web (3rd
Workshop on NLP and XML. NLPXML-2003). Budapest.

Chamberlin. D.. Florescu. D., and Robie. J. (eds.) (2008). XQuery Update Facil-
ity. W3C Candidate Recommendation I August 2008 http://www.w3.org/TR/2008/
CR-xquery-update-10-20080801/

Clark. H. (1977) Bridging. In: Johnson-Laird P.C. and P.N. Wason (eds.). Thinking: Readings in
Cognitive Science, Cambridge University Press, Cambridge: 411-420.

Cowan, J.. Tennison. J.. and Piez. W. LMNL update. In: Proceedings of Extreme Markup Lan-
guages 2006, Montreal.

Czmiel. AI. (2004) XML for Overlapping Structures (XfOS) Using a Non XML Data Model. In:
Proceedings of the Joint Conference of the ALLC and ACH. Göteborg. Sweden.

DeRose, S. Markup overlap: a review and a horse. In: Proceedings of Extreme Markup Languages
2004. Montreal.

DeRose. S. J.. Durand. D. G.. Mylonas. E.. and Renear. A. (1990). What is text, really? Journal of
Computing in Higher Education. ACM Press, 1:3-26.

Dipper. S. and Götze. M. (2005). Accessing heterogeneous linguistic data - generic XML-based
representation and flexible visualization. In: Proceedings of the 2nd Language & Technology
Conference: Human Language Technologies as a Challenge for Computer Science and Lin-
guistics. Poznan :206-210.

Dipper. S.. Götze. M.. Kiissner, U.. and Stede. M. (2007). Representing and querying standoff
XML. In: G. Rehm, A. Witt, and L. Lemnitzer (eds.). Data Structures for Linguistic Resources
and Applications. Proceedings of the Biennial GLDV Conference 2007. Gunter Narr Verlag.
Tübingen:337-346.

Durusau. P. and O’ Donnell. M. B. (2002). Concurrent markup for XML documents. In: Proceedings
of XML Europe 2002.

Goecke. D. and Witt. A. (2006). Exploiting logical document structure fo r anaphora resolution.
In: Proceedings of the 5th International Conference on Language Resources and Evaluation
(LREC 2006). Genoa. Italy.

Hilbert. M„ Schonefeld. O., and Witt. A. Making CONCUR work. In: Proceedings of Extreme
Markup Languages 2005. Montreal.

Huitfeld. C. and Sperberg-McQueen. C. M. (2001). TexMECS: An experimental markup meta-
language for complex documents. http://xml.coverpages.org/MLCD-texmecs200105l0.html.

Karttunen. L. (1976). Discourse referents. In: Syntax and Semantics: Notes from the Linguistic
Underground. 7:363-385.

Mitkov. R. (2002). Anaphora resolution. Longman. London.
Pianta. E. and Bentivogli, L. (2004). Annotating discontinuous structures in XML: the multiword

case. In: Proceedings of the LREC-Satellite Workshop on XML-based Richly Annotated Cor-
pora. Lisbon 2004.

http://www.w3.org/TR/2008/
http://www.w3.org/TR/2008/
http://xml.coverpages.org/MLCD-texmecs200105l0.html

20

Piez, W. (2004) Half-steps toward LMNL In: Proceedings of Extreme Markup Languages 2004,
Montreal.

Rehm, G„ Schonefeld, O., Witt, A„ Hinrichs, E„ and Reis, M. (2009). Sustainability o f annotated
resources in linguistics: a web-platform for exploring, querying and distributing linguistic cor-
pora and other resources. In: Literary and Linguistic Computing 2009 24(2): 193-210.

Renear, A„ Mylonas, E„ and Durand, D. (1996). Refining our notion o f what text really is: The
problem o f overlapping hierarchies. In: N. Ide and S. Hockey (eds.) Research in Humanities
Computing. Selected Papers from the ALLC/ACH Conference, Christ Church, Oxford. April
1992, 4:263-280.

Schonefeld, O. and Witt, A. Towards validation o f concurrent markup. In: Proceedings of Extreme
Markup Languages 2006, Montreal.

Schmidt, T. (2004). EXMARaLDA - ein System zur computergestützten Diskurstranskription. In:
Mehler, A. and Lobin, H. (eds.) Automatische Textanalyse: Systeme und Methoden zur Anno-
tation und Analyse natürlichsprachlicher Texte. Wiesbaden: VS Verlag:203-2I8.

Simons, G., Lewis, W„ Farrar, S., Langendoen, T., Fitzsimons, B„ and Gonzalez, H. (2004). The
semantics o f markup: mapping legacy markup schemas to a common semantics. In: Proceedings
of the ACL 2004 Workshop on RDF/RDFS and OWL in Language Technology (NLP XML-
2004), Barcelona.

Sperberg-McQueen, C. M„ Huitfeldt, C„ and Renear, A. (2002). Meaning and interpretation o f
markup. In: Markup Languages: Theory & Practice 2.3 (2000):215-234.

Sperberg-McQueen, C. M., Dubin, D., Huitfeldt, C., and Renear, A. (2002). Drawing inferences
on the basis o f markup. In: Proceedings of Extreme Markup Languages 2002, Montreal.

Sperberg-McQueen, C. M. and Burnard, L. (eds.) (2002). 77:7 P4: guidelines fo r electronic text
encoding and interchange. Text Encoding Initiative Consortium. XML Version: Oxford, Prov-
idence, Charlottesville, Bergen.

Sperberg-McQueen, C. M. (2006). Rabbit/duck grammars: a validation method for overlapping
structures. In: Proceedings of Extreme Markup Languages 2006, Montreal.

Stührenberg, M„ Witt, A., Goecke, D., Metzing, D„ and Schonefeld, O. (2006). Multidimensional
markup and heterogeneous linguistic resources. In: Proceedings of the 5th Workshop on NLP
and XML (NLPXML-2006): Multi-Dimensional Markup in Natural Language Processing.
April 4, 2006. Trento, Italy.

Stührenberg, M. and Goecke, D. (2008). SGF - an integrated model fo r multiple annotations and
its application in a linguistic domain. In: Proceedings of Balisage: The Markup Conference
2008, Montreal.

Stührenberg, M., Kühnberger, K.-U., Lüngen, H„ Mehler, A., Metzing. D„ and Mönnich. U. (2008)
Sustainability o f text-technological resources. In: Proceedings of the LREC 2008 Workshop
Sustainability of Language Resources and Tools for Natural Language Processing. Marrakech,
Morocco: 33-40.

Stührenberg, M. and Jettka, D. (2009). A toolkit fo r multi-dimensional markup - the development
o f SGF to XSlandoff. In: Proceedings of Balisage: The Markup Conference 2009, Montreal.

Strube, M. and Müller, C. (2003). A machine learning approach to pronoun resolution in spoken
dialogue. ACL 03.

Tennison, J. (2007). Creole: validating overlapping markup. In: Proceedings of XTech 2007, Paris.
Thompson, H. S. and McKelvie, D. (1997). Hyperlink semantics fo r standoff markup o f read-only

documents. In: Proceedings of SGML Europe ’97, Barcelona.
Trippel, T. Sasaki, F„ Hell, B., and Gibbon, D. (2003). Acquiring lexical information from

multilevel temporal annotations. 8th European Conference on Speech Communication and
Technology.

Vieira, R. and Teufel, S. (1997). Towards resolution o f bridging descriptions. In: Proceedings of
ACL/EACL. Madrid.

Webber, B. L. (1988) Discourse deixis: reference to discourse segments. In: Proceedings of the
ACL: 113-122.

Witt, A. (2002). Meaning and interpretation o f concurrent markup. In: Proceedings of the Joint
Conference of the ALLC and ACH, Tübingen, Germany.

21

Witt, A. (2002). Multiple Informationsstrukturierung mil Auszeichnungssprachen. XML-basierte
Methoden und deren Nutzen für die Sprachtechnologie. Phd Thesis. Universität Bielefeld.

Witt. A. (2005). Multiple hierarchies: new aspects o f an old solution. Re-published in: Dipper. S..
M. Götze, and M. Stede (eds.) Heterogeneity in Focus: Creating and Using Linguistic Data-
bases. Volume 2 of Interdisciplinary Studies on Information Structure (ISIS), Working Papers
of the SFB 632. Universitätsverlag Potsdam, Germany.

Witt, A., Goecke, D„ Sasaki, F„ and Lungen. H. (2005). Unification o f XML documents with con-
current markup. Literary and Linguistic Computing 2005 20(I): 10 3 -116.

Witt. A„ Rehm, G., Hinrichs, E., Lehmberg, T.. and Stegmann. J. (2009). SusTEInability o f Lin-
guistic Resources through Feature Structures. In: Literary and Linguistic Computing 2009; doi:
10. l()93/llc/fqp024.

