
Instantiation and Implementation of a

Corpus Query Lingua Franca

Master Thesis
by

Joachim Bingel

February 2015

University of Heidelberg

Department of Computational Linguistics

Thesis supervisor Prof. Dr. Andreas Witt
Second referee Prof. Dr. Anette Frank

Contents

I Corpus Query Lingua Franca 1

1 Introduction 1
1.1 Related work . 3
1.2 The KorAP project . 5
1.3 Aim of the thesis . 10

2 Corpus query languages: A brief survey 11
2.1 Poliqarp QL . 12
2.2 COSMAS II QL . 14
2.3 ANNIS QL . 16
2.4 Some other query languages . 19

3 CQLF as an evaluation ground for query languages 20
3.1 Meta model . 20
3.2 Feature ontology . 22

II Specifications of the KoralQuery Protocol 24

4 KoralQuery: A CQLF metalanguage 24
4.1 Expressive power . 25
4.2 Linguistic theory neutrality . 26
4.3 Redundancy avoidance . 27
4.4 Object nesting and return values . 28

5 KoralQuery types and operations 29
5.1 The token type . 30
5.2 The span type . 30
5.3 The group type . 31

5.3.1 Group operations . 31
5.4 The reference type . 34
5.5 The term type . 35
5.6 The termGroup type . 36
5.7 The distance type . 37
5.8 The relation type . 37
5.9 Attribute values . 38

6 Meta-information on the query 40
6.1 Document-level filtering . 40

6.1.1 The doc type . 40
6.1.2 The docGroup type . 42

i

6.2 Displaying directives . 42

7 PoliqarpPlus QL: a KoralQuery model language 43

III Serialisation of KoralQuery 48

8 JSON-LD as a serialisation format for KoralQuery 48
8.1 JSON-LD . 48
8.2 Linked data in linguistic web services 50

9 Translating queries to KoralQuery 51
9.1 General process . 53

9.1.1 Query parsing with ANTLR . 54
9.1.2 Processing abstract syntax trees 55

9.2 PoliqarpPlus QL . 60
9.3 COSMAS II QL . 62
9.4 ANNIS QL . 65
9.5 Virtual collections . 68

10 Conclusions 69
10.1 Contributions of the thesis . 69
10.2 Future work . 72
10.3 Acknowledgements . 72

List of Figures 74

List of Tables 74

List of Listings 74

Bibliography 74

ii

Abstract
The present thesis introduces KoralQuery, a protocol for the generic representation
of queries to linguistic corpora. KoralQuery defines a set of types and operations
which serve as abstract representations of linguistic entities and configurations. By
combining these types and operations in a nested structure, the protocol may ex-
press linguistic structures of arbitrary complexity. It achieves a high degree of neu-
trality with regard to linguistic theory, as it provides flexible structures that allow
for the setting of certain parameters to access several complementing and concur-
rent sources and layers of annotation on the same textual data.

JSON-LD is used as a serialisation format for KoralQuery, which allows for the
well-defined and normalised exchange of linguistic queries between query engines
to promote their interoperability. The automatic translation of queries issued in any
of three supported query languages to such KoralQuery serialisations is the second
main contribution of this thesis. By employing the introduced translation module,
query engines may also work independently of particular query languages, as their
backend technology may rely entirely on the abstract KoralQuery representations of
the queries. Thus, query engines may provide support for several query languages
at once without any additional overhead.

The original idea of a general format for the representation of linguistic queries
comes from an initiative called Corpus Query Lingua Franca (CQLF), whose theoretic
backbone and practical considerations are outlined in the first part of this thesis.
This part also includes a brief survey of three typologically different corpus query
languages, thus demonstrating their wide variety of features and defining the min-
imal target space of linguistic types and operations to be covered by KoralQuery.

iii

Zusammenfassung
Die vorliegende Arbeit präsentiert KoralQuery, ein Protokoll für die allgemeine
Repräsentation von Anfragen an linguistische Korpora. KoralQuery definiert eine
Menge von Typen und Operationen, welche als abstrakte Repräsentationen linguis-
tischer Einheiten und Operationen dienen. Das Protokoll ist in der Lage, durch Ver-
schachtelung dieser Typen und Operationen linguistische Strukturen von beliebiger
Komplexität auszudrücken. Es erreicht ein hohes Maß an Neutralität in Bezug auf
linguistische Theorien, indem es flexible Strukturen bietet, welche mit Hilfe von
gewissen Parametern mehrere ergänzende sowie konkurrierende Annotationsebe-
nen auf den selben Textdaten ansprechen können.

Als Serialisierungsformat für KoralQuery wird JSON-LD verwendet, was einen
wohl-definierten und normalisierten Austausch linguistischer Anfragen zwischen
mehreren Korpusanfragesystemen ermöglicht und somit deren Interoperabilität för-
dert. Die automatische Übersetzung von Anfragen aus drei konkreten Anfrage-
sprachen in solche KoralQuery-Serialisierungen ist der zweite zentrale Beitrag die-
ser Arbeit. Die Verwendung des vorgestellten Übersetzungsmoduls ermöglicht An-
fragesystemen, unabhängig von bestimmten Anfragesprachen zu arbeiten, da ihre
Backend-Technologien lediglich die abstrakten KoralQuery-Repräsentationen der
Anfragen interpretieren müssen. Die Anfragesysteme können somit gleichzeitig
mehrere Anfragesprachen unterstützen, ohne diese direkt interpretieren zu müssen.

Die ursprüngliche Idee zur Entwicklung eines allgemeinen Formats zur Reprä-
sentation linguistischer Anfragen entspringt einer Initiative mit Namen Copus Query
Lingua Franca (CQLF), deren theoretischer Hintergrund und praktische Überlegun-
gen im ersten Teil dieser Arbeit wiedergegeben werden. Dieser Teil umfasst eben-
falls eine kurze Studie dreier typologisch verschiedener Korpusanfragesprachen,
welche die Mannigfaltigkeit derer Eigenschaften demonstriert und die minimale
Zielvorgabe bezüglich der Typen und Operationen definiert, die KoralQuery ab-
decken muss.

iv

Part I

Corpus Query Lingua Franca

1 Introduction

Text corpus querying systems provide users with access to possibly large collec-
tions of linguistic data by means of specific query languages (QLs). A (corpus) QL
is a formal language which allows the user to express certain linguistic patterns at
various levels of complexity, ranging from single word forms to nested structures of
higher-level linguistic phenomena such as syntactic constituents or anaphoric rela-
tions. Upon the submission of a query to a system, its engine tries to interpret the
query and searches its stored linguistic data for all instances of text that match the
pattern expressed in the query, potentially presenting the user with all passages of
text that were found, whole documents in which the specified pattern is present, or
occurrence statistics, depending on the specific system or user demands.

Just like there is a large number of existing corpus querying systems, the amount
of query languages is too great to keep track of. However, a first glance at only a
few of them reveals a huge diversity in terms of a number of qualities. Perhaps most
evidently, QLs differ in their respective syntax. In this respect, a particular QL is of-
ten, at least unconsciously, influenced by existing query languages.1 While lines of
tradition in the design and implementation of the syntax of query languages may
have established certain QL families, there are still many isolated languages, and
even within the less exotic languages, syntactic idiosyncrasies are abundant. The
syntax of a query language certainly has a great impact on another quality which is
highly diverse across languages, namely its usability, which relates to more subjec-
tive categories such as the ease by which a language can be learnt or the verbosity
of language elements. While some languages are very straightforward in these re-
spects, others comprise a rather vast amount of various operators and thus need
more time to learn and type. Naturally, the complexity and verbosity of a language
increase with its expressive power, which denotes the set of linguistic patterns that
can be expressed in this language and is therefore probably the most important fac-

1Those need not necessarily be languages that are specifically designed for querying text corpora,
but may, for instance, be languages that are used to access and manipulate more structured informa-
tion in a database, e.g. SQL.

1

tor that determines the quality of a QL. As with the previous categories, languages
differ very strongly in their respective expressiveness. Some only allow very shal-
low patterns to be searched for, such as the combinations of certain word forms or
words bearing certain grammatical values, while languages on the other end of the
spectrum can express very complex (meta-) linguistic structures.

The reasons for this profusion of querying systems and query languages, as well
as their large qualitative differences, are manifold. Most centrally, they are often
custom-tailored to be capable of providing answers to rather specific types of lin-
guistic questions, or at least assume certain types of linguistic annotation. They are
thus usually developed with respect to particular linguistic phenomena and to a
specific data format. Furthermore, the fact that the development of corpus query
tools and languages is subject to economic limitations, and that it is often grounded
within isolated projects with uncoordinated funding, has impeded the investment
of additional work to cover use cases that would exceed the specific needs within a
project.

As a result of the depicted variety of query languages and their properties, users
as well as developers of corpus querying tools are faced with obvious difficulties.
Users may be forced to learn a new query language whenever they work with an
unfamiliar system, which in turn may be necessary because of new research ques-
tions they investigate or simply because they turn their attention to other data that is
not accessible through their accustomed system. The requirement to learn a new QL
consumes the researchers’ time and energy and may cause frustration to a degree
that they feel uncomfortable using a particular system. Developers, on the other
hand, face the challenge of having to analyse whether or not they are able to use
some existing QL for their newly developed querying tool, which means that they
first need to define a set of requirements a QL needs to satisfy (mostly relating to
expressiveness, but also to performance issues) in order to support their particular
case, and then look into a lot of languages and decide for each language whether it
meets the requirements or not. Then, in case a suitable QL has been identified, de-
velopers have to take measurements to deploy the language in their search engine.
This is by no means trivial, as an engine is usually expected to search a potentially
very large amount of data in very short time, and attention must be paid to how
certain elements of a QL increase the workload of the engine backend. If, how-
ever, the search for such a language has been unsuccessful, a new language must be
created, which possibly amounts to a great deal of work involving various steps, in-

2

cluding the definition of available operators to support all requirements in terms of
expressiveness while paying attention to questions of computational performance,
the definition of a vocabulary and syntax, and as in the first case, the deployment in
the query engine. Eventually, this will result in yet another custom-tailored QL and
only increase the sketched problem rather than solve it.

The present thesis faces these issues within the framework of the Corpus Query
Lingua Franca (CQLF) endeavour and proposes a specification of a concrete CQLF
instantiation, in particular the definition of a general and flexible data format for
representing queries that are formulated in any of (currently) three different QLs
representing different QL families. As a proof-of-concept of this specification, trans-
lation modules are provided that map concrete queries from those QLs onto the
general format. The remainder of this document is structured as follows. The sec-
tions on related work and the KorAP project introduce the reader to the theoretical
and practical background of this work, and the introductory part will be concluded
by an outlook on the aim of the thesis. The second part will identify some caveats
and prerequisites that underlie the construction of a corpus query ‘metalanguage’,
and will specify its concrete instantiation. The third part introduces a serialised data
format for the representation of queries in the meta format, as well as the transla-
tion modules that are used to map user-defined queries onto that format. The thesis
concludes by outlining its central contributions and proposing items of future work.

1.1 Related work

The apparent problems that have been briefly addressed in the introductory sec-
tion, and will be further explicated in the first part of this thesis, have been known
to the corpus linguistic community for quite some time. In a meeting of scholars
from the humanities, library science and information technology, which took place
in November 2010, the participants debated those issues and discussed the possi-
bility of proposing the development of a corpus query lingua franca to the Interna-
tional Standardization Organization (ISO). The report (Mueller, 2010) sketches the
two possible outcomes of such a proposal and their consequences: “If it leads to a
standard it will make development easier. If it does not lead to a standard it may
at least help articulate the points where interoperability becomes difficult or breaks
down.”

Inspired by this suggestion, the work on CQLF was commenced within the ISO

3

TC37 SC4 WG62 and currently has the status of a Working Draft. While the original
idea of CQLF, as it is suggested in Mueller (2010), revolves around the development
of an interlingua that enables communication across different QLs, the ISO commit-
tee has from the outset been aware of the second scenario mentioned in Mueller’s
report (that this work would not lead to a standard) and of the great amount of
difficulties that come with the intended creation of such an interlingua. Therefore,
the preliminary goal of the CQLF proposal is (i) to serve as a metric for query lan-
guages to be compared to each other with respect to certain properties and (ii) as a
system of target features that may be considered in the creation of new corpus query
languages (see Section 3 for a more detailed description of this aspect). The aspect
of translation between QLs (and thereby interoperability between query systems),
however, has not been an official part of the work on CQLF, but has instead been
pursued within the KorAP project (Section 1.2).

Nevertheless, research on the interoperability between corpus query systems is
no unknown territory, although most previous work has tried to achieve such in-
teroperability on the level of the data rather than from the query language point-of-
view. Also within the ISO TC37 SC4, standards have been developed that ensure
common data formats or format frameworks. Most notably, the Linguistic Annota-
tion Framework (LAF, ISO 24612:2012) provides an abstract model for the general
graph-based representation of a wide range of linguistic objects and relationships,
which lays the conceptual foundation for the mutual translation between different
annotation encoding schemes via mapping to and from a pivot format. As an ex-
tension to and a concrete serialisation format of LAF, Ide and Suderman (2007) in-
troduced the Graph-based Annotation Format (GrAF), which encodes the linguistic
information as defined by the LAF model in XML.

While LAF and related annotation standards such as the Morpho-syntactic An-
notation Framework (MAF, ISO 24611:2010) and the Syntactic Annotation Frame-
work (SynAF, ISO 24615:2010) largely remain in the abstract and, at best, are instan-
tiated by concrete formats such as GrAF and <tiger2/> (Bosch et al., 2012), they do
not actually provide facilities for the mapping between language resources (Zipser
and Romary, 2010). This gap is filled by the SaltNPepper software (Zipser, 2009), a
suite of Java classes which use an internal meta-model (Salt) and a converter frame-
work (Pepper) to allow the development of mappers to and from specific formats.

2ISO Technical Committee 37 (Terminology and Other Language Resources), Subcommittee 4
(Language Resource Management), Working Group 6

4

By means of the intermediate pivot model, a complete mutual translation between
n formats requires only 2n mapping components (one mapper to and one map-
per from the meta-model for every format), rather than n2 mappers that would be
needed for direct translations between all formats.

1.2 The KorAP project

In July 2011, the Institut für Deutsche Sprache (IDS) in Mannheim, Germany, com-
menced work on the KorAP3 project, which was initially granted funding for three
years but was later extended until mid-2015. The objective of the project has been to
develop a modern corpus analysis software to succeed COSMAS II (Bodmer, 2005)
as the user interface to the German reference corpus DEREKO (Kupietz et al., 2010),
one of the most important resources for German linguistic research with currently
more than 20,000 registered users of COSMAS II. However, implemented almost
twenty years ago, COSMAS II has by now become very difficult to maintain and
adapt to the growing demands of corpus analysis. Those demands are of two kinds.
Firstly, with corpus-based methods gaining more and more importance in present-
day linguistic research (Lüdeling and Kytö, 2008), user expectations with respect to
the functionality and usability of a query engine grow. Depending on their partic-
ular research questions or level of proficiency in corpus linguistics, researchers will
expect features such as a co-occurrence analysis function, highlighting and grouping
options, or scripting interfaces. Secondly, as ever larger corpora are being compiled
or existing corpora are growing in size, computational costs are becoming more and
more drastic and ultimately unbearable for outdated corpus query software. In par-
ticular, the inflation of DEREKO from over six billion tokens to more than 24 billion
tokens within a single year (Kupietz and Lüngen, 2014) cannot be efficiently mas-
tered by COSMAS II.

In response to those demands, the current project defines a range of requirements
to be met by the KorAP software as a state-of-the-art corpus query tool that is ex-
pected to face the challenges of present-day corpus analysis and to be prepared for
upcoming ones (Bański et al., 2012). Besides the ability to scale to primary text data
in the petabyte range, complex annotations and relationships between data points
must be available for querying and display, which further aggravates computational
complexity. Furthermore, in order to provide researchers with a maximally undis-

3“KorAP” is short for Korpusanalyseplattform der nächsten Generation (“Next-generation corpus
analysis platform”).

5

torted and theory-neutral view of the data, KorAP is designed to allow concurrent
annotation4 from different sources on the same piece of primary text. This partic-
ular principle is followed by separating primary text and annotations by means of
so-called standoff mark-up, where position indices are used to declare a certain an-
notation information to hold at some place in the primary data, in the case of text
usually via character offsets. Another advantage of applying standoff mark-up tech-
niques is that the annotations can be treated in an (almost) equivalent manner as the
primary data itself with regard to searching. In order to retrieve text passages that
correspond to a specified query, KorAP employs the open-source information re-
trieval software Lucene5, which builds an index of the data (both primary data and
standoff annotations) for a fast lookup of the linguistic patterns defined in the query.
Thus, rather than loading all the corpus data into memory (which some query en-
gines do, but which is utterly impossible for large corpora), KorAP uses widespread
information retrieval techniques to manage its data.

The development of KorAP follows the principle of modularity, which will en-
able the developers to react flexibly to possible demands that will arise in the future.
For example, integrating new modules into the software could enable it to index and
search data in other modalities, such as the Archiv für Gesprochenes Deutsch (“Archive
for Spoken German”, AGD, cf. Fiehler et al. (2007)). Another extension, which is cur-
rently under development, is the employment of an alternative Neo4j backend that
can be used in place of the Lucene index by request of the user.6

Another challenge lies in legal restrictions that many corpora or partial corpora
are subject to. In the case of DEREKO, a big chunk of the texts (especially newspa-
per texts) is available to the IDS only through contracts with copyright holders that
restrict the access to the data for the end user. Additionally, different restrictions
might hold for different user groups, e.g. researches affiliated with certain institu-
tions. KorAP thus implements a mechanism to ensure that no unavoidable legal
restrictions are violated while providing individual users with maximally possible
access to the data.

4In the remainder of this work, concurrent annotation is defined as (several layers of) annotation
that encodes the same kind of information (e.g. the same grammatical category) for the same data
stream, but comes from different sources and is therefore possibly conflicting. For a more formal
definition, see (Dekhtyar and Iacob, 2005).

5http://lucene.apache.org/
6The rationale behind providing this alternative is that the graph-based Neo4j software may scale

better to particular types of data. For instance, queries that ask for patterns involving syntactic
constituency relations may be better processed in a graph than a “linear” index, and that Neo4j
would outperform the Lucene backend in that case.

6

http://lucene.apache.org/

Finally, it is targeted to release the KorAP software under an open-source license
by the time of its completion. This will allow corpus linguists to deploy (custom
modifications of) KorAP to provide access to their own corpora and thus to profit
from the efforts that have been made in order to meet the describes challenges.

One system - several QLs

The mentioned diversity of QLs in terms of expressiveness as well as their usually
problem-specific design mean that there are problems that can only be solved by
means of certain QLs. This implies that the decision for one particular language to
be supported by a corpus query engine drastically limits the spectrum of research
questions that the engine is capable of answering. While this problem may not be
critical for most corpus query applications, DEREKO’s principle of theory-neutrality
and its purpose to serve as a “primordial sample from which virtual corpora can be
drawn for the specific purposes of individual studies” (Kupietz et al., 2010) makes
such specificity very undesirable for KorAP. In fact, the very general KorAP anno-
tation format (cf. the section on the KorAP data model below) virtually discourages
any specific tailoring of a QL towards a particular data model.

In the early stages of the KorAP project, the developers thus made a decision
not only to support one specific (existing or newly created) QL, but rather to let
the users choose from a set of languages the one that they believe is best suited
with regard to their particular research questions and, of course, their familiarity
with the individual languages. Through this decision, researchers find themselves
presented with a much greater flexibility, but also with more responsibility in the
design of their corpus research. The possibility to choose from different QLs and
therewith from different dimensions of expressiveness demands careful planning
on the part of the user. Finally, the initial repertoire of QLs to by served by KorAP
was decided to include Poliqarp QL (Przepiórkowski et al., 2004), COSMAS II QL
(Bodmer, 1996) and ANNIS QL (Rosenfeld, 2010), but the possibility to include a
theoretically unlimited amount of QLs at a later point is provided.

The support of several QLs naturally leads to higher requirements of the system.
In the common case, a query engine backend directly parses and interprets the vari-
ous parts of a query, and then attempts to retrieve text records for those query parts
and finally for the entire query. As the development of the backend technology is
probably the most critical and cost-intensive work item within the construction of
a query engine, creating separate backends for the individual QLs is obviously not

7

a promising strategy. Besides the plain expenditure for the creation of additional
backends, a lot of attention would need to be paid to ensure a total equivalence
of the various backends in terms of the results they return for equivalent queries
formulated in different QLs.

As a solution to these problems, KorAP separates its backend technology from
the interpretation of the available query languages. This is achieved by making
the backends7 work independently of a particular query language, i.e. that they do
not directly process the query string itself, but rather some general and language-
independent representation of the query. The development of such a general repre-
sentation of queries, as well as the implementation of translation modules that con-
vert queries formulated in a certain language into that abstract format, is the core of
the present thesis and a major work item within the KorAP project and CQLF, such
that KorAP is in fact a driving force and a reference implementation of CQLF.

The KorAP data model

The ideal of achieving a maximal degree of theory-neutrality in KorAP has two ma-
jor dimensions. Firstly, KorAP aspires to allow querying for arbitrary types of lin-
guistic annotation as far as permitted by available state-of-the-art text processing
systems. Secondly, the user shall be enabled to perform those searches in arbitrary
collections of documents as defined by freely adjustable parameters such as docu-
ment metadata.8

These requirements call for a highly flexible and unrestricted data model that
allows for the unproblematic addition or modification of corpus data whenever, for
instance, new texts are to be included in a corpus or new annotations may be made
available. The most efficient and most elegant way to meet these requirements is
to structure all data in a modular fashion. At the level of corpus structuring, this
is achieved quite straightforwardly by separating all documents and placing them
as individual entities within one directory that corresponds to a (sub-) corpus. The
more challenging aspect, however, is the modularisation of document-level annota-
tions.

7Remember that the modularity principle in KorAP also applies to the backend technology.
Rather than deploying a single backend, KorAP reserves the possibility to incorporate several back-
ends into a single system and to let the user or a query optimisation component decide which back-
end to use for a particular type of query.

8For example, a user may restrict the set of searched texts to newspaper articles on politics pub-
lished between 2000 and 2010.

8

It is important to note that a modular encoding of linguistic annotation is not
merely a matter of elegance and efficiency, but utterly necessary when several con-
curring annotation layers need to be made available for a single text. In traditional
SGML- or XML-based text encoding schemes such as the (X)CES standards (Ide,
1998; Ide et al., 2000), concurring annotation is highly problematic because of non-
hierarchical and possibly overlapping (and thus conflicting) entities. Research to
overcome these problems has lead to the proposal of three major groups of anno-
tation formats and mechanisms: architectures employing Prolog-style fact bases,
XML-related formats and graph-based formats following the XML syntax (Stühren-
berg and Goecke, 2008). Especially the latter group of architectures, which were
initiated by the Annotation Graph model (Bird and Liberman, 1999) and include
the GrAF framework (Ide and Suderman, 2007), have proven to be helpful points
of reference for the encoding of several annotation layers in the KorAP data model.
The common denominator of those graph-based architectures is the separation of
primary text and markup. Called stand-off annotation, this encoding principle uses
positional indices of the primary data (usually via character offsets in the case of text
or time anchors for audio/video data) to declare annotations of all kinds at partic-
ular spans within the data stream (e.g. words or phrases) or between various spans
of data (e.g. pointing relations between two phrases).

Beyond their primary text and linguistic annotation, documents in KorAP are
equipped with metadata (e.g. title, authorship, publication date, text genre etc.),
which allows for a user-side definition of virtual document collections as the search
space of a linguistic query. This metadata is also encoded in a separate file and thus
detached from the primary data.

As a result, the KorAP data model is the following: a corpus (which might be
recursively composed of sub-corpora) consists of documents that are represented
by directories. Each of these directories contains a text file of primary data (the
text), a text file of metadata information, and a set of directories grouping files of
linguistic annotation layers. There are typically several such directories, because
annotations may come from different processors each of which contributes its own
set of annotation layers (e.g. tokenisation, morphosyntactic tagging or constituent
parsing). The document structure is illustrated in figure 1.1.

9

Figure 1.1: The KorAP document model.
Image source: (Bański et al., 2013)

1.3 Aim of the thesis

This thesis has, up to this point, sketched several problems in the field of corpus
linguistics and around the design of corpus query systems. Against the backdrop
of those problems, specifically those regarding the support of various query types
and query languages in KorAP as well as the interoperability of query systems in
general, it appears worthwhile to construct a maximally flexible and general repre-
sentation of linguistic queries and thus to arrive at some sort of interlingua, very
much in the spirit of the original vision of a corpus query lingua franca as formu-
lated by Mueller (2010).

To realise this vision, the present work first provides an overview of some query
languages, representing different QL families, and their features. This set of features
informs the definition of the array of linguistic and meta-linguistic objects and rela-
tions that need to be included in the aspired lingua franca. The thesis then aims to
develop a specification of a grammar for CQLF, i.e. a set of rules that determine the
structure of the respective CQLF objects and how they can be combined with oth-
ers. Based on this specification, a concrete JSON-LD-based serialisation format will
be proposed.

Finally, this work includes the development of individual serialisation processors

10

Feature Group Poliqarp COSMAS II ANNIS
Plain-text search
Annotation-based search () ()
Constraints on match size and position ()
Boolean operators () () ()
Universal quantification and implication
Fuzzy and pattern search () () ()
Metadata access () () ()
Display directives () () ()

Table 2.1: Support of feature groups by the QLs examined by Frick et al. (2012).
Check marks in parentheses indicate the support of a subset of the features in the
respective feature group.

that translate a query formulated in any of three query languages into the common
CQLF format.

2 Corpus query languages: A brief survey

As a prerequisite to arrive at a clearer picture of the concrete requirements that a
CQLF must meet both as a metric and as a metalanguage (cf. sections 3 and 4,
respectively), this section investigates the specificities of three existing query lan-
guages. A pilot study by Frick et al. (2012) evaluated Poliqarp QL, COSMAS II QL
and ANNIS QL against a set of functional criteria that were derived from a mul-
titude of actual user queries covering diverse linguistic phenomena. Thus, rather
than examining a great amount of QLs under very few aspects, the authors chose
to scrutinise the three mentioned languages in great detail. The QLs are regarded
as representatives of distinct QL families, stemming from different traditions and
being tailored towards very different data models, and may therefore be expected
to be quite complementary in their syntax and expressive power.

The evaluation criteria were grouped into the eight categories (‘feature groups’)
that form the first column of Table 2.1. We observe that only few feature groups
are really fully supported by any of the languages, in fact the language that imple-
ments all features for most groups is ANNIS QL, with a full support of only three
groups. Note, however, that the indication of partial support (by check marks in
parantheses) is quite an oversimplification, as sometimes all but one minor feature

11

in a group are supported by a certain language, and the language thus receives the
same coarse rating for the category as another language that only supports one fea-
ture. The reader is therefore referred to the original publication for a fine-grained
analysis and a detailed description of the features and feature groups.

The authors conclude in their study that the languages indeed differ in terms of
their functionality, and that some query types (e.g. directed relations) are quite spe-
cific to certain languages, while others appear to be rather universal. Importantly,
none of the examined languages displays a total coverage of the authors’ criteria. In
particular, some features such as negation are only supported to a certain degree,
while others such as universal quantification (“find a sentence containing verbs in
the first person singular only”) are not supported at all. Nevertheless, a combina-
tion of the QLs (i.e. a common metalanguage) would in fact pose quite a powerful
language, and covering a relatively wide array of QL features, they constitute an
informative sample for the development of a corpus query lingua franca. The re-
mainder of this section introduces the individual QLs in more detail, both in respect
to their feature sets and to their syntax by way of examples.

2.1 Poliqarp QL

Poliqarp QL is a query language that is based on the syntax of the CQP query lan-
guage (Evert, 2005) and has been developed to query corpora indexed with the
Poliqarp tool (Przepiórkowski et al., 2004), which in turn has been created for the IPI
PAN corpus and was later used to provide access to the National Corpus of Polish.

The language is designed to query for (sequences of) tokens. Consequently, a
valid query in Poliqarp QL is a string of segments that correspond to individual to-
kens, where a token is expressed as a pair of brackets containing a set of constraints
(attribute-value-pairs) that the matched tokens satisfy. The constraint set may be
empty (resulting in an underspecified ‘match-any’ token) or predicated by (recur-
sive) logical operations on the individual constraints (conjunction, disjunction and
negation). A controlled vocabulary of attributes is available for querying the IPI
PAN corpus and comprises orthographic forms via the keyword orth, lemma forms
via base, parts-of-speech via pos and several grammatical categories such as number,
case, gender etc. The value constraints of those attributes may be specified as plain
strings or regular expressions. Additionally, the user may indicate by means of spe-
cific flags whether the value shall be interpreted sensitive to orthographic case (/i)
or if regular expressions are allowed to match only parts of a word (/x).

12

By means of repetition operators (minimal and maximum occurrences in braces
or Kleene quantifiers), users can express constraints on the repeated occurrence of
tokens and sequences. In combination with underspecified tokens, a user can also
define distance constraints between two tokens. To express that a certain sequence
may not exceed sentence or paragraph boundaries, the keywords within (s|p)

may be used. The following are thus examples of valid Poliqarp queries:

(1) [base=corpus]

All tokens with the lemma form corpus.

(2) [orth=corpus]

All tokens with the surface form corpus.

(3) [orth=corpus/i]

All tokens with the surface form corpus, ignoring case.

(4) [orth=queries & pos=V]

All tokens with the surface form queries that are verbs (3rd person singular of
to query).

(5) [base=corpus & orth!=corpus]

All tokens with the lemma corpus, but with a different surface form.

(6) [orth=�corp.*�/xi]

All tokens that contain a match of the regular expression corp.* (regex
indicated by quotes).

(7) [orth=corpus][orth=query]

All sequences of the tokens corpus and query.

(8) [pos=�JJ.*�]+[orth=query]

All sequences of at least one adjective followed by the word query.

(9) [orth=corpus][]{2,5}[orth=query]

All sequences containing the tokens corpus and query, with a distance of two
to five other tokens in between.

(10) [orth=corpus][]{2,5}[orth=query] within s

As above, restricted to sequences within the same sentence.

13

Poliqarp QL also allows the specification of display directives (via the alignment
operator ^) and the restriction of the search space to texts that satisfy certain meta-
data constraints, such as authorship, publication date or text genre (using the meta

keyword). The following examples illustrate these operators:

(11) [orth=corpus]^[]{2,5}[orth=query]

As (9), aligns results after corpus.

(12) [orth=corpus] meta published>2000

As (2), restricted to texts published later than 2000.

Additionally, Poliqarp QL provides operators that concern syncretisms in inflec-
tional forms. This is desirable, for instance, for the retrieval of some Polish pro-
nouns, where the respective case cannot always be disambiguated on the syntactic
level. By means of the operator ==, a user can require that only clearly unambiguous
matches of a query (e.g. [case==acc]) are returned.

The language lacks support for the explicit retrieval of syntactic constituents as
well as hierarchical relations between them. Neither can dependencies or other
token-level relations (e.g. anaphoric relations) be expressed. Furthermore, the lan-
guage relies on a data model that features a single layer of annotation, i.e. one cannot
choose between several concurrent annotation sources.

2.2 COSMAS II QL

The COSMAS (Belica et al., 1992) corpus search engine, as well as its successor COS-
MAS II (Bodmer, 2005), have been developed at the IDS, mainly to provide access
to the German reference corpus DEREKO (Kupietz et al., 2010). The query lan-
guage that this system employs, COSMAS II QL (Bodmer, 1996), is characterised
by fine-grained options on distance and positional constraints between two query
segments.

In particular, the language features a distance operator which requires that a
certain number of words, sentence or paragraph boundaries (denoted by w, s and
p) occur between the arguments of the operator. It is also possible to negate those
distance constraints, such that the query returns all instances of the first argument
that do not co-occur with the second argument within the specified distance.

The operators #IN (inclusion) and #OV (overlap) express positional relations be-
tween their operands, e.g. requiring that the span denoted by the second argument

14

is fully included in the span that is matched by the first argument. The inclu-
sion/overlap constraint can be further explicated by way of several options, such
as #IN(L), which demands that the arguments are left-aligned, i.e. that the start
offsets of the operands are identical. Similarly to the distance operator, positional
constrains can be negated, again returning only those contexts of the first argument
that are not connected with any match for the second argument by the respective
positional relation.

The language relies on data in XML format, such that XML elements can be re-
trieved via the #ELEM() operator, which takes the desired element tag as its argu-
ment. In the COSMAS II data, this markup is restricted to sentences and paragraphs
(as far as linguistic information is concerned), but in theory, complex constituency
trees could be annotated in the XML format and thus be retrievable via COSMAS II
QL.

The possibility to query for morphosyntactic information is provided by the
MORPH() operator, which takes as its arguments one or more (possibly negated) val-
ues that are interpreted as belonging to certain grammatical attributes. For example,
the user may apply this operator to retrieve tokens of a specific part-of-speech class
or all tokens that are in superlative comparison (whether they are adjectives or ad-
verbs). The respective tag sets stem from one of three available annotated archives,
which the user must select at the beginning of a session if they need access to mor-
phosyntactic annotation. Further possibilities to retrieve tokens other than by their
surface form are case-insensitive search and querying for the lemma form.

Additionally, COSMAS II comprises a number of match-modifying possibilities,
e.g. the #ALL() operator, which extends the match area of a distance query to all
tokens in between the arguments, rather than only the arguments, which is the de-
fault for distance queries. Other examples include #EXCL(), which works inversely
to #ALL() and only matches the tokens between the operands of a distance query,
or #BEG() and #END() which only match the first or last token of a sequence, respec-
tively.

The following are examples of COSMAS II QL queries and illustrate its expres-
siveness:

(13) corpus

All tokens with the surface form corpus

(14) corpus /w5 query

15

All sequences of the tokens corpus and query, with a distance of at most five
words (four words in between)

(15) corpus /+w5 query

As above, but with a directional constraint (corpus followed by query, not the
other way around).

(16) (corpus /+w5 query) #IN #ELEM(S)

As above, but sequence must be within one S element (sentence)

(17) (corpus /+w5 query) #IN(L) #ELEM(S)

As above, but sequence must be left-aligned in the sentence.

(18) (corpus /+w5 query) #OV #ELEM(S)

The sequence overlaps9 with an S element.

(19) MORPH(N) /+w1:1 query

All sequences of any noun directly followed by the token query.

(20) MORPH(N pl) /+w1:1 query

All sequences of any plural noun directly followed by the token query.

2.3 ANNIS QL

The ANNIS platform is a corpus search and visualisation tool which has been devel-
oped to explore the data of a collaborative research centre dedicated to information
structure.10 This data is annotated at various linguistic levels, ranging from mor-
pheme segmentation to hierarchical relationships building on Rhetorical Structure
Theory (Mann and Thompson, 1988). In order to ensure maximal flexibility in in-
dexing the data, the ANNIS developers have opted to take a graph-based approach,
i.e. to represent all linguistic entities in a text (i.e. tokens, phrases etc.) as nodes
that are connected via edges, which in turn represent linguistic relations between the

9In COSMAS-II, two sub-spans are defined to ‘overlap’ iff the intersection of those sub-matches is
not empty. Note that, in the case of partial matches (e.g. a distance query with two tokens where only
those tokens form the match, not the whole span including the words between them), this constraint
is already satisfied when one token occurs in both sub-query matches, regardless of their positional
relation.

10The Collaborative Research Centre 632 is funded by the German Research Foundation (DFG) and
is located at the University of Potsdam, the Humboldt University of Berlin and the Free University of
Berlin. More information can be found at the centre’s website: http://www.sfb632.uni-potsdam.de/.

16

http://www.sfb632.uni-potsdam.de/

nodes, e.g. precedence, constituency relations, dependency relations or information
structural relations, among others.

This graph-based annotation format is directly reflected in the syntax of the
query language (Rosenfeld, 2010), which differs drastically from those of Poliqarp
QL or COSMAS II-QL. Rather than hierarchically embedding sub-queries in higher-
level structures, a query in ANNIS QL consists of a sequence of node declarations
and assertions about the nodes themselves or relations between two nodes. Those
declarations are connected via a conjunction operator (&).

Nodes may be declared using a set of keywords (e.g. tok for a token or node

for a generic node) or directly expressing certain linguistic constraints for retrieving
named entities that must hold for the returned nodes (basically unary relations, e.g.
pos="NE"). To formulate binary relations between the declared nodes, those can be
referenced using numerical values that indicate the order in which they have been
declared (e.g. #1 for the node that was declared first in the query string).

ANNIS QL offers a high flexibility in accessing different layers of annotation by
parametrising its operators, most notably the operators > (hierarchical relation be-
tween two nodes) and -> (‘pointing’ relation between two nodes). For instance, to
express a dependency relation between two nodes A and B, the user may state the
relation A ->dep B, while the relation A ->coref B demands coreference between
A and B. Note that the parameters dep and coref are not a part of the query lan-
guage proper, but indicate specific annotation layers in the data which carry those
names, such that the query language is unaware of the actual meaning of the anno-
tation, but still capable of accessing it by a generic operator. Those parameters may
also be refined by expressing attributes and values that must hold for the respective
relations, e.g. A ->dep[func="obj"] B requires that the edge between the nodes is
labelled with an object function. Of course, the query language is agnostic to the
available set of attributes and values of those labels as well, which instead depend
solely on the annotations. Additionally, it is possible to negate attribute-value state-
ments (both for edge labels and node properties) such that all instances are returned
that do not satisfy the respective constraint. All string values may be also specified
as regular expressions, which are delimited by forwards slashes in the language.

Besides those generic operators for linguistic relations between nodes, ANNIS
QL can directly express precedence constraints using the . (dot) operator. This op-
erator, as well as > and ->, may even be quantified using a Kleene star or numerical
ranges, such that indirect (precedence) relations can be specified. Operators that

17

express positional relations between spans of text are also included in the language
and comprise exact matching, inclusion, overlap and left/right alignment. ANNIS
QL also provides operators that draw on the tree structure of hierarchical relations,
expressing that one node is the leftmost or rightmost child of another node, that two
nodes share the same parent/ancestor node, that nodes govern a specific number of
direct children or leaf nodes (tokens), or that a node is the root of a tree.

Furthermore, ANNIS QL supports the formulation of metalinguistic criteria, for
instance the language of a text, its publication date or genre, using the meta key-
word. Examples 21-35 illustrate the presented operators and the ANNIS QL syntax.

(21) tok="corpus"

All tokens with the surface form corpus

(22) tok="corpus" | tok="query"

All tokens with the surface form corpus or query

(23) pos=/A.*/

All tokens whose part-of-speech tag matches the regular expression A.*

(24) tok="corpus" & tok="query" & #1 . #2

The token corpus immediately followed by query.

(25) tok="corpus" . tok="query"

Shortcut: the token corpus immediately followed by query.

(26) tok="corpus" & tok="query" & (#1 . #2 | #2 . #1)

The token corpus immediately followed by query, or vice versa.

(27) tok="corpus" & tok="query" & #1 .2,5 #2

The token corpus, followed by query in a window of 2 to 5 words.

(28) cat="NP" & tok="corpus" & #1 >* #2

A noun phrase that (possibly indirectly) governs the token corpus.

(29) node & pos=/VA.+/ & #2 ->dep[func="sbj"] #1

Any (generic) node that serves as the subject of an auxiliary verb.

(30) node & pos=/VA.+/ & cat="NP" & #2 ->dep[func="sbj"] #1 & #1

->coref #3

Any (generic) node that serves as the subject of an auxiliary verb, and is
coreferent with another NP.

18

(31) cat="S" & cat="PP" & #1 _l_ #2

All sentences that begin with a prepositional phrase (the PP is left-aligned in
S).

(32) cat="PP" & cat="PP" & #1 $ #2

Two prepositional phrases that share the same parent node.

(33) cat="NP" & cat="VP" & cat="PP" & #1 > #2 & #2 . #3

Noun phrases that dominate a verb phrase that is directly followed by a
prepositional phrase.

(34) cat="NP" & #1:arity=3

All noun phrases with exactly three children.

(35) cat="NP" & #1:arity=3 & meta::pubDate="2000"

As above, restricted to texts published in 2000.

2.4 Some other query languages

Beyond the three presented languages for corpus querying, there is an abundance of
corpus QLs in use in the community. Those languages vary strongly in their syntax,
expressiveness and purpose. A rather basic language that is largely intended for
the retrieval of single words or word sequences is the Contextual Query Language
(OASIS, 2013). This language is mainly used for information retrieval purposes in
bibliographic contexts and thus encompasses methods for querying based on bibli-
ographic metadata.

The language that is used for the Corpus Query Processor (Christ et al., 1999),
called the CQP Query Language (Evert, 2005), is targeted towards querying seg-
mental information, similar to Poliqarp QL. It contrasts with Poliqarp QL in that it
provides a host of displaying directive and result processing functions and allows
for a considerably higher flexibility in defining macros.

Another query language that, similar to ANNIS QL, is designed to query syn-
tax graphs, is the TIGER language (König and Lezius, 2003). It strongly resembles
ANNIS QL also in its syntax, but interestingly, it works on a very different backend
technology as it loads the full XML-encoded corpus into memory rather than using
a relational database.

19

There exists also a fair amount of QLs that are not primarily designed for query-
ing corpora of written text, but speech corpora for the purpose of phonetic analy-
sis. Those comprise the Q4M language developed in the MATE project (Heid and
Mengel, 1999) or the Emu language (Cassidy and Harrington, 1996), which is, quite
notably, capable of querying concurrent layers of annotation on the same primary
data (Cassidy and Harrington, 2001), cf. also (Bird et al., 2000).

3 CQLF as an evaluation ground for query languages

As stated in the introductory section, the immediate goal of the work on CQLF has
been to provide some kind of metric that can be used to compare and evaluate cor-
pus query languages, much like in Frick et al. (2012). The establishment of a stan-
dardised metric with well-defined criteria of query language expressiveness would
bring apparent benefits to such evaluations, including mutual comparison and spar-
ing researchers the effort of having to define their own feature space against which
to evaluate a certain query language .

Up to this point, the development of CQLF as a metric has been pursued in
two separate, but interrelated stages. The first stage has defined an abstract meta
model, while the second stage has involved the definition of a more fine-grained set
of concrete QL features. These two parts of CQLF are sketched in the following two
sections.

3.1 Meta model

CQLF distinguishes three basic levels of analysis, corresponding to different degrees
of complexity or different ‘feature groups’. As a consequence, the CQLF meta model
comprises three Levels that are defined as follows:

Level 1 (linear) At the most elementary level of complexity, a QL allows the
formulation of queries for segmental annotations, i.e. the (relative) linear place-
ment of words in text.

Level 2 (complex) Languages qualifying for Level 2 can query hierarchical
structures, i.e. linguistic units that are connected through hierarchical relations
such as dominance (in constituency grammar) or dependencies.11

11For a definition of the hierarchical dominance relation between spans and a demarcation from

20

Figure 3.1: Schematic illustration of the CQLF meta model.
Image source: (Bański et al., 2013)

Level 3 (concurrent) The potential of a QL to perform searches in multiply and
concurrently annotated data makes it compliant with Level 3. In particular, it
is possible for a Level 3 language to formulate various possibly conflicting
constraints, stemming from concurrent annotations, on the same data (e.g. on
a single word).

These basic definitions of CQLF Levels are illustrated in the schema in figure 3.1.
As both Level 2 and Level 3 rely on segmental annotations, any L2 or L3 language
is also L1-compliant. The resulting hierarchy is partial, because L3 does not neces-
sarily build on L2 (although L3 languages may, of course, be capable of accessing
complex annotations as required by L2).

By way of example, a query language needs to be able to express the following
requests to qualify for the respective CQLF Levels. Note that this particular L3 ex-
ample does not require the annotation of hierarchical structures, but only demands
word-level annotations. However, L3 queries may of course involve hierarchical
structures, too, and therefore require an L2-compliant QL.

positional containment see (Sperberg-McQueen and Huitfeldt, 2008).

21

L1 Find all occurrences of ‘corpus’ within five words of ‘query’.

L2 Find all noun phrases that contain the word ‘query’.

L3 Find all words that are annotated as NE in CoreNLP and NN in Mate.

Following the above definitions, and recalling the respective expressiveness prop-
erties of the QLs presented in sections 2.1-2.3, we can locate those languages at the
following CQLF Levels.

Poliqarp QL shows compliance with Level 2 thanks to its within operator
(cf. example 10) that allows the retrieval of structures contained within certain
spans (sentences and paragraphs).

COSMAS II QL is compliant with Level 2 for its ability to query for contain-
ment of words, sequences or phrases within other structures via the #IN and
#OV operators (cf. examples 16–18)

ANNIS QL qualifies for Level 3 due to its ability to access concurrent annota-
tion layers within the language proper (cf. example 30). It is also L2-compliant
because of the possibility to query for dominance and dependency annotation
(cf. examples 28 and 29).12

3.2 Feature ontology

The second aspect of the establishment of CQLF as a metric involves the specifi-
cation of a feature ontology. In principle, this is a more fine-grained collection of
QL expressiveness criteria that allows for a more exact comparison and evaluation
of QLs, especially such that belong to the same coarse CQLF Level. This collection
aims to comprise the set of features attested in a wide range of QLs.

It shall be noted that the work on this feature ontology is still in progress and
nowhere near complete, such that more a detailed account cannot be given at this
point. However, this aspect of the theoretical side of CQLF is certainly the one which

12The reader might question the raison d’être of other QLs if ANNIS is powerful enough to subsume
them in terms of expressiveness. The answer to this has two dimensions: (i) not every corpus query
engine aspires to be powerful enough to support all features of a QL, be it for concentration on
specific research questions or for a trade-off between speed and linguistic detail and (ii) there are,
besides expressiveness, several factors that determine the ‘quality’ of a QL (see the introductory
section of this thesis), and users might have grown accustomed to specific QLs or want to replicate
results from earlier work using the exact same queries.

22

is of most relevance to the practical work of defining a concrete CQLF serialisation
format. In particular, the present thesis, with its detailed study of three query lan-
guages and its careful analysis of the equivalence of certain features in those QLs,
may well inform future work in the specification of the CQLF feature ontology.

23

Part II

Specifications of the KoralQuery
Protocol

4 KoralQuery: A CQLF metalanguage

The original proposal of a corpus query lingua franca in Mueller (2010) conceived of
it as a generic query language that can be processed by a wide range of corpus query
systems and thus enables them to interoperate. The creation of such a metalanguage
has (besides the described development of a metric for query languages) essentially
formed the second major work item of the CQLF endeavour and is presented in the
remainder of this thesis under the name KoralQuery. Before the concrete approach
to the development of the metalanguage as well as its detailed specifications and
properties are presented in the remainder of the thesis, this section discusses the
requirements and caveats that are raised by such an enterprise.

To avoid getting on the wrong track with the term ‘metalanguage’ and, conse-
quently, the entire project, it is worth noting what is actually meant by the term
in the present context. Rather than a true interlanguage in the sense of Jespersen
(1930), which would be understood and spoken by ‘speakers’ of different query
languages, KoralQuery is more to be thought of as a pivot language that defines
the target space for one-way mappings from concrete QLs. Importantly, this pivot
language is not primarily intended to be understood or spoken by humans, but by
corpus query systems. As a consequence, KoralQuery is not designed to promote
the mutual intelligibility between QLs from the human point-of-view (e.g. allowing
a user familiar with language A to understand a query in language B by means of
the metalanguage), but instead to allow query systems to understand different QLs,
provided that those can be translated into the metalanguage and that the query sys-
tems can process the metalanguage.

This illustrates the two central benefits that come with a corpus query lingua
franca:

(i) query engines are able to use different query languages interchangeably,

(ii) query engines can interoperate.

24

The first of these two points, which is concretely put into practice in KorAP, is
primarily of interest for the end user, who may choose to formulate a query in any
of the available QLs. The second aspect, by contrast, allows for a cross-platform
retrieval of query results. This can be very helpful in a distributed architecture of
query systems, where different systems have access to different data but can (possi-
bly depending on user permissions) collaboratively process user queries and com-
bine their results in a federated search environment (an example of which is the
CLARIN Federated Content Search).

In order to provide the sketched benefits to a full extent, the development of the
KoralQuery specifications is subject to certain principles and requirements address-
ing the expressiveness of the metalanguage as well as aspects of maximal flexibil-
ity and minimal redundancy. The remainder of this section discusses these points
and makes some preliminary suggestions of possible solutions, which will serve
as guidelines for the subsequent elaboration of the KoralQuery type and operation
specifications in section 5.

4.1 Expressive power

A (formal) language is a set of strings that are composed of primitive symbols ac-
cording to certain production rules (Harrison, 1978). Naturally, a minimal require-
ment for a true lingua franca is to cover all features of the languages which it is
supposed to subsume, i.e. it needs to be a superset of all its covered languages in
the sense of the previous definition. However, as KoralQuery is not intended to be
a query language proper that would be directly used by researchers to send queries
to a system, but instead is a set of abstract representations of query concepts, we ap-
proach this requirement in an indirect fashion. In particular, the superset quality of
KoralQuery relates to the abstract representation of queries rather than actual query
strings, such that our goal is to define KoralQuery and its serialisation in such a way
that every concrete query (in any of the supported QLs) can be mapped to what is a
valid KoralQuery query representation.

Note that, of course, KoralQuery does not claim to be a global lingua franca in
the sense that it could be used to represent queries formulated in any existing lan-
guage, but is for now limited to the three QLs that were presented in the first part
of this thesis. However, those languages represent quite different QL families and
comprise a fairly broad array of features, such that the most important demands
of query languages in general are covered by the unification of these languages (cf.

25

table 2.1).

4.2 Linguistic theory neutrality

Most existing corpus query languages have been designed with specific data mod-
els in mind. The choice of a data model, in turn, is often motivated through spe-
cific types of queries that a querying system is supposed to answer, and therefore
influenced by certain linguistic theories. For instance, ANNIS QL is tailored to-
wards exploring graph-based annotations such as constituents and pointing rela-
tions, whereas COSMAS II QL and Poliqarp QL are mainly intended to query for
sequential structures. Along similar lines, in the case of Poliqarp QL, morphosyntac-
tic annotations are restricted to a limited number of categories with fixed signifiers,
e.g. pos for parts-of-speech or degree to indicate adjectival comparison (positive,
comparative or superlative form).

Clearly, such specificity is unwanted in a metalanguage, which needs to be flexi-
ble enough to cover as many linguistic phenomena and theories as possible. Koral-
Query is therefore required to be neutral with regard to

(i) the type and structure of linguistic annotation on the data (e.g. hierarchical
constituent structure, graph-based dependencies, flat morphosyntactic anno-
tation etc.), and

(ii) the choice of specific tag sets, e.g. for part-of-speech annotations or depen-
dency labels.

The KoralQuery protocol that this thesis proposes intends to achieve such neu-
trality as follows. A maximal independence from the annotation type and structure
is ensured through a modular, nestable system of types and operations. The com-
bination of those different types and operations allows for the representation of ar-
bitrarily complex linguistic patterns. In particular, the highly flexible relation op-
eration (cf. Section 5.8) allows access to any arbitrary annotation layer that encodes
linguistic relations between two or more linguistic entities (e.g. tokens or phrases).
This is possible through setting particular constraints on the foundry and layer, i.e.
the relation operation encodes this information by means of certain parameters.

Neutrality with respect to grammatical category names and tag sets is guaran-
teed by the unrestricted specification of key-value pairs within a term object (cf.
Section 5.5). This object also allows the specification of a particular foundry and

26

layer in order to access certain annotation sources and layers. It is even possible to
access different foundries and layers on the same data, using different values for the
aforementioned attributes within a single query.

Of course, language-side neutrality is not enough for a query system to allow
access to any sort of linguistic annotation. Firstly, this annotation needs to be made
accessible through an index or some other backend technology (e.g. a graph or a re-
lational database). Secondly, the system still needs to interpret the query representa-
tion and its various combinations of operations and types. Both these requirements
are by no means trivial to meet, and it might in many cases be sensible for a query
system to only actively support a subset of the many different KoralQuery features,
depending on resources and the intended application.

4.3 Redundancy avoidance

Another principle for KoralQuery as a metalanguage addresses the avoidance of
redundant structures, i.e. the presence of multiple language elements expressing
equivalent linguistic concepts. While this is certainly a very straightforward and
(obviously) well-motivated claim, putting it into practice is not always trivial when
trying to map concepts from very different QLs to a single super-language. The
principal reason for this is probably the difficulty to recognise equivalent concepts
across QLs, possibly due to different intentions or implicit assumptions behind cer-
tain features in different languages, or plainly because operators differ highly in
their syntax. The latter aspect also becomes challenging in programming, when im-
plementing an automatic translation from different QL syntax types to a common
format.

The goal of avoiding redundancy is equivalent to keeping the language minimal,
e.g. not defining a dedicated operation for optionality (i.e. the optional realisation of
a query element) when an operator for repetition is already present and can capture
optionality (through claiming that a query element occur 0 or 1 times at a certain po-
sition). In general, where applicable, one should try to express certain QL concepts
through (combinations of) existing concepts in order to spare as many individual
types and operations as possible.

However, while looking to discover equivalences between operations across QLs,
it is crucial to be sensitive to potentially subtle differences between seemingly equiv-
alent structures. An example of this is the #OV operator in COSMAS II and the _o_

(overlap) relation in ANNIS QL, see footnote 9.

27

4.4 Object nesting and return values

Another central characteristic of the KoralQuery protocol is that the types and op-
erations listed below are nestable, i.e. one object can be dominated by another. This
means that the former is an argument of the latter or, in other words, that an opera-
tion defined in the parent object takes scope over the the nested object. For example,
a query that asks for the phrase query language contained in a verb phrase will be
represented as an object specifying a containment operation with two operands (ar-
guments), namely the verb phrase object and the object for the phrase query language
(which in turn has two operands, namely the tokens it consists of).13

A KoralQuery instance is thus a tree structure with a single root element that
corresponds to the central linguistic relation defined in the query and leaf elements
that usually correspond to low-level linguistic structures such as token attributes
(e.g. the requirement that a matched token has a certain part-of-speech tag or surface
form). The depth of the query tree depends directly on the complexity of the query,
more concretely on the level of embedding of linguistic and meta-linguistic con-
straints as defined below. The different types take different numbers of operands,
ranging from no embedded objects for the typical leaf nodes to an infinite number of
operands for sequences (see the sequence operation in Section 5.3.1). The ordering
of an objects’ operands, which are represented as a list, is generally of relevance as
it regulates which argument has which function in operations that are not commu-
tative.

Nesting several KoralQuery objects means that return values are passed on from
lower-level objects (i.e. more deeply-nested sub-queries) to higher-level objects. Gen-
erally, the return value of a KoralQuery object14 is a text span, which in turn is de-
fined through a start and an end offset with respect to the underlying data. Thus,
in the above example (a sequence that is embedded into a positional relation query
with another phrase) the individual sub-queries (the sequence and the verb phrase)
return text spans which are then evaluated for satisfying the positional constraint.

13Note, however, that this nesting is by no means arbitrary or unregulated. In fact, there are dif-
ferent categories or types of objects that are compatible with each other. The definitions of those types
and the constraints on their combination are provided in the following section.

14Strictly speaking, this is only true for basic types and the group type (again, see the following
section).

28

5 KoralQuery types and operations

The following KoralQuery specifications list a range of linguistic and operational
types which can be grouped into the following two classes.

• Span types denote spans of text. They can be further sub-classified into (i)
basic types that represent shallow linguistic entities such as words, phrases and sen-
tences15 and (ii) complex types that define linguistic or result-modifying operations
on a set of elements of basic or complex types.16 Central to complex types is that
they maintain a list of operands, which are the elements on which the introduced
operation works.

• Parametric types contain specific information that is required by certain span
types. They are intended to normalise the usage and representation of similar or
equal parameters used across those types. Many complex types, for instance, re-
quire some way of expressing a numeric range of a minimum and maximum value
to quantify the instantiation of a certain relation. Rather than expressing such ranges
in the complex types directly, those types contain a boundary type with a consistent
syntax and semantics across its usages.

All of those types are themselves complex structures in that they are composed of
a specific set of obligatory and optional attributes that carry corresponding values.
Those values, in turn, are also constrained to be of specific data types. They can
either be primitives (like string, integer or boolean), parametric KoralQuery types,
or controlled values. In the latter case, the attribute type is indicated by @id in the
specifications below.17

To fully specify the different KoralQuery types, they are defined below with re-
spect to three criteria.

i. Their type class (i.e. whether they are basic, complex or parametric types)

ii. Their denotation and function
15The reader may doubt the ‘shallowness’ of phrases and sentences, as these types are complex in

the sense that they consist of sub-phrases that in turn may be composed of other elements. In the
context of a data model that defines these types as spans over character offsets, however, phrases
do not differ significantly from tokens given their definition through start and end offsets that are
independent of any potential subordinate spans or tokens.

16Such linguistic operations may be precedence or dominance relations between two spans, while
result-modifying operations allow for, e.g., disjunction of matches or the re-definition of match spans
according to specific constraints.

17The choice for @id to denote controlled values is grounded in the usage of JSON-LD as a seriali-
sation format for KoralQuery (see Sec. 8), where the @id keyword serves “to uniquely identify things
that are being described in the document with IRIs or blank node identifiers” (Sporny et al., 2014).

29

iii. Their obligatory and optional attributes as well as the respective types and
semantics of those attributes

Optional attributes are prefixed with an asterisk (∗). Attribute type indications in
brackets denote an array of the types enclosed in the brackets.

5.1 The token type

A token is a basic type and denotes a string of characters making up a single surface
word form with respect to a tokenisation layer in the annotations. It is defined
through the start and end offsets of that word form, whose requested properties
are specified in a term or termGroup held by the wrap attribute.

Attribute Type Values/Description

wrap term or termGroup Holds information on search key, foundry,
layer, value.

5.2 The span type

The basic type span denotes a linguistic entity that stretches across one or more to-
kens and typically corresponds to a grammatical phrase, although paragraphs or
other discourse units may be represented as spans, too, depending on the under-
lying data. Spans are interpreted with respect to a foundry, a layer and a key,
the latter of which indicates the phrase type (or, more generally, category) of the re-
quested entity (e.g. s for a sentence or np for a noun phrase, again depending on the
annotations). Graph-theoretic properties of the span element (such as the number
of children or whether this is the leftmost child of its parent) can be specified using
attr (see query (34) for an exemplary use case).

Attribute Type Values/Description
∗foundry string The foundry in which the span is annotated.18

∗layer string The layer in which the span is annotated.
key string The span category.
∗match @id Matching behaviour for key (see Sec. 5.9).

Available values: eq, ne.
∗attr term or termGroup Holds information on span attributes.

18If the optional foundry is not set, the query system is expected to interpret the layer and key

specifications with respect to a default foundry.

30

5.3 The group type

A KoralQuery group is a complex type in that it establishes a certain relation between
its operands via the obligatory operation attribute, which specifies the exact na-
ture of the relation and is explicated in further detail in the following section. The
arguments of the operation, i.e. the objects upon which the operation is defined,
are expressed in a list called operands. While these arguments are usually span
types regardless of the concrete operation, the number of operands as well as ad-
ditional parameters of the group depend on the operation. For instance, a position
operation demands the specification of a frame attribute as well as exactly two ar-
guments, while a disjunction operation does not call for any parameter, but requires
a minimum of two operands. Those constraints are explicated for every individual
operation below.

Where not otherwise stated, the match that the operations yield is defined as the
text area reaching from the start offset of the match for the leftmost span as defined
in the operands to the offset of the rightmost span match. However, individual
query language processors (see Section 9) will define classes around the arguments
of certain operations to make those available for referencing when the match is ex-
pected to only consist of one or more operands rather than the entire text area that
they span.19

Attribute Type Values/Description

operation @id Operation definitions: see Section 5.3.1.
operands [span types] Depends on operation. See operation definitions

for details.

5.3.1 Group operations

This section lists all linguistic relations and result modifiers as made available by the
operation attribute of the group type. The distinction between linguistic relations
and result modifiers may not always be clear-cut (e.g. in case of the repetition

operation) and is to be thought of as an intellectual aid rather than a functional
dichotomy. Attached to each operation is a listing of the obligatory and optional
parameters (if any) that closer defines the relation introduced by the respective op-
eration.

19The concepts class and reference will be introduced and defined later in this chapter.

31

Linguistic operations

The position operation

This operation establishes positional constraints between its operands, which means
that the spans denoted by the operands are in some linear relation (e.g. overlapping,
left-aligned, ...) with respect to surface text offsets. The specific valid positional rela-
tions are given by the frames attribute, whose values are to be treated as alternatives.
More concretely, this operation matches all spans that satisfy any of the constraints
expressed in frames. The values for this attribute are usually third-person verbs,
implying that in the case of asymmetric frames, the first operands ‘governs’ the
second (cf. the startsWith frame). Position operations can be negated using the
Boolean exclude attribute, which matches all but the respectively specified frames.
See Section 5.9 for definitions of all frames.

Attribute Type Values/Description

frames [@id] Lists the allowed positional relations (see table 5.1).
∗exclude boolean If true, negate the positional relations20

operands [span types] No. of operands: 2. First operand corresponds to A
in the definitions in table 5.1, second operand to B.

The sequence operation

As another linear position constraint, a sequence operation requires that its operands
are in a sequential order. They need not immediately precede each other, but may
be separated by other elements as specified by the distances attribute (if set). The
Boolean inOrder attribute specifies whether the ordering of the operands is of rele-
vance for the sequential relation.

Attribute Type Values/Description
∗distances [distance] Distance constraints between operands .
∗inOrder boolean false: order of operands is irrelevant.
operands [span types] No. of operands: 2+. Objects occurring in sequence.

Distance constraints hold between each two
subsequent operands in the list.

20In this case, only the first operand will be returned.

32

The relation operation

This is a versatile operation that introduces a directed graphical (i.e. ‘pointing’) lin-
guistic relation between its arguments. The exact nature of the relation (expressed
by its foundry, layer and key bindings with respect to the underlying data) is in-
dicated by the relation attribute, such that a great degree of flexibility is retained
for this type. Depending on the annotation defined in that attribute (and if such an
annotation layer exists in the data), this group may express constraints that pertain
to syntactic dependencies, coreference relations, or any other two-place linguistic
relation.

Attribute Type Values/Description

relation relation Specifies relation between operands.
operands [span types] No. of operands: 2. The directed relation holds

between the first and the second operand.

Result-modifying operations

The disjunction operation

This is a non-exclusive disjunction operation on its operands. Any match of any of
the arguments will be returned. Hits can be grouped using a merge operation (see
below).

Attribute Type Values/Description

operands [span types] No. of operands: 2+. The operation returns any
span that matches one of the operands in the list.

The repetition operation

This operation requires that its argument is repeated a certain number of times,
forming a coherent sequence in the text. The number of times that the argument is
repeated is specified using the boundary attribute.

Attribute Type Values/Description

boundary boundary The argument’s minimum and maximum repetition.
operands [span types] No. of operands: 1. The repeated object.

33

The class operation

This operation introduces a numbered identifier (called a class) for its operand.
Classes can be used for grouping and referencing individual elements in a Koral-
Query tree. This is, for instance, necessary in cases where several constraints are
expressed on the same linguistic entity. Other constructs that make use of classes
are displaying directives.

Attribute Type Values/Description
∗classIn [int] Input class numbers
classOut int Output class number
∗classRefCheck [@id] Set-theoretic condition on input classes.

Possible values: see 5.9. Requires exactly two
input classes. Results that do not fulfil this
condition are excluded from the result set.

∗classRefOp @id Operations on input classes, creates new
output class. Possible values: see 5.9.

operands [span types] No. of operands: 1. The object on which the
class is declared or the operation works.

The merge operation

Wrapped in this operation, the result set of the operand is condensed by merg-
ing equivalent matches (which start and end at the same offset), also merging their
classes.21

Attribute Type Values/Description

operands [span types] No. of operands: 1. The object whose matches
are condensed.

5.4 The reference type

The complex type reference offers two basic modes by which specific sub-elements
of the query may be referenced using the parameters classRef or spanRef.

The first mode defines a sub-query in its operands list and reduces each span
returned by that sub-query to sub-spans. The specific elements to be returned (e.g.

21An example of this would be a match for a query that features a disjunction, and where some
span in the result set satisfies both constraints in the disjunction. In the default case, the match
appears twice in the result set, but is condensed to one hit using a merge operation.

34

a certain token) can be defined using a class operation and corresponding class ID
entries in the classRef attribute. Alternatively, this mode allows to ‘shrink’ a result
to a specific set of counting tokens, e.g. the first three tokens of the result or tokens
five to eight, similar to the substring methods in many programming languages.
These sub-spans are indicated using a spanRef.

Applied in the second mode, a reference does not contain an operands list, but
a mere classRef attribute which refers back to classes previously defined elsewhere
in the query tree.

In both its modes, the central benefit of this type is to provide an embedding
operation with access to specific elements defined in the operands of an operation

embedded by the reference which would otherwise be unavailable. This is essential
for queries that comprise multiple predications on the same entity. More concrete
illustrations of the necessity of this type are provided in section 9.4.

Attribute22 Type Values/Description

operation @id focus: Reduce the operand match to classes
as defined in classRef or tokens as defined
in spanRef (mode 1). Get a copy of the
match for the class in classRef (mode 2).
split: Spans in the operand bearing the same
class form individual matches (mode 1 only).

∗classRef [@id] Classes to which the operation is applied.
∗spanRef [@id] Requires one or two entries: The first number is

the start token position, the second, if specified,
the number of tokens to return.

∗operands [span types] No. of operands: 1. The object whose match is
to be reduced.

5.5 The term type

This parametric type defines properties encoded in a certain foundry and layer on
tokens or other elements. A string value, e.g. the surface or lemma form (depending
on the respective layer), is held by the key attribute, while value is used in com-
bination with key to express two-place properties such as morphological key-value
pairs, e.g. tense:pres. A key is interpreted with respect to case by default, which

22The reference type requires that (in mode 1) either classRef or spanRef is set.

35

can be disabled setting the Boolean caseInsensitive attribute to true. Beyond that,
the interpretation of the key may by manipulated using the type attribute, which al-
lows the key to be interpreted as a regular expression, among others. Ultimately, the
match attributes allows for manipulations of the result set, e.g. by demanding that
only tokens not satisfying the key/value condition be returned.

Attribute Type Values/Description
∗foundry string The annotation foundry.
layer string The annotation layer.
key string The search key.
∗value string Denotes the value in key-value annotations,

e.g. tense:pres in a morphology layer.
∗match @id Matching behaviour for value (if given,

else key). Available values: eq, ne
∗type @id Type interpretation for value (if given,

else key). Available values: string,
regex, wildcard, punct

∗caseInsensitive boolean true: key matching not case-sensitive
∗root boolean true: This element forms the root of a tree,

e.g. a dependency annotation (dep. on layer).
false: Must not be root.

∗arity boundary The element’s number of children in
a certain annotation (indicated by layer).

∗tokenarity boundary The number of tokens a span governs.

5.6 The termGroup type

Several metadata constraints expressed in individual term objects can be grouped
in the parametric type termGroup that specifies a logical operation (AND/OR) on its
operands. Depending on this relation, either all or at least one of the constraints
in the operands must hold. A termGroup may also embed another termGroup, such
that conjunctions and disjunctions can be nested.

36

Attribute Type Values/Description

relation @id and: Conjunction of constraints in operands
or: Disjunction of constraints in operands

operands [term or No. of operands: 2+. The constraints on which
termGroup] the logical operation works

5.7 The distance type

This parametric type allows to specify a distance between the operands of a sequence

with respect to some measure key (e.g. words, sentences). The distance range, i.e.
the minimum and maximum values of key elements that one would need to ‘travel’
from one operand to the other, is indicated using the boundary attribute. Thus, the
distance from one token to another token directly succeeding it is specified through
the measure w (for word-distance) and the range min:1, max:1 contained in a bound-
ary object. The type also defines the Boolean exclude attribute, which excludes the
occurrence of the operands within the present distance if set to true.

Attribute Type Values/Description

key string Measure of distance, may be w for words, s for
sentences, p for paragraph, or t for text.

∗foundry string Foundry in which the distance measure is annotated.
∗layer string Layer in which the distance measure is annotated.
boundary boundary Indicates degree of distance.
∗exclude boolean true: Containing sequence returns first operand if

not within specified distance of second operand.

5.8 The relation type

Operations specifying directed two-place relations between their first and second
operand encode details on those using the parametric type relation, which in turn
contains a term or termGroup held by the wrap attribute, analogously to the practice
for tokens. In order to capture a transitive relation23 between the operands, the
degree of the relation may be indicated using the boundary attribute.

23That means an indirect relation, like the dependant of a dependant of some token.

37

Attribute Type Values/Description

wrap term or Holds information on layer key, foundry, layer,
termGroup value

∗boundary boundary Indicates degree of relation.

5.9 Attribute values

The following specifications list and define the possible values that attributes with
controlled values may take.

The match attribute

This attribute determines the matching behaviour for a certain attribute of a certain
KoralQuery type.24 For instance, this attribute may postulate that a given attribute
shall not be matched.

Attribute Description

eq The key/value matches the data.
ne The key/value does not match the data.
leq The value is less than or equal to (≤) the key data.25

geq The value is greater than or equal to (≥) the key data.
contains The value is contained in the data of key.26

excludes The value is not contained in the data of key.

The type attribute

This attribute declares the type of another attribute contained in the same object,
thus providing information on how to interpret that attribute. This is necessary to
distinguish regular expressions or dates represented as RFC-3339 strings from plain
strings.

24To which attribute this applies is determined by the respective type that holds the match attribute,
and might be a key (for span objects) or a value (for terms in which value is specified, e.g. as a
morphological value).

25Obviously, this only applies to numerical values, such as dates in virtual collection queries (see
Sec. 6.1).

26This value only applies to virtual collection queries. An example of this is a query that requires
a certain word to be contained in the header of a document.

38

Attribute Description

string Interpret key/value as plain string.
regex Interpret key/value as regular expression.
punct Interpret key/value as punctuation symbol.
date Interpret key/value as date.27

The classRefCheck attribute

This attribute postulates some set-theoretic relation to hold between two classes that
are defined in the classIn array of the containing class operation group (see Sec-
tion 5.3.1). That group then only returns those results from the operands that fulfil
the condition expressed by the classRefCheck. Those that do not fulfil that condi-
tion are excluded from the result set. In the table below, A and B denote the sets of
tokens that are subsumed under the first and the second class in classIn, respec-
tively.

Attribute Condition Description

disjoints A ∩ B = ∅ The classes do not share a token.
intersects A ∩ B 6= ∅ The classes share at least one token.
includes A ⊃ B Class A is a proper superset of class B.
equals A = B The classes subsume the same tokens.
differs A 6= B The classes do not subsume the same tokens.

The classRefOp attribute

This attribute specifies a set-theoretic operation on the input classes in classIn

which results in a new classOut to be returned by the containing class operation
group. The operations in the table below are the available class definition functions.
The set notation defines which of the tokens t in the span are to be included in the
new class. Ci stands for the i-th class defined in classIn.

Attribute Definition Description

union {t|t ∈ ⋃
i Ci} Tokens that are in any of the classes.

intersection {t|t ∈ ⋂
i Ci} Tokens that are in all of the classes.

inversion {t|t /∈ ⋃
i Ci} Tokens that are in none of the classes.

deletion ∅ No tokens (creates ‘empty’ pseudo class).

27This type only applies to metadata queries.

39

The frames attribute

This attribute specifies the exact positional relation between two spans connected
by a position operation. The list of position frames in table 5.1 is adapted from the
typology of overlap relations of markup elements in (Durusau and O’Donnell, 2002).
In the table, two spans A and B are represented as <a>... and ...,
respectively, for illustration.

6 Meta-information on the query

While the elements specified in the previous section all describe the linguistic query
itself, the KoralQuery protocol reserves a set of objects that may contain various
meta-information on the query. Those currently pertain to document filtering by
metadata constraints and displaying directives, and are specified below.

6.1 Document-level filtering

KoralQuery provides a possibility to specify metadata constraints that act as filters
on document collections using the collection attribute. This functionality is mo-
tivated through metadata-filtering devices such as the meta keyword in Poliqarp
and the concept of virtual collections in KorAP. In the latter case, those metadata
constraints serve a dual purpose. Besides the obvious benefit of allowing users to
restrict their search to documents that meet specific requirements such as publica-
tion date, authorship or genre, they can be used on the system side to control access
to texts that the user has no permission to read, e.g. for copyright reasons.28 Upon
receiving a query, the KorAP backend may then add a constraint in collection to
restrict the set of searched documents to specific subcorpora, cf. (Bański et al., 2014).

6.1.1 The doc type

This type represents a single metadatum constraint using its key and value at-
tributes. Metadata constraints pertain to documents, such that a doc object describes
a document that fulfils (or does not fulfil, depending on the match attribute) the
specified condition.

28Many of the texts in DEREKO, for example, are accessible for IDS members only, and require the
user to belong to a respective user group.

40

Frame Definition Illustration

succeeds
a.start > b.end

<a>....

....

succeedsDirectly
a.start == b.end

<a>........

.......

startswith
a.start == b.start &&

a.end > b.end
<a>..................

......

endswith
a.start < b.start &&

a.end == b.end
<a>..................

......

overlapsRight

a.start > b.start &&

a.end > b.end &&

a.start < b.end

<a>............

.........

alignsRight
a.start > b.start &&

a.end == b.end
<a>.........

..................

isWithin
a.start > b.start &&

a.end < b.end
<a>....

..................

matches
a.start == b.start &&

a.end == b.end
<a>..................

..................

alignsLeft
a.start == b.start &&

a.end < b.end
<a>.......

..................

isAround
a.start < b.start &&

a.end > b.end
<a>..................

....

overlapsLeft

a.start < b.start &&

a.end < b.end &&

a.end > b.start

<a>............

.........

precedes
a.end < b.start

<a>....

....

precedesDirectly
a.end == b.start

<a>.......

........

Table 5.1: Definitions and illustrations of available frames values.

41

Attribute Type Values/Description

key string The metadatum attribute.
value string The metadatum value.
∗type @id The type of the value (see Sec. 5.9).
∗match @id Matching behaviour for value (see Sec. 5.9).

6.1.2 The docGroup type

This type introduces a Boolean conjunction or disjunction on its operands, which
in turn are doc or other docGroup objects. It it thus possible to define several meta-
data constraints and to connect them logically, describing documents that fulfil the
combined conditions.

Attribute Type Values/Description

operation @id and: Conjunction of constraints in operands.
or: Disjunction of constraints in operands.

operands [doc or No. of operands: 2+. The constraints on which
docGroup] the logical operation works.

6.2 Displaying directives

KoralQuery offers the definition of displaying directives that influence the presen-
tation of search results in a KWIC view. Two such directives are implemented, both
using lists of integers to refer to classes defined in the query. The highlight attribute
specifies which of the classes are to be highlighted in the results display. Implementa-
tions of corpus search engines that employ KoralQuery may use this to typeset the
spans covered by different classes in different styles, e.g. to underline or color them,
or to set them in bold face or italics. Similarly, the align attribute refers to classes
that serve as alignment anchors in KWIC, creating one or more columns across the
results on which the respective classes are aligned.

Attribute Type Values/Description

highlight [int] IDs for classes to be highlighted in KWIC.
align [int] IDs for classes that serve as alignment anchors in KWIC.

42

7 PoliqarpPlus QL: a KoralQuery model language

The process of specifying KoralQuery was complemented with the definition of a
concrete model language that was used to simultaneously illustrate KoralQuery
concepts and to assist the implementation of KoralQuery types and operations in
the KorAP backend using concrete queries. This model language was constructed
by gradually extending Poliqarp QL29 with numerous constructs as defined below.
An exact definition of the query language is provided by the ANTLR grammar that
is used to parse PoliqarpPlus input in the translation component Koral (see Section
9.2).30

Tokens

PoliqarpPlus extends the functionality of Poliqarp to express token properties at
a more fine-grained level, allowing for the specification of foundries and values
besides the native layer and key. An example of a token definition using foundry
and value is provided in (36), while a negated constraint is illustrated in (37). Those
constraints may also be connected by logical operations (38), which also makes it
possible to query different annotation sources (foundries) on the same data (39).

(36) [mate/m=tense:pres]

A token in present tense, annotated in the morphology layer of the mate

foundry.

(37) [p!=VVFIN]

A token whose part-of-speech is not VVFIN (finite main verb in the STTS tag
set).

(38) [orth=sie & m=number:sg]

A token with the surface form sie, that is in singular number according to the
morphology layer (of the default foundry).

(39) [mate/p=N & cnx/p=NE]

A token that is annotated as a noun (N) in the mate foundry but as a proper
noun (NE) in the cnx foundry.

29The choice of Poliqarp QL over ANNIS QL was mainly motivated by the straightforward intro-
duction of nestable operators, which made for an easy translation of the query language to Koral-
Query, cf. Sections 9.2 and 9.4.

30The grammar is available at the Koral GitHub repository.

43

Spans

With the exception of restricting matches to occur inside single sentences or para-
graphs using within s|p, native Poliqarp QL does not provide a way to query for
span annotations representing sentences or other phrases. PoliqarpPlus offers this
functionality by specifying spans in angle brackets. As for tokens, spans can be
specified with respect to a foundry, layer and key ().

(40) <NP>

A noun phrase.

(41) <cnx/c=NP>

A noun phrase according to the constituency layer of the cnx foundry.

Regular expressions

PoliqarpPlus allows the user to specify certain attributes with regular expressions,
indicating them by double quotes. Regular expressions are generally permitted for
key attributes, as is exemplified for tokens and spans, respectively, in (42) and (43).

(42) [orth="B(u|ü)ch(er)?"]

A token whose surface form matches the given regular expression.

(43) <cnx/c="S.*">

A span whose category as defined in the cnx constituency layer starts with S.

Relations

The relatesTo() operator provides access to hierarchical relations as defined by
CQLF Level 3 and represented in KoralQuery by the relation operation. As this
type can be parametrised with a term or termGroup to specify constraints on the
relation (such as the foundry and layer in which it is annotated), the relatesTo()

operator allows the specification of parameters. The dominates() operator is a short
form for relatesTo(c:), i.e. it automatically binds the relation constraint to the con-
stituency layer, given that the constituency layer in the default foundry is identified
by c. Consequently, examples (45) and (46) are equivalent.

(44) relatesTo(<s>,<np>)

A sentence span that is in some (unspecified) relation to a noun phrase.

44

(45) relatesTo(c:<s>,<np>)

A sentence for which a relation to a noun phrase is annotated in the
constituency layer.

(46) dominates(<s>,<np>)

Short form for the previous query.

(47) relatesTo(mate/d=SBJ:[orth=trifft],[pos=N])

A token trifft which has a noun as a SBJ (subject) dependant, annotated in the
dependency layer of the mate foundry.

Position operators

Positional relations between two spans can be indicated in PoliqarpPlus using the
operators listed in the table below.

Operator Meaning KoralQuery Frames

matches The two spans have the same matches

start and end offsets.
startsWith Equal start offsets, the second startsWith,matches

span does not exceed the first.
endsWith Equal end offsets, the second span endWith,matches

does not start before the first.
contains The second span does not start contains,startsWith,

before or exceed the first. endsWith,matches

overlaps The two spans overlap, overlapsLeft,

neither contains the other. overlapsRight

The syntax for position operations requires two comma-separated span-denoting
arguments that are enclosed in parentheses. The usage is illustrated in the following
examples:

(48) endsWith(<s>,[pos=PREP])

A sentence that ends with a preposition.

(49) matches(<np>, [pos=ART][pos=N])

A noun phrase that consists of an article and a noun.

45

Classes

KoralQuery class operations can be introduced in PoliqarpPlus by placing braces
around spans, where the span can additionally be prefixed with an integer and a
colon to define a specific class number. If no class number is indicated (as in example
50), the class will receive the default ID 1.

(50) [orth=see]{[pos=N]}

A sequence of a token see and a noun, with a class defined on the latter.

(51) [orth=see]{1:[pos=N]}

As above, explicitly assigning class ID 1.

References

PoliqarpPlus lets the user reduce the match span of a sub-query using the focus()

and submatch() operators, the first of which is defined to refer to a specific class and
therefore takes an optional class number as a parameter. Similar to class definitions,
if no class number is provided in a focus query, class 1 will be referenced. Examples
52 and 53 are thus equivalent. It is also possible to combine several classes in a
focus() query and specify logical operations (AND/OR) on them, such that only
spans that are covered by all or any of the defined classes are returned (example 54).

The submatch() operator is used to reduce a span to a specific sub-sequence of
tokens that it contains. To this end, two integer-valued parameters indicate which
token is the first to be included in the sub-sequence (with the first token in the span
assigned index 0, the second index 1, etc.) and how many tokens to include. A
negative value for the first parameter denotes the n-th last token in a sequence. If
no second parameter is provided, the remainder of the span (starting from the token
denoted by the first parameter) is returned.

(52) focus([orth=see]{[pos=N]})

A sequence of a token see and a noun, with the match span reduced to the
latter.

(53) focus(1:[orth=see]{1:[pos=N]})

As above, explicitly assigning and referencing class ID 1.

(54) focus(1&2:overlaps({1:[pos="V.*"][]{0,5}[pos="V.*"]},{2:<VP>}))

46

Two verbs separated by at most 5 tokens, which overlap with a verb phrase.
The match span is reduced to all tokens that occur in both operands of the
overlaps relation.

(55) submatch(0,2:<np>)

The first two tokens of a noun phrase.

Punctuation

Using the punct pseudo-layer, the user can specify a punctuation symbol to search
for. Additionally, by enclosing several symbols in double quotes, a pseudo character
class is defined (consisting of a full stop, a question mark and an exclamation mark
in example 57), such that any of those symbols is matched.

(56) [punct=.]

A full stop.

(57) [punct=".?!"]

A full stop, question mark or exclamation mark.

47

Part III

Serialisation of KoralQuery
This last part of the thesis addresses the concrete KoralQuery serialisation format as
well as the Koral query serialisation component which is used to translate queries
from a set of query languages to the meta format. To this end, occasional references
will be made to certain pieces of source code or other resources used by the serial-
isation component. The reader is pointed to the public GitHub repository31 where
all of those resources reside under the BSD-2 license.

8 JSON-LD as a serialisation format for KoralQuery

A serialised data format allows the platform-independent communication and inter-
operability between different (web) services. 32 Following the recommendation of
the ISO TC37 SC1 WG1, the KoralQuery protocol is serialised in a format based on
JSON-LD (Sporny et al., 2014), an adaptation of JSON (ECMA-404, 2013) directed
towards the transportation of linked data (Berners-Lee et al., 2001). The follow-
ing sections 8.1 and 8.2 give an introduction to the JSON-LD format and the use of
linked data in linguistic web services, respectively.

8.1 JSON-LD

JSON (JavaScript Object Notation) is a serialisation format for the text-based rep-
resentation of complex objects. Being more lightweight and human-readable than
XML, it is today a common alternative to XML serialisations and gaining popularity,
especially because of its more natural way of organising data into key-value pairs
versus the high level of abstraction that is found in XML. Importantly, JSON also
differs from XML in that it is not a markup language. This makes it generally much
more suitable for the representation of native data structures that can be found in
the most common programming languages, especially dynamic ones. At the basic
level, JSON offers the primitive types string, number, true, false and null. Next
to these, the JSON data model relies on two principal complex structures:

31http://www.github.com/jbingel/Koral. The tagged release v0.1 is relevant for this thesis.
32Serialisation here means the representation of a complex data structure in a sequential (possibly

textual) format, which can be stored and later resurrected in the same or in a different environment.

48

http://www.github.com/jbingel/Koral

objects, which are collections of key-value pairs. The key is always a string
(indicated by double quotes), while the value may be of any type. Objects are
denoted by braces, and key-value pairs are delimited by commas. Colons are
used to delimit keys and values.

arrays, which ordered lists of values. Again, the value may be of any type.
Arrays are denoted by brackets, and values are delimited by commas.

Embedding several levels of objects and arrays, JSON is capable of serialising data
of arbitrary complexity as long as it can be represented using the basic types.

JSON-LD adds to this flexibility the unique identification of objects across differ-
ent serialisations by means of URIs. To this end, the format provides a vocabulary
of special keys with well-defined semantics, which are consistent across individual
serialisations and thus allow for the uniform handling of JSON-LD objects in ap-
plications. For instance, JSON-LD objects carry a @type key whose value is a URI
that serves as an unambiguous identifier of the object’s type, such that any applica-
tion may refer to the type specifications to know exactly what other keys and values
to expect in this object as well as what they denote. Ideally, this very principle of
unique identification also holds for all keys and, depending on their respective type,
all values of an object. Consequently, following this principle in releasing JSON-LD
serialisations, also keys and values can be universally and unambiguously inter-
preted and processed. The examples in listings 1 and 2 contrast plain (unlinked)
key and value definitions with the expression of keys and values through unique
URIs in the context of geographic data.

It is apparent from the examples that the serialisations can become quite verbose
because of the replacement of short key and value strings with possibly long URIs.
As a strategy to prevent this, JSON-LD reserves the @context key, whose value is
an object that contains a set of mappings from shorthand names to URIs, thus es-
sentially forming a namespace for the remaining file and all key and value names
therein. Additionally, rather than providing the entire name-URI mappings with
every serialisation, the @context may also reference an externally accessible JSON-
LD object that defines the mappings, which has the obvious benefits of a short form
and consistency (cf. listing 3).33

33 The @context (or, in fact, any declaration of key-value types and conformances) may also act
as an extenuated form of a document grammar, similar to an XML schema. While it cannot directly
be used to validate the ‘grammaticality’ of a JSON-LD object in terms of key-value conformance, a
failed resolution of a key or value by means of the @context at least indicates that some value is not

49

1 {

2 "name": "Heidelberg",

3 "inCountry": "Germany"

4 }

Listing 1: Plain JSON representation of a city. There is no mechanism that ensures
that the keys and values, or the object in general, are identified uniformly by
different applications

1 {

2 "@type": "http://schema.org/City",

3 "http://schema.org/name": "Heidelberg",

4 "http://schema.org/containedIn":

5 { "@id": "http://www.geonames.org/countries/DE/germany.html" }

6 }

Listing 2: Typed and linked JSON-LD representation of a city. The @id keyword
declares that its value is a URI denoting a unique identification of the value (here
through the GeoNames database).

1 {

2 "@context": "http://example.org/contexts/geo.jsonld",

3 "@type": "City",

4 "name": "Heidelberg",

5 "containedIn": "http://www.geonames.org/countries/DE/germany.html"

6 }

Listing 3: Condensed JSON-LD representation of a city. Using an external @context
specification in which all the key terms and their value types are declared, the
serialisation gets less verbose.

8.2 Linked data in linguistic web services

While the linked data paradigm has been established in a number of applications
and scenarios that work with more discrete data and more concrete objects, it has
received relatively little attention in linguistic web applications. In fact, there is as
of now and to the knowledge of the author no such service that makes use of linked
linguistic data. However, as mentioned in the section on related work, an effort

defined for a certain key or that some key is not defined for a certain object @type.

50

to define a linguistic Web Service Exchange Protocol (WSEP) is currently being pur-
sued by Ide (2013). Through the specification of a common terminology of linguistic
objects, such a protocol would facilitate the communication and interoperability be-
tween services such as (web-interfaced) NLP tools , language resources or corpus
query systems. Also following the ISO recommendations, WSEP is based on JSON-
LD. While no definitive account of the specifications can currently be given due to
the state of WSEP as work-in-progress, the intention as formulated in Ide (2013) is
to distinguish three basic linguistic types (“labels”, “features” and “links”) that can
be used to capture linguistic objects, i.e. the input and output data types of various
NLP tools, at different levels of complexity. Thus, by specifying their required input
types and their provided output types, and as those types are well-defined within a
common format and framework, web services are able to know exactly how they re-
late to and interoperate with other web services, e.g. other upstream or downstream
NLP tools that they are pipelined with.

The KorAP search engine makes direct use of the JSON-LD based serialisation
of queries formulated in any of the supported QLs. With the benefits of JSON ad-
dressing mainly the aspects of lightweight and human-readable representations as
outlined above, the motivation for the use of a linked data paradigm such as JSON-
LD lies in the potential to communicate and exchange data with other web services.
In particular, sharing a common format for the representation of queries (and, on
the backend level, query responses) allows for federated search strategies across
query engines. For instance, a query that is submitted to KorAP can be forwarded
to other query engines that have access to other data, and the responses from those
systems (retrieval results, statistics, messages etc.) can be interpreted by KorAP and
integrated into the federated search response.34 An instance of a federated content
search can be found in the CLARIN project.

9 Translating queries to KoralQuery

The representation of KoralQuery as a JSON-LD protocol is possible through the
organisation of KoralQuery objects into key-value pairs, where the key can always
be described as a string (or, more precisely, as a URI which is expressed as a string
that is well-defined in the @context), and all values can be expressed using the types

34Naturally, this requires that all involved systems agree on the same vocabulary and definitions
of query and response types.

51

1 {

2 "@type" :"korap:token",

3 "wrap" :{

4 "@type" :"korap:term",

5 "layer" :"orth",

6 "key" :"corpus",

7 "match" :"match:eq"

8 }

9 }

Listing 4: JSON-LD representation of a token query.35

provided by JSON (see the previous section). For instance, a KoralQuery token

(as specified in Sec. 5.1) is serialised as the JSON-LD structure in listing 4. More
generally, every KoralQuery serialisation is a JSON-LD object with the following
obligatory keys:

– @context provides the JSON-LD context file

– query holds the actual query, i.e. nested KoralQuery structures

Optionally, the following attributes may be included:

– collection specifies the metadata for virtual collection creation

– meta contains, e.g., displaying directives

Listing 5 thus illustrates a skeleton KoralQuery serialisation . Naturally, the end
user of a corpus query engine cannot be expected to enter those relatively verbose
structures by hand – in fact, she not even expected to ever be confronted with these.
Therefore, the remainder of this section introduces a translation module that is ca-
pable of generating KoralQuery serialisations for queries that are issued in any of
the three supported QLs that have been presented in Sections 2.1-2.3. This section
will first draw on the general process of query translation and then scrutinise the
details of processing the individual QLs.

35Note that this snippet is incomplete in that it lacks a @context, i.e. a binding of the keys and
values to types and URIs. In addition, the values for the @type keys are undefined.

52

1 {

2 "@context" :

"http://ids-mannheim.de/ns/KorAP/json-ld/v0.2/context.jsonld",

3 "collection" :{},

4 "query" :{},

5 "meta" :{}

6 }

Listing 5: A skeleton KoralQuery instance

Figure 9.1: Query translation workflow illustration
Image source: (Bański et al., 2013)

9.1 General process

The translation of queries issued in some concrete query language to KoralQuery
serialisations is a two-step process. In the first step, the query string is parsed and
transformed to an intermediate representation, a so-called abstract syntax tree (AST).
If the query is well-formed and has been successfully parsed, the AST is translated
to KoralQuery-JSON by a QL-specific processor class in the second step. These two
steps are illustrated in figure 9.1. Sections 9.1.1 and 9.1.2 discuss the individual steps
in more detail.

The two steps correspond to two distinct translation units for each individual
QL. Consequently, to be able to add support for a new QL to the system, two units
or components must be implemented and plugged into a query engine, namely a
grammar to parse the input query and a processor to transform the resulting parses
into KoralQuery serialisations.

53

9.1.1 Query parsing with ANTLR

A query string is a hierarchical and/or sequential ordering of operators and ar-
guments (e.g. the MORPH() operator in COSMAS II, which may embed, or be em-
bedded in, other operations or sequences). In order to retrieve this syntactic struc-
ture of a query string (and thus to reveal the syntactic relations between query op-
erations), the present work uses the ANTLR framework (Parr and Quong, 1995).
With ANTLR, Java code36 is generated from a provided context-free EBNF gram-
mar that specifies the input language. The generated code then provides methods
to recognise an input string and, if successful, derive its syntactic structure and vis-
iting nodes in the parse tree. In the present implementation, QL-specific processor
classes (see the following section) make use of this code when they call the generated
parsers to obtain a derived AST.

For illustration, listing 6 shows a grammar for a reduced version of the Poliqarp-
Plus language. From this grammar, the syntax tree in figure 9.2 is generated for a
fairly complex query. The grammar is divided into two separate files, one of which
is used to generate a lexer, and the other to generate a parser. The lexer is used to
tokenise the input string and assign pre-terminal labels to the input tokens. Those
are then used by the parser to analyse the syntactic structure over the tokens.

In (co-) developing37 ANTLR grammars for the QLs supported in KorAP, one
principle has proven especially desirable to follow. As natural as it might seem,
grammars for additional languages should be modelled as closely as possible to the
target serialisation in order to keep the development of the AST processors rela-
tively straightforward. In other words, grammar development should pay attention
to the structures defined in KoralQuery such that the processors (see section 9.1.2),
in the optimal case, can translate the AST nodes directly through a 1-to-1 mapping
between AST categories and KoralQuery objects rather than having to be overly
context-sensitive in their translations, e.g. because a sequence would not be explic-
itly marked as such in the grammar (through a proper node) but instead would have
to be inferred from an implicit sibling relation of several nodes.

36Beyond Java, the current ANTLR release can also generate C# code, while earlier versions of the
software also supported several other languages such as C, Perl, Python and Ruby, to name a few.

37The grammars for ANNIS QL and COSMAS II QL were developed by Thomas Krause (HU
Berlin) and Franck Bodmer (IDS), respectively, and slightly modified by the candidate to satisfy spe-
cific needs in KorAP. The grammar for PoliqarpPlus QL was developed by the candidate, based on a
previous version by Nils Diewald (IDS).

54

1 lexer grammar PoliqarpPlusLexer;

2

3 LBRCKT : '[';

4 RBRCKT : ']';

5 LANGLE : '<';

6 RANGLE : '>';

7 LPAREN : '(';

8 RPAREN : ')';

9 COMMA : ',';

10 EQ : '=';

11 FRAME : 'contains'|'startswith'|'endswith';

12 WORD : ([a-zA-Z]|[0-9])+;

1 parser grammar PoliqarpPlusParser;

2

3 span : LANGLE WORD RANGLE ;

4 token : LBRCKT WORD EQ WORD RBRCKT ;

5 position : FRAME LPAREN segment COMMA segment RPAREN ;

6 sequence : segment segment+ ;

7 segment : span | token | position | sequence ;

8 query : segment ;

Listing 6: Toy ANTLR grammar for PoliqarpPlus consisting of a lexer and a parser
file.

9.1.2 Processing abstract syntax trees

This second step in the translation workflow amounts to processing the AST that
has been derived in the first step and generating corresponding Koral objects for the
elements in the AST. The serialisation to JSON-LD is done using the Jackson JSON
generator, which translates plain Java objects to JSON data structures. As one of
several ways to create JSON from Java, Jackson uses a java.util.Map to represent
JSON objects and a java.util.List to represent JSON arrays. The Koral translator
thus uses these Java types as intermediate structures to build the query tree.38 Thus,

38This work uses java.util.LinkedHashMap and java.util.ArrayList as the concrete imple-
mentations for the Map and List interfaces. The LinkedHashMap ensures an ordering of the key-value
pairs in the map (by the order in which they are added to the map), which is not strictly necessary
given that JSON objects are unordered anyway, but facilitates human readability. Furthermore, recall
that JSON objects always carry string keys and values of any type, thus the map is parametrised by
<String,Object>. Similarly, the list is parametrised by <Object>.

55

query

segment

position

contains (

segment

span

< s > ,

segment

sequence

segment

token

[orth = zu]

segment

token

[pos = ADJA])

Figure 9.2: ANTLR parse tree for the query contains(<s>,[orth=zu][pos=ADJA])

when this section and the following mention the ingestion of KoralQuery types into
the JSON tree, this is technically not correct. Instead, the types are represented as
Java maps or arrays, and are in fact inserted into a nested structure of maps and
arrays.

In general, first a QL-specific processor class calls the respective parser (as gener-
ated from the ANTLR grammar) to obtain the AST for a query (see the process()39

function in listing 7). Then, the AST (as exemplified in figure 9.2) is processed in a
top-down and depth-first fashion. More concretely, the processing of the AST starts
with a function processNode() applied to the root, then this function recursively
calls itself with its argument’s children. Depending on the node type that is being
processed at a given recursion, processNode() also calls a function that handles the
respective node, which amounts to creating an appropriate KoralQuery object and
inserting it into the KoralQuery tree. In order to know where exactly to ingest an
object in the generated tree, the algorithm makes use of an objectStack, onto which
any newly created object is pushed upon its creation. This allows descendent ob-

39For brevity, this section refers to methods in the QL-specific processor classes using only their
names, without the classes they are contained in and without their full signature (including argu-
ments or thrown exceptions).

56

1 public class SampleQLProcessor extends Antlr4AbstractQueryProcessor {

2 public void process() {

3 ParseTree root = SampleQLParser.parse(query); // SampleQLParser is

generated from ANTLR grammar

4 processNode(root);

5 }

6 public void processNode(ParseTree node) {

7 // process

8 switch (node.getCategory()) {

9 case "sequence":

10 processSequence(node);

11 case "position":

12 processPosition(node);

13 }

14 // recursively call this method on children

15 for (ParseTree child : node.getChildren()) {

16 processNode(child);

17 }

18 }

19 private void processPosition(ParseTree node) {

20 String frame = node.getChild(0).getText(); // e.g. "contains", always

first child of position node

21 Map<String, Object> positionMap =

22 KoralObjectGenerator.makePosition(frame);

23 putIntoSuperObject(positionMap); // inserts object into KoralQuery

tree

24 }

25 }

Listing 7: Toy processor class that transforms an AST to a KoralQuery tree40

jects, e.g. those generated from a node’s children, to be inserted into the operands

array of that object. When a node is completely processed (i.e. when the recursive
processNode() method has run on the node and all its descendants), the object gen-
erated from this node is popped from the objectStack and makes way for its right
sibling (if existent) to be inserted into the parent object and ultimately contain new
objects in its operands as well.

For instance, when processing the position node in the parse tree in figure 9.2,

40This pseudo-Java code will obviously not compile without import statements etc., and lacks sev-
eral methods that it references. It is intended to demonstrate the relevant structures and constructs
that the QL processor implementations display.

57

it is passed to a function by the name processPosition() which will create a corre-
sponding KoralQuery object (here: a group with a position operation and contains

as its frame). This group will then be inserted into the correct place inside the Ko-
ral query tree by the method putIntoSuperObject(). In this case, the KoralQuery
position group takes the root of the query tree as it is generated from the first
fully processed AST node.41 Later, when processNode() is called with the span

node, it generates a KoralQuery span element and inserts it into the operands of the
position group (see listing 8).

It is of course possible that the user input is not well-formed with respect to the
ANTLR grammar. In that case, no parse tree can be derived, and consequently, no
KoralQuery tree can be generated. While standard error messages from ANTLR are
often relatively cryptic, the AST processors register error listeners which transform
the ANTLR error response to a JSON object that contains an error code and an error
message, as well as an indication of the offensive symbol that prevents a successful
parsing of the input. This JSON object is included under an errors attribute at the
top level of the KoralQuery tree. The error listeners also apply some logic on their
own, e.g. to detect missing arguments for operators or an unbalanced number of
brackets or parentheses.

Koral object generation

As KoralQuery objects are by definition not sensitive to the query language from
which they are translated, the routines that are responsible for their generation are
not located in the individual QL processor classes. Instead, they are provided by
the utility class KoralObjectGenerator (see the class diagram in figure 9.3). Those
object generation methods usually take certain mandatory and optional parameters,
depending on the object. For instance, makePosition() asks for an array of valid
frames42 that the generated position group is to contain in its frames attribute. In
the example, only a single string ("contains") is passed to the method, and is thus
wrapped in an array by the method and placed in the position object.

41Note that the position’s parent segment node only has an auxiliary syntactic function – it does
not translate to a particular KoralQuery type.

42Recall that the position operation is defined to possibly contain several frames which are then
treated as alternatives. The group will thus match position relations that match any of those frames.

58

1 {

2 "@context" :

"http://ids-mannheim.de/ns/KorAP/json-ld/v0.2/context.jsonld",

3 "query" :{

4 "@type" :"korap:group",

5 "operation" :"operation:position",

6 "frames" :["frames:isAround"],

7 "operands" :[{

8 "@type" :"korap:span",

9 "key" :"s"

10 }, {

11 "@type" :"korap:group",

12 "operation" :"operation:sequence",

13 "operands" :[{

14 "@type" :"korap:token",

15 "wrap" :{

16 "@type" :"korap:term",

17 "layer" :"orth",

18 "key" :"zu",

19 "match" :"match:eq"

20 }

21 }, {

22 "@type" :"korap:token",

23 "wrap" :{

24 "@type" :"korap:term",

25 "layer" :"pos",

26 "key" :"ADJA",

27 "match" :"match:eq"

28 }

29 }]

30 }]

31 }

32 }

Listing 8: KoralQuery serialisation for the PoliqarpPlus query
contains(<s>,[orth=zu][pos=ADJA])

59

AST traversal

In addition, the query translation module makes use of an inheritance pattern, which
allows for the uniform treatment of the processor classes and provides them with a
number of utility methods mostly pertaining to AST traversal. More concretely, in
extending the AbstractQueryProcessor class, the processors are required to imple-
ment the process() method and are equipped with several utility fields as well as
the initial KoralQuery tree skeleton. As can also be seen in the class diagram, the
query processors extend abstract processor classes that correspond to the respective
ANTLR versions. This is not a strict requirement for the processors to be used by the
QuerySerializer (they must only extend the top class), but it facilitates AST traver-
sal by providing methods that, for instance, check whether a node has children of a
specific node category.43

9.2 PoliqarpPlus QL

The specifications of the KoralQuery protocol and the development of the Poliqarp-
Plus (PQ+) query language mutually influenced each other to a considerable ex-
tent, with the latter serving as a concrete model implementation for the former (see
section 7). Therefore, the syntax of a PQ+ query strongly resembles that of its re-
spective KoralQuery (essentially forming a homomorphism), which in turn makes
it relatively straightforward to translate this language to KoralQuery – in fact, al-
most every single element in a PQ+ syntax tree can be mapped directly onto some
Koral object, whether simple or complex. This is mainly due to the nested syntactic
structure of PQ+ queries, which is reflected in the nesting of Koral objects.

For instance, the PQ+ element that corresponds to a KoralQuery position group
is specified by a frame identifier which is followed by two arguments that are nested
inside parentheses and delimited by a comma. This structure translates well to Ko-
ralQuery, as the frame (which clearly identifies the structure as a position) directly
goes into the frames attribute of the resulting position group, and the two argu-
ments can directly be inserted into the operands of that group.

A special case is the meta operator in the original Poliqarp language which re-
stricts the search space for the query to the set of documents that satisfy certain
metadata constraints. Those constraints are attribute-value pairs (e.g., author=Smith

43Individual AST traversal classes for ANTLR versions 3 and 4 are necessary as these versions
generate different data structures.

60

Figure 9.3: Class diagram for the query language processors. Private methods,
which mostly pertain to the specific processing of AST nodes, are excluded from
this view for brevity.

61

or pubDate<2010) and are translated to the key and value attributes of doc objects,
which in turn are located under the top-level collection attribute (thus specifying
a virtual collection, cf. section 6.1). If further constraints are provided directly by a
virtual collection definition in the KorAP interface, those are subsumed along with
the constraints provided in the PQ+ query under a docGroup conjunction.

Another language element that does not have a direct translation in KoralQuery’s
query object is the alignment operator ^. As the function of this operator is restricted
to a displaying directive and as it has no impact on the result set in any way, it is
serialised to an object in the meta field, bearing a class attribute to refer to a class
in the KoralQuery tree. The starting position of this class serves as an anchor for the
alignment.

9.3 COSMAS II QL

The translation of COSMAS II queries to KoralQuery is not as straightforward as in
the case of PQ+. While the original syntax of the QL is not actually that far away
from the metalanguage (see examples 16-18 in section 2.2 for instances of nested
structures in the language), the ANTLR v3 grammar which is used to parse the
queries applies a substantial amount of rewriting which, on the one hand, makes
the AST more readable for humans, but on the other hand distorts the original syn-
tactic structure and moves it away from KoralQuery.44 Thus lacking the syntactic
similarities with Koral, there are a number of constructions in the language that
cannot be mapped to the metalanguage in a context-free manner.

An example of this are implicit sequences, i.e. two or more sibling nodes in the
parse tree that form a sequence group without any ancestor node explicitly specify-
ing this. Of course, not all siblings in a tree make for a sequence – instead, only a
certain set of node types are “sequentiable”, such that the decision whether to group
a set of nodes into a sequence must be based on the respective types of the nodes.
To make things more complicated, this decision must be made before finally visiting
all these nodes, or in fact before generating the KoralQuery object for the first of the
siblings and ingesting it into the KoralQuery tree. Thus, the applied mechanism is

44Of course, it would have been possible to write a new grammar to parse COSMAS II queries,
however writing a grammar for a language as complex as this amounts to a sizeable load of work.
However, given the following complications in translating the ASTs and the aggravating fact that the
grammar is not compatible with ANTLR v4 but requires v3 to be integrated into the workflow as an
additional resource, it might be worthwhile to write a new ANTLR v4 grammar for COSMAS II in
the future.

62

to check for any first (leftmost) child of any node whether it belongs to the set of
sequentiable node and whether any of its siblings also meet this requirement. In
the positive case, a sequence group will be introduced and the node as well as its
sequentiable siblings are inserted into the operands of that sequence.

Handling MORPH() arguments

The support of COSMAS II in KoralQuery is slightly constrained in the expressive-
ness of the MORPH() operator, which originally provides access to three different sets
of morphosyntactic annotation in the corpus data. Crucially, the syntax of this op-
erator only expects a list of tags as arguments, without any explicit indication of the
linguistic categories that these values belong to – neither are such attribute-value
relations explicated in the data. Instead, the token in the corpus are assigned a list
of ‘plain’ tags. This means that the tags must not be ambiguous with respect to
grammatical category, i.e. the same tag X may not be used to denote a value for cat-
egory C1 and another value for category C2. However, there are in fact ambiguities
across annotations, e.g. SUB is used in the TreeTagger data to denote a substituting
pronoun, in the Connexor annotation to denote a verb in subjunctive mood, and in
the data annotated with MECOLB the tag denotes a subordination. This ambiguity,
however, does not pose a problem for the system, as it requires the user to select one
of those annotations prior to the submission of the query.

Yet, as KorAP has no way of knowing which of the alternatives the user has
in mind, the system cannot infer which grammatical category (i.e. which key in a
standard morphology layer) a given tag implies.45 Consequently, the KoralQuery
translation module expands the expressiveness of the MORPH() operator and requires
the user to make explicit indications of at least the layer and the key, optionally a
foundry and a value.46 The operator thus provides access to all term-based annota-
tions in the underlying corpus data. By allowing regular expressions to be used for
the key and value (denoted by quotation marks), the query translation module also
covers the shortcut tags that are used in the COSMAS II system to denote a set of
tags, e.g. V which is used for all verb tags in the STTS.

45In theory, the category could in many cases be inferred from a sufficient amount of data, e.g.
when several values are provided as the arguments, one of which is unambiguous with respect to
the annotation source (as those may not be mixed).

46Foundry, layer, key and value are specified using the same syntax as the one that is
used as for the specification of terms in PoliqarpPlus tokens, i.e. they follow the scheme
[foundry/layer=key:value]. The equality operator (=) may be replaced with the inequality op-
erator (!=) to negate the constraint.

63

Partial matching

Another special COSMAS II property is the matching behaviour in, for example, se-
quences. In contrast to the Poliqarp query der []{0,4} Mann, which matches any
span of up to six tokens that starts with der and ends with Mann, the corresponding
COSMAS II query der /+w1:5 Mann only matches the explicitly stated operands of
the operation, i.e. only the tokens der and Mann. While the match can be extended to
the whole span using the #ALL() operator, the default behaviour calls for a special
treatment of such partial matches, especially when the sequence is embedded in an-
other operation that works on the returned match of the sequence. As a solution, the
Koral translator declares classes on the operands that both bear the same class num-
ber. By means of these classes, operations that require a distinction between partial
matches and full span matches (e.g. overlaps with other spans) can be accounted for
using a classRefCheck, see also the following paragraph on COSMAS II position
queries. If necessary, the classes can also be used to reduce the match span with a
reference object for that class around the operation.

Position options

The described partial matching behaviour has direct consequences for another COS-
MAS II feature, and those consequences also demand a few measurements to be
taken in the translation to KoralQuery. Concretely, the COSMAS II operators #IN

(inclusion) and #OV (overlap) as well as their relatively fine-grained options cannot
be fully covered by the position frames provided by Koral. As for the operators
themselves (disregarding their options), overlap in COSMAS II is defined as a non-
empty intersection of two spans (see footnote 9), while inclusion requires the first
match to be a subset of the second match. Thus, X #OV Y holds if any token in the
match of X is also in the match of Y. Now, as matches can be discontinuous (see the
paragraph on partial matching), KoralQuery’s overlaps frame (or any other frame)
alone is not suitable for covering this relation, as frames only impose constraints
on the starting and ending positions of the spans in question. As a remedy, Koral-
Query uses the classRefCheck attribute of the class operation, which evaluates the
set-theoretic relationship between the sets of tokens covered by two classes. Thus,
for #OV, this classRefCheck receives the value intersects, which denotes a non-
empty intersection between the matches of the operands. The class operation is
then wrapped around the position group.

64

query

andExprs

expr

def

cat = VP &

expr

def

cat = NP &

expr

def

cat = SBAR &

expr

relation

#2 > #3 &

expr

relation

#1 > #2

Figure 9.4: ANTLR parse tree for the ANNIS QL query
cat="VP" & cat="NP" & cat="SBAR" & #2 > #3 & #1 > #2

As exemplified in (17), the operators #IN and #OV also allow the specification
of certain options which, in addition to the set-theoretic relationship between the
operands, further restrict the positional relation. For instance, X #IN(L) Y requires
that the match of X be fully included and left-aligned in the match of Y. To ac-
count for those cases, a combination of frames and classRefCheck is used (in this
case, frames:startswith and classRefCheck:includes, with the operands order
switched). Using these two attributes with their values as defined in the second
part of this thesis, all position queries in COSMAS II are covered.

9.4 ANNIS QL

As demonstrated in section 2.3, the syntactic layout of ANNIS QL to query graph-
based annotations differs strongly from the nested structures of PQ+, COSMAS II
QL and, most importantly, KoralQuery. With queries being sequences of variable
declarations and relation constraints that are connected by conjunction (with excep-
tion of the occasional disjunctions nested inside the conjunctions), the used ANTLR
grammar generates very flat parse trees. Thus, the processor needs to find a way
to transform the flat parse into a nested structure of binary relations as prescribed
by the Koral protocol. This calls for a very different approach to translation, most
notably to identifying the correct structure between the generated objects, as we can
not rely on (more or less) directly mirroring the AST structure in the KoralQuery
tree.

For instance, consider the (rather simple) query and the parse tree generated

65

from it, given in figure 9.4. This query defines three objects (tokens of different sur-
face forms) and asks for two relations that hold over these tokens (the second token
directly precedes the third, the same holds between the first token and the second).
The strategy that the processor class applies here is the following: first, it scans the
entire tree for any defined objects and counts how often each of these are referenced
within relation statements (in the example, the token corpus, which is identified by
#2, is referenced twice, the others once). Based on their ’#’-identifiers, the defined
objects are stored in a table with those counts. Then, in a second traversal of the tree,
the relations are processed in a left-to-right order and wrapped around each other,
retrieving the operands referenced by the relations from the table.47 As mentioned
above, the difficulty lies in finding a way to correctly nest the relations. This is not
trivial, as in KoralQuery nesting means inserting one object into the operands of an-
other, consequently embedding one linguistic structure into another (e.g. a depen-
dency relation into a sequence), while these structures were specified as completely
equal and independent in the original query. To make things more complicated,
most KoralQuery objects take a fix number of operands (usually one or two), which
becomes problematic when one object needs to be inserted into another although
the latter is already saturated with its actual operands.48

As a solution to this problem, KoralQuery provides the reference type by means
of which certain sub-matches of an object (e.g. only one operand) can be referred
to. Thus, in the above example, the second sequence relation will be wrapped
around (rather than inserted into) the first sequence, embedding it as an operand,
but only referring to the shared object (here: the token query, identified by #2) using
a reference (see listing 9).

In the concrete implementation, the ANNIS QL processor addresses this problem
by maintaining an operandStack, where all pre-final KoralQuery objects are stored
for retrieval during the processing of later objects. Generally, the first processed re-
lation is always ‘filled’ with both its operands, whereas for following objects, the
operand references are evaluated for either being references to ‘new’ objects (that
have not been inserted into the KoralQuery tree) or whether they can be expressed
through a reference around the first object on the operandStack. In retrieving the

47However, there may also be shortcut token/span definitions directly within the scope of the
operator, as in example 25. In these cases, no retrieval from the table is required, and the object is
necessarily only used once as it cannot be referenced outside the relation.

48In the example query in figure 9.4, one of the two relations needs to be inserted into the other.
However, the group objects with the "operation:relation" that are created from the > relations
only take two operands, but both relations already have to arguments.

66

1 { "@context" :

"http://ids-mannheim.de/ns/KorAP/json-ld/v0.2/context.jsonld",

2 "query" :{ "@type" :"korap:group",

3 "operands" :[{ "@type" :"korap:span",

4 "key" :"VP",

5 "layer" :"c"

6 },

7 { "@type" :"korap:reference",

8 "classRef" :[1],

9 "operands" :[{ "@type" :"korap:group",

10 "operands" :[{ "@type" :"korap:group",

11 "classOut" :1,

12 "operands" :[{ "@type" :"korap:span",

13 "key" :"NP",

14 "layer" :"c"

15 }],

16 "operation" :"operation:class"

17 },

18 { "@type" :"korap:span",

19 "key" :"SBAR",

20 "layer" :"c"

21 }

22],

23 "operation" :"operation:relation",

24 "relation" :{ "@type" :"korap:relation",

25 "wrap" :{ "@type" :"korap:term",

26 "layer" :"c"

27 }

28 }

29 }],

30 "operation" :"operation:focus"

31 }

32],

33 "operation" :"operation:relation",

34 "relation" :{ "@type" :"korap:relation",

35 "wrap" :{ "@type" :"korap:term",

36 "layer" :"c"

37 }

38 }

39 }

40 }

Listing 9: KoralQuery serialisation for the ANNIS query cat="VP" & cat="NP" &

cat="SBAR" & #2 > #3 & #1 > #2

67

operands for the second sequence in the example, the object for the first operand ref-
erence (#1) is thus taken from the table mentioned above, while the second operand
reference (#2) is recognised to have been processed before (in the first sequence),
such that a reference with the class number assigned to the operand is wrapped
around the first object on the operandStack and inserted as an operand for the sec-
ond sequence. Crucially, the object thus created is inserted into the KoralQuery tree
only if it corresponds to the final relation in the query (which it does here) – other-
wise, it will itself be pushed back onto the operandStack.

When both operands of a relation have already been added to previous relations,
it is also necessary to create ‘empty’ references which do not have any operands

as a scope for their focus operation, but only provide a cross-reference to a class
elsewhere in the tree. This necessity is grounded in the apparent circumstance that
the wrapping relation must not re-define any of the operands. If a certain operand
is defined twice in the KoralQuery tree (as an operand of two distinct operations), it
is possible that two separate matches are retrieved for those two definitions, when
actually the operations are required to share an operand. Using a reference, Koral
ensures that both operations in fact take scope over the same match.

In the contrary case, i.e. when none of the operands of a relation have previ-
ously been processed, a similar problem arises. With exception of the first relation,
of course, those relations cannot simply be wrapped around previous relations and
reference their operands, because they do not share any common operands. There-
fore, the ANNIS QL processor implements a mechanism to queue such relations
until a following relation has provided the definition of one of the operands, thus
allowing for referencing them.49

9.5 Virtual collections

Limiting the search scope of a query to virtual collections of documents through
the specification of metadata constraints is supported by KoralQuery through the
collection attribute. This contains a doc objects (or logical conjunctions of doc and
docGroup objects) which is generated from a virtual collection query. To this end,
an additional language is defined, which is processed in the same general manner

49An example of this is the query A & B & C & D & #1 . #2 & #3 . #4 & #1 > #3. Here, the
second relation (#3 . #4) cannot be wrapped around the first as they do not share any operands.
Instead, this relation is queued until the third relation is processed and provides a definition of #3,
which can then be referenced by the queued relation.

68

as the ‘proper’ QLs, i.e. parsing the query string using an ANTLR grammar (here,
ANTLR v4 is used) and deriving a KoralQuery representation by means of a specific
processor (see also the class diagram in figure 9.3). This language is used in KorAP,
although any other language could be defined (along with an ANTLR grammar and
a processor) and plugged into the QuerySerializer, in a similar fashion as new QLs
can be added.

The Koral specifications for virtual collection queries allow to address any of the
metadata fields of a document using the key attribute and to constrain its value us-
ing the value attribute. The match attribute specifies the relation between the key

and the value, and takes the possible values specified in 6.1. Notably, KoralQuery
allows the definition of virtual collections based on tokens or phrases contained in,
for instance, the title string using the operator ∼ (or !∼ to negate such a constraint).
For numerical values, e.g. the publication date of a document, KoralQuery also al-
lows inequations, enabling search for all documents published, e.g., after a certain
day.50

The grammar of the provided virtual collection query language is very close to
the term specifications in Poliqarp. More concretely, a key and a value are con-
nected through an operator indicating the relation between them, such as equality
or containment. Then, these constraints can be connected with other constraints us-
ing the logical operators & (conjunction) and | (disjunction). The query is thus a
nested structure which maps directly onto the corresponding KoralQuery, such that
the translation task is relatively easy and context-free, as is the case for Poliqarp-
Plus. The only aspect that requires some context-sensitivity is to ensure that only
numerical values are used with inequation operators (<, >, ≤ and ≥).

10 Conclusions

10.1 Contributions of the thesis

The present thesis has introduced KoralQuery, a general protocol for the represen-
tation of queries to linguistic corpora. The protocol defines a range of different lin-
guistic and operational as well as parametric types which, nested into each other,
are capable of expressing highly complex linguistic structures. The protocol forms
a wide target space for one-way mappings from existing corpus query languages

50A date is specified using an RFC-3339 string with a granularity of year, month or day.

69

1 {

2 "@context" :

"http://ids-mannheim.de/ns/KorAP/json-ld/v0.2/context.jsonld",

3 "collection" :{

4 "@type" :"korap:docGroup",

5 "operation" :"operation:and",

6 "operands" :[{

7 "@type" :"korap:doc",

8 "key" :"title",

9 "value" :"Gerrard",

10 "match" :"match:contains"

11 }, {

12 "@type" :"korap:doc",

13 "key" :"pubDate",

14 "value" :"2005-05-25",

15 "type" :"type:date",

16 "match" :"match:eq"

17 }]

18 },

19 "query" :{

20 "@type" :"korap:group",

21 "operation" :"operation:sequence",

22 "operands" :[{

23 "@type" :"korap:token",

24 "wrap" :{

25 "@type" :"korap:term",

26 "layer" :"orth",

27 "key" :"zu",

28 "match" :"match:eq"

29 }

30 }, {

31 "@type" :"korap:token",

32 "wrap" :{

33 "@type" :"korap:term",

34 "layer" :"pos",

35 "key" :"ADJA",

36 "match" :"match:eq"

37 }

38 }]

39 }

40 }

Listing 10: KoralQuery serialisation for the PQ+ query [orth=zu][pos=ADJA] and
the virtual collection definition title∼Gerrard & pubDate=2005-05-25

70

and can thus be seen as a reference for the assessment of their expressive power
in the sense of the CQLF endeavour. However, a claim that the types and struc-
tures defined in KoralQuery be exhaustive and that therefore the mentioned target
space be a definitive and comprehensive collection of all possible linguistic struc-
tures is certainly more than optimistic. On the other hand, the protocol does in fact
cover the functional features of three very distinctive QLs, whose combined feature
space covers – with the exception of universal quantification – the needs expressed
by grammarians and lexicographers in a use case analysis by Frick et al. (2012).
Notably, the protocol manages to unify the feature sets of those three languages,
which differ greatly in their expressive powers, while maintaining a common syn-
tactic structure to represent queries (even though one of those languages, ANNIS
QL, differs strongly in its syntax from the nested structure of KoralQuery).

In addition to the rather theoretically oriented application of providing a model
feature space for other QLs, corpus query systems such as KorAP may use the Ko-
ralQuery protocol to express highly complex linguistic queries at a very abstract
and normalised level, with a well-defined (but still neutral in terms of linguistic
theory) set of types and operations. This allows a query system that opts to em-
ploy KoralQuery as its internal representation of queries to communicate with other
corpus query engines over a shared protocol. Within this scenario, systems that,
for instance, only support a subset of the types and operations defined in Koral-
Query have the possibility to clearly communicate the supported features using
normalised definitions of those.

The second central contribution of this thesis is the Koral translation module,
which encodes queries from currently three supported corpus query languages to
KoralQuery. Koral enables corpus query engines to work independently of partic-
ular query languages, and thus to potentially support several of those with almost
no additional overhead. To this end, the Koral translator employs a two-step pro-
cess that consists of (i) parsing a query string using a context-free grammar and the
ANTLR framework and (ii) the processing of the resulting parse tree by generating
KoralQuery objects for the individual nodes in that tree. While it is not strictly nec-
essary to follow this approach in providing support for additional query languages,
the utility classes that Koral provides for the traversal of parse trees generated from
ANTLR v3 and v4 grammars pose a considerable simplification of the second step
of the translation process.

Both the conception of KoralQuery as well as the development of the Koral trans-

71

lator have taken place in an interplay and in close cooperation with the KorAP
project, in particular with the development of KorAP’s backend technology. Conse-
quently, the introduced format as well as the translation units have been tested in
practice and will be directly used in the KorAP software and available to its users
upon KorAP’s release. The development of the translation module was test-driven,
with test cases likewise defined in coordination with the backend development and,
simultaneously, informed by the official documentations of the supported query
languages.

10.2 Future work

As outlined in the previous section, the support of “universal quantification”, which
was identified by Frick et al. (2012) as a desired feature of corpus query languages
but is not present in any of the three QLs presented here, has not found its way
into the KoralQuery specifications. Adding support for this feature (and possibly
implementing a corresponding operator in PoliqarpPlus) is thus a natural item for
future work. KoralQuery may also reach its limits when applied to corpora of other
modalities, e.g. corpora of spoken language, where different levels of analysis (such
as phonemes) are of interest.

Beyond the core KoralQuery protocol, the support for additional query languages
by the Koral translator is an obvious work item. The translation component may fur-
ther profit from a mechanism that gives feedback to the user by means of generat-
ing natural language paraphrases for complicated queries. Especially inexperienced
users with no or little background in a particular query language may feel uncertain
about the ‘correctness’ of a query, i.e. whether it expresses exactly what they would
like to know. Addressing this issue, the hierarchical structure of KoralQuery seriali-
sations would make it relatively easy to generate feedback to the user in a controlled
subset of English (or any other natural language) of the form: “You searched for a
sequence of two tokens. The first token has the surface form ‘der’, the second token
has the part-of-speech tag ‘ADJA’".

10.3 Acknowledgements

The first part of the present thesis touches on work by colleagues at IDS Mannheim,
most notably Elena Frick and Piotr Bański. The second and third part, i.e. the def-
inition of the KoralQuery protocol and the development of the translation module,

72

are work by the author of the thesis. The author acknowledges the valuable aid by
various colleagues in the specification of KoralQuery, most notably Nils Diewald,
Michael Hanl and Eliza Margaretha, who also provided support for a fourth query
language, a subset of the Contextual Query Language (CQL). Elena Frick and Piotr
Bański provided valuable comments from a CQLF perspective.

73

List of Figures

1.1 The KorAP document model. 10
3.1 Schematic illustration of the CQLF meta model. 21
9.1 Query translation workflow illustration 53
9.2 ANTLR parse tree for the query contains(<s>,[orth=zu][pos=ADJA]) 56
9.3 Class diagram for the query language processors 61
9.4 ANTLR parse tree for an ANNIS QL query. 65

List of Tables

2.1 Support of feature groups by the QLs examined by Frick et al. (2012) 11
5.1 Definitions and illustrations of available frames values. 41

List of Listings

1 Plain JSON representation of a city . 50
2 Typed and linked JSON-LD representation of a city 50
3 Condensed JSON-LD representation of a city 50
4 JSON-LD representation of a token query 52
5 A skeleton KoralQuery instance . 53
6 Toy ANTLR grammar for PoliqarpPlus 55
7 Toy QL processor class . 57
8 KoralQuery serialisation for a PoliqarpPlus query 59
9 KoralQuery serialisation for an ANNIS query 67
10 KoralQuery serialisation for a virtual collection query 70

74

References

Bański, P., Bingel, J., Diewald, N., Frick, E., Hanl, M., Kupietz, M., Pęzik, P.,
Schnober, C., and Witt, A. (2013). KorAP: the new corpus analysis platform at
IDS Mannheim. In Vetulani, Z. and Uszkoreit, H., editors, Human Language Tech-
nologies as a Challenge for Computer Science and Linguistics. Proceedings of the 6th
Language and Technology Conference, Poznań. Fundacja Uniwersytetu im. A. Mick-
iewicza.

Bański, P., Diewald, N., Hanl, M., Kupietz, M., and Witt, A. (2014). Access Control
by Query Rewriting: the Case of KorAP. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation (LREC 2014), Reykjavik, Iceland.
European Language Resources Association (ELRA).

Bański, P., Fischer, P. M., Frick, E., Ketzan, E., Kupietz, M., Schnober, C., Schonefeld,
O., and Witt, A. (2012). The new IDS corpus analysis platform: Challenges and
prospects. In Proceedings of the Eighth International Conference on Language Resources
and Evaluation (LREC 2012), pages 2905–2911.

Belica, C., Herberger, A., and al Wadi, D. (1992). COSMAS. Linguistische Datenver-
arbeitung. Institut für deutsche Sprache, Mannheim.

Berners-Lee, T., Hendler, J., Lassila, O., et al. (2001). The Semantic Web. Scientific
American, 284(5):28–37.

Bird, S., Buneman, P., and Tan, W. C. (2000). Towards a query language for annota-
tion graphs. CoRR, cs.CL/0007023.

Bird, S. and Liberman, M. (1999). Annotation graphs as a framework for multidi-
mensional linguistic data analysis. CoRR, cs.CL/9907003.

Bodmer, F. (1996). Aspekte der Abfragekomponente von COSMAS II. LDV-INFO,
8:142–155.

Bodmer, F. (2005). COSMAS II. Recherchieren in den Korpora des IDS. Sprachreport,
3(2005):2–5.

Bosch, S., Key-Sun, C., De La Clergerie, E., Chengyu Fang, A., Faass, G., Lee, K.,
Pareja-Lora, A., Romary, L., Witt, A., Zeldes, A., and Zipser, F. (2012). <tiger2/>
as a standardized serialisation for ISO 24615 – SynAF. In Proceedings of the 11th

75

International Workshop on Treebanks and Linguistic Theories (TLT11), pages 37–60,
Lisbon, Portugal.

Cassidy, S. and Harrington, J. (1996). Emu: An enhanced hierarchical speech data
management system. In Proceedings of the Sixth Australian International Conference
on Speech Science and Technology, pages 361–366.

Cassidy, S. and Harrington, J. (2001). Multi-level annotation in the emu speech
database management system. Speech Communication, 33(1):61–77.

Christ, O., Schulze, B. M., Hofmann, A., and König, E. (1999). The IMS Corpus Work-
bench: Corpus Query Processor (CQP): User’s Manual. IMS, Stuttgart University.

Dekhtyar, A. and Iacob, I. E. (2005). A framework for management of concurrent
xml markup. Data & Knowledge Engineering, 52(2):185–208.

Durusau, P. and O’Donnell, M. B. (2002). Concurrent markup for XML documents.
In Proc. XML Europe.

ECMA-404 (2013). The JSON Data Interchange Format. Standard ECMA-404. http:
//www.ecma-international.org/publications/standards/Ecma-404.htm.

Evert, S. (2005). The CQP Query Language Tutorial. IMS, Stuttgart University.

Fiehler, R., Wagener, P., and Schröder, P. (2007). Analyse und Dokumentation
gesprochener Sprache am IDS. Kämper, Heidrun/Eichinger, Ludwig M.(Hg.): Sprach-
Perspektiven. Germanistische Linguistik und das Institut für Deutsche Sprache. Tübin-
gen: Narr. S, pages 331–365.

Frick, E., Schnober, C., and Bański, P. (2012). Evaluating query languages for a
corpus processing system. In Proceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC 2012), pages 2286–2294.

Harrison, M. A. (1978). Introduction to formal language theory. Addison-Wesley Long-
man Publishing Co., Inc.

Heid, U. and Mengel, A. (1999). Query Language for Research in Phonetics. In Inter-
national Congress of Phonetic Sciences (ICPhS 99), pages 1225–1228, San Francisco.

Ide, N. (1998). Corpus Encoding Standard: SGML guidelines for encoding linguistic
corpora. In Proceedings of the First International Language Resources and Evaluation
Conference, pages 463–70. Citeseer.

76

http://www.ecma-international.org/publications/standards/Ecma-404.htm
http://www.ecma-international.org/publications/standards/Ecma-404.htm

Ide, N. (2013). Web Service Exchange Protocol: Preliminary Proposal. Slides pre-
sented at ISO TC37 SC4 WG1 meeting, 2nd September 2013. http://www.anc.

org/LAPPS/EP/Meeting-2013-09-26-Pisa/overview-ep-2013-09-26-pisa.pdf.

Ide, N., Bonhomme, P., and Romary, L. (2000). An XML-based Encoding Standard
for Linguistic Corpora. In Proceedings of the Second International Conference on Lan-
guage Resources and Evaluation, pages 825–830.

Ide, N. and Suderman, K. (2007). Graf: A graph-based format for linguistic annota-
tions. In Proceedings of the Linguistic Annotation Workshop, pages 1–8. Association
for Computational Linguistics.

ISO 24611:2010 (2010). Language resource management – Morpho-syntactic anno-
tation framework (MAF).

ISO 24612:2012 (2012). Language resource management – Linguistic annotation
framework (LAF).

ISO 24615:2010 (2010). Language resource management – Syntactic annotation
framework (SynAF).

Jespersen, O. (1930). A new science: Interlinguistics. Psyche, 11 [3]:57–67.

Kupietz, M., Belica, C., Keibel, H., and Witt, A. (2010). The German Reference Cor-
pus DeReKo: A Primordial Sample for Linguistic Research. In Proceedings of the
Seventh International Conference on Language Resources and Evaluation (LREC 2010).
European Language Resources Association (ELRA).

Kupietz, M. and Lüngen, H. (2014). Recent Developments in DeReKo. In Proceedings
of the Ninth International Conference on Language Resources and Evaluation (LREC
2014), Reykjavik, Iceland. European Language Resources Association (ELRA).

König, E. and Lezius, W. (2003). The TIGER language – A Description Language for
Syntax Graphs. Formal Definition. Technical report, IMS, Stuttgart University.

Lüdeling, A. and Kytö, M. (2008). Corpus linguistics: An international handbook.
Handbücher zur Sprach- und Kommunikationswissenschaft.

Mann, W. and Thompson, S. (1988). Rhetorical structure theory: Towards a func-
tional theory of text organization. Text, 8(3):243–281.

77

http://www.anc.org/LAPPS/EP/Meeting-2013-09-26-Pisa/overview-ep-2013-09-26-pisa.pdf
http://www.anc.org/LAPPS/EP/Meeting-2013-09-26-Pisa/overview-ep-2013-09-26-pisa.pdf

Mueller, M. (2010). Towards a digital carrel: A report about corpus query tools.
http://hdl.handle.net/10932/00-01FE-EB35-D6AD-C201-6.

OASIS (2013). searchRetrieve: Part 5. CQL: The Contextual Query Language Version
1.0. http://www.loc.gov/standards/sru/cql/spec.html.

Parr, T. J. and Quong, R. W. (1995). ANTLR: A predicated-LL (k) parser generator.
Software: Practice and Experience, 25(7):789–810.

Przepiórkowski, A., Krynicki, Z., Debowski, L., Wolinski, M., Janus, D., and Banski,
P. (2004). A search tool for corpora with positional tagsets and ambiguities. In
Proceedings of the Fourth International Conference on Language Resources and Evalu-
ation (LREC 2004), pages 1235–1238. European Language Resources Association
(ELRA).

Rosenfeld, V. (2010). An implementation of the Annis 2 query language. Technical
report, Humboldt-Universität zu Berlin.

Sperberg-McQueen, C. and Huitfeldt, C. (2008). Markup discontinued: Discontinu-
ity in texmecs, goddag structures, and rabbit/duck grammars. In Proceedings of
Balisage: The Markup Conference, volume 1.

Sporny, M., Lognley, D., Kellogg, G., Lanthaler, M., and Lindström, N. (2014). JSON-
LD 1.0. A JSON-based Serialization for Linked Data. Technical report, W3C.

Stührenberg, M. and Goecke, D. (2008). SGF – an integrated model for multiple
annotations and its application in a linguistic domain. In Proceedings of Balisage:
The Markup Conference, volume 1.

Zipser, F. (2009). Entwicklung eines Konverterframeworks für linguistisch an-
notierte Daten auf Basis eines gemeinsamen (Meta-)modells. Master’s thesis,
Humboldt-Universität Berlin.

Zipser, F. and Romary, L. (2010). A model oriented approach to the mapping of an-
notation formats using standards. In Workshop on Language Resource and Language
Technology Standards, LREC 2010.

78

http://hdl.handle.net/10932/00-01FE-EB35-D6AD-C201-6
http://www.loc.gov/standards/sru/cql/spec.html

	I Corpus Query Lingua Franca
	Introduction
	Related work
	The KorAP project
	Aim of the thesis

	Corpus query languages: A brief survey
	Poliqarp QL
	COSMAS II QL
	ANNIS QL
	Some other query languages

	CQLF as an evaluation ground for query languages
	Meta model
	Feature ontology

	II Specifications of the KoralQuery Protocol
	KoralQuery: A CQLF metalanguage
	Expressive power
	Linguistic theory neutrality
	Redundancy avoidance
	Object nesting and return values

	KoralQuery types and operations
	The token type
	The span type
	The group type
	Group operations

	The reference type
	The term type
	The termGroup type
	The distance type
	The relation type
	Attribute values

	Meta-information on the query
	Document-level filtering
	The doc type
	The docGroup type

	Displaying directives

	PoliqarpPlus QL: a KoralQuery model language

	III Serialisation of KoralQuery
	JSON-LD as a serialisation format for KoralQuery
	JSON-LD
	Linked data in linguistic web services

	Translating queries to KoralQuery
	General process
	Query parsing with ANTLR
	Processing abstract syntax trees

	PoliqarpPlus QL
	COSMAS II QL
	ANNIS QL
	Virtual collections

	Conclusions
	Contributions of the thesis
	Future work
	Acknowledgements

	List of Figures
	List of Tables
	List of Listings
	Bibliography

