
Processing and querying large web corpora
with the COW14 architecture

Roland Schäfer
Linguistic Web Characterization (DFG)

Freie Universität Berlin
roland.schaefer@fu-berlin.de

Abstract

In this paper, I present the COW14 tool
chain, which comprises a web corpus cre-
ation tool called texrex, wrappers for ex-
isting linguistic annotation tools as well as
an online query software called Colibri2.
By detailed descriptions of the implemen-
tation and systematic evaluations of the
performance of the software on different
types of systems, I show that the COW14
architecture is capable of handling the cre-
ation of corpora of up to at least 100 bil-
lion tokens. I also introduce our running
demo system which currently serves cor-
pora of up to roughly 20 billion tokens in
Dutch, English, French, German, Spanish,
and Swedish.

1 Introduction

Large web corpora for empirical linguistic re-
search have been available for over a decade (Kil-
garriff and Grefenstette, 2003; Biemann et al.,
2007; Baroni et al., 2009; Schäfer and Bildhauer,
2013; Biemann et al., 2013). Such corpora are
an attractive complement to traditionally compiled
corpora because they are very large, and they con-
tain a lot of recent non-standard variation. Con-
ceptual problems with web corpora may arise due
to biases in the composition of crawled corpora
(Schäfer and Bildhauer, 2013, Chapter 2), biases
due to radical and undocumented cleaning proce-
dures, and a lower quality of linguistic annota-
tion (Giesbrecht and Evert, 2009). Major techni-
cal difficulties come from the fact that the creation
of very large web corpora requires efficient pre-
processing and annotation tools, necessarily using
some type of parallelization. Also, for such cor-
pora to be usable in an efficient way for linguists,
intuitive and responsive interfaces have to be made
available which abstract away from corpora which

are partitioned or sharded across several machines.
For most linguists, downloading gigabytes of data
and running their own instances of corpus query
tools on partitioned corpora is simply not an op-
tion.

In this paper, I introduce the COW14 (“Corpora
from the Web”) web corpus creation and query
architecture (which is the second generation, fol-
lowing COW12) created as joint work with Felix
Bildhauer at Freie Universität Berlin since 2011
(Schäfer and Bildhauer, 2012).1,2 I focus on the
performance of the tool chain and its paralleliza-
tion on high-performance clusters as well as the
features of our web-based query interface. The ar-
chitecture is capable of handling data sets where
the size of the input is several TB and the size of
the final corpus is up to (conservatively estimated)
100 gigatokens (GT). The software is freely avail-
able, and we are running a test instance of the
query interface serving gigatoken web corpora in
several European languages without charge.

First of all, I describe our software package
that performs standard web corpus cleaning pro-
cedures in Section 2. Secondly, I briefly talk about
our chains of wrapped annotation tools (avail-
able for Dutch, English, French, German, Span-
ish, Swedish) in Section 3. Finally, I introduce
our web interface based on the IMS Open Corpus
Workbench or OCWB (Evert and Hardie, 2011),
which allows linguists to query very large corpora
efficiently and conveniently, in Section 4.

2 Preprocessing

2.1 Implementation

The preprocessing package texrex performs
HTML stripping, crawler and HTML meta data
extraction, boilerplate detection, in-document
paragraph deduplication, combined language

1http://hpsg.fu-berlin.de/cow
2http://corporafromtheweb.org

28

Published in: Bański, Piotr; Biber, Hanno; Breiteneder, Evelyn; Kupietz, Marc; Lüngen, Harald; Witt, Andreas (eds.) (2015): Proceedings of 
the 3rd Workshop on Challenges in the Management of Large Corpora (CMLC-3). Mannheim: Institut für Deutsche Sprache, pp. 28-34



detection and text quality assessment (Schäfer
et al., 2013), near-duplicate document detection,
conversion to UTF-8, some UTF-8 normaliza-
tions, and geolocation lookup based on server IP
addresses.3 The non-trivial steps in this chain are
boilerplate detection and document deduplication.
Boilerplate detection is implemented as language-
specific multilayer perceptrons (MLP) trained on
human decisions. The boilerplate status is decided
for blocks of text which simply correspond to the
contents of certain HTML containers (primarily
<p> and <div>). The system achieves very good
accuracy (0.952 for German) to near-perfect accu-
racy (0.990 for French) in systematic evaluations
(Schäfer, 2015, in prep.), which is a significant
improvement over the previous version (Schäfer
and Bildhauer, 2012), cf. Table 1.

lang. prec. rec. F1 corr. base. err. red.

English 0.983 0.990 0.990 0.976 0.910 0.066
French 0.995 0.994 0.994 0.990 0.897 0.093
German 0.963 0.977 0.977 0.952 0.798 0.154
Swedish 0.977 0.983 0.983 0.983 0.866 0.117

Table 1: Evaluation (means over 10 folds in a cross
validation) of the texrex boilerplate detector; in-
cluding the baseline (correct decisions achieved by
classifying everything as boilerplate) and the raw
reduction of error achieved by the MLP compared
to the baseline; from Schäfer (2015, in prep.)

Removal of near-duplicate documents uses a
conservative (unmodified) w-shingling approach
(Broder, 2000). While w-shingles are generated by
the main texrex tool, a separate tool (tender) calcu-
lates the estimated document similarity based on
the w-shingles, and a third tool (tecl) creates the
final corpus without duplicates. The tender tool
has a high memory footprint because sorting the
shingle databases is done in memory. Therefore,
it allows for a divide–sort–merge approach with
multiple runs of the software in order to make it
usable under low-memory conditions.

2.2 Performance

In this section, I assess the performance of the pre-
processing tools on three different types of sys-
tems, including estimates of the performance on
big data sets. First, I performed a detailed per-
algorithm benchmark on a quadcore Intel Core i5
at 2.38 GHz. I measured the performance of each

3http://texrex.sourceforge.net

algorithm on 11,781 German HTML documents
read from a single input file using four threads for
processing. Table 2 summarizes the results, show-
ing that most algorithms run very fast, and that it
takes 39 ms to process a single document on aver-
age. Even on a low-end machine, this means that
over 5,000 documents per CPU core and second
are processed.

Shingling is costly because it involves word to-
kenization of the document, n-gram creation, fol-
lowed by the computation of m different hashes
of each n-gram (in our case, m = 100, n = 5),
cf. Broder (2000) or Schäfer and Bildhauer (2013,
61–63) for details of the procedure. That said,
14.25 CPU milliseconds per document on a low-
end machine is highly acceptable. The 4-thread
efficiency (CPU time ÷ wall clock time) measures
whether a potential parallelization overhead (with
four processing threads on four physical cores)
eats into the increase in efficiency achieved by us-
ing multiple threads. The factor is roughly 4 for
almost all algorithms, which means that the wall
clock time is actually a fourth of the CPU time
when four threads are used. Using more threads
seems to linearly increase the efficiency of the sys-
tem, at least when there are not more threads than
physical cores.

Then, in a first production run, I processed
189,143,035 documents from two crawls per-
formed in 2011 and 2014 in the top-level domains
at, ch, and de. The DECOW14A corpus of 20 GT
was created from this (and other) input.4 To satu-
rate the available physical cores, the software was
configured to use 14 worker threads on a single
12-core Xeon X5650 at 2.67 GHz with 128 GB
RAM. Processing the whole corpus took a total
of 336,474 seconds or 3.89 days, which is quite
long considering that this does not even include
the document similarity calculations by tender.5

Therefore, I switched to the high performance
cluster (HPC) of our university.6 It currently of-
fers 112 nodes with 2 hexacore Xeon X5650 each
and between 24 and 96 GB RAM per node.7 The

4http://corporafromtheweb.org/decow14
5Notice that this means that 562.13 documents per second

were processed, i.e., 40.152 documents per and thread and
second. This is consistent with the 25.64 documents per CPU
and second on the low-end system, cf. Table 2.

6https://www.zedat.fu-berlin.de/HPC/Home
7A reviewer mentioned replicability and applicability is-

sues of results obtained on HPC systems which not everybody
has access to. I agree, but would like to point out that creating
very large corpora will always take either a very long time (up

29



Algorithm ms/doc docs/CPU/s docs/CPU/day 4-thread efficiency

perfect duplicate detector 0.2527 3957.61 341,937,504 3.81
basic processing 22.9938 43.49 3,757,536 3.94
UTF-8 validator 0.1874 5337.53 461,162,592 4.23
deboilerplater 3.1497 317.49 27,431,136 4.02
w-shingle creator 14.2489 70.18 6,063,552 3.98
text quality assesment 3.2807 304.81 26,335,584 3.90
normalizer 2.3648 422.87 36,535,968 4.00
paragraph deduplicator 0.1891 5287.70 456,857,280 2.20

full configuration 39.0081 25.64 2,215,296 3.96

Table 2: Benchmark breakdown by algorithm. All values are arithmetic means over CPU times measured
over 5 runs with 2 minute cooling off between runs.

input data was split into 100 parts, and 100 sepa-
rate jobs using 6 threads each were queued. Since
the HPC uses the SLURM (fair share) scheduling
system, run times vary depending on the current
cluster load.8 In three consecutive runs, however,
processing the whole corpus was done in under 5
hours.

Since the tender document similarity calcula-
tion tool allows for a divide–sort–merge approach,
this step was also split up (this time into 10 jobs),
and it took roughly six hours.9 Since SLURM al-
lows users to queue jobs depending on other jobs
to finish first, I finally configured the system to au-
tomatically run a sequence of texrex and tender
jobs for the whole corpus without manual inter-
vention in roughly 8 hours. Clearly, the creation of
corpora up to 100 GT is feasible on such a system
with our software in no more than 2 days. It should
be noticed that compared to systems using Map-
Reduce (such as Hadoop), operating a SLURM
cluster is arguably much simpler.10

3 Linguistic annotation

For space reasons, I focus on the linguistic an-
notation of our current corpora of English (16.8
GT) and German (20 GT). The main criteria
for choosing a tool as part of the COW14 tool

to virtual infeasibility) or require very powerful machines. In
the first production run, it was at least proven that gigatoken
corpora can be created on more common machines with a few
days of patience.

8https://computing.llnl.gov/linux/slurm
9The high memory demands of the tool incur a high

penalty in the queuing system, hence most of these six hours
was wasted waiting for high-memory nodes. More tests with
smaller portions of data and consequently more modest mem-
ory needs are necessary to optimize the run time.

10https://hadoop.apache.org

chain were its efficiency and the availability of
pre-trained models based on annotation schemes
which are well known within the linguistic com-
munity. For sentence and word tokenization, I
used Ucto, because it allowed me to implement
language-specific improvements for the tokeniza-
tion of text from forums, social media, etc. (e. g.,
emoticons, creative use of punctuation) in a very
straightforward way.11 For part-of-speech (POS)
tagging and lemmatization I therefore used Tree-
Tagger (Schmid, 1995) with the standard models
(Penn Treebank and STTS tag sets). The German
TreeTagger model was complemented with 3,866
lexicon additions in order to remedy the prob-
lem that the publicly available models (trained
on newspaper texts) do not contain entries for
more recent lexical items or those found in non-
standard language (e. g., Anime, bloggen, Email)
or names which are more frequent now than in
the 1990s (such as Obama or Özil). German was
additionally annotated for named entities using
the Stanford NER tool (Finkel et al., 2005) and
the available German models (Faruqui and Padó,
2010).12 It was morphologically analyzed us-
ing the (quite slow) morphological analyzer from
mate-tools (Björkelund et al., 2010).13 English
was parsed with MaltParser (Nivre et al., 2007),
and we are working on German models for Malt-
Parser, too.14

The tool chain simply consists of a series of
Bash and Perl scripts for pre- and post-processing
the data for each of the annotation tools and piping

11http://ilk.uvt.nl/ucto
12http://nlp.stanford.edu/software
13https://code.google.com/p/mate-tools
14http://www.maltparser.org

30



the data to the tools. SLURM is ideally controlled
via Bash scripts, so this was the method of choice.
The major problem was the fact that most anno-
tation tools cannot deal with (or at least just skip)
XML, and the texrex tool described in Section 2
creates XML output. Most of the extra pre- and
post-processing was therefore related to working
around this. The target format of our corpora pro-
duced by the annotation tool chain is XML with
in-line linguistic annotations in VRT format, as ac-
cepted by the IMS OCWB.

Due to the influence of the SLURM queuing
system on performance, it is difficult to give exact
performance figures. What is more, the tool chain
is not fully automated yet, such that time was lost
due to periodic manual intervention. In practice,
processing the whole German corpus (including
the costly steps of named entity recognition and
morphological analysis) of 20 GT took under six
days with most time spent on named entity recog-
nition and morphological analysis.

4 Access to the corpora

4.1 Distribution

We redistribute our corpora (download and query
interface) as shuffle corpora (i. e., bags of sen-
tences). Similarly, the Leipzig Corpora Collection
(LCC) has for a long time been redistributing web
corpora in shuffled form.15 While the LCC offers
downloads to everyone, we additionally require
that users be registered. Only users who work in
the academia and provide a short abstract of their
research plan are granted access to COW. The per-
centage of registration attempts denied by us was
34.3% as of June 10, 2015, which illustrates that
we strictly enforce the criteria set by our terms of
use. The fact that the German Research Coun-
cil (Deutsche Forschungsgemeinschaft, DFG) are
currently funding work on COW based on a pro-
posal which specifically mentions the redistribu-
tion of shuffle corpora is an encouraging backup
for our strategy.

4.2 Target audience and interface

The intended users of the COW corpora and the
Colibri2 interface, to which I turn now, are lin-
guists working on lexicography, morphology, syn-
tax, and graphemics. Very often, these researchers
need to have concordances locally available for

15http://corpora.uni-leipzig.de

further manual annotation. Hence, the typical cor-
pus query workflow (assuming a web interface)
is: (i) preview a query, and (ii) download concor-
dance if results look good, or modify the query
and go back to (i). The Colibri2 interface im-
plements exactly this workflow.16 Users make
queries, either in a simple syntax (cf. Section 4.3)
or in native CQP syntax. Queries in simple syn-
tax are transparently translated into CQP syntax,
and manually entered CQP syntax is checked for
well-formedness.

A preview of maximally 100 hits is then re-
turned and displayed in a KWIC view, cf. Fig-
ure 1. Users can then decide whether they want
to download a larger concordance for that query
containing maximally 10,000 hits in tab-separated
format, and including (if desired) any of the anno-
tations contained in the corpus (Figure 2).17 Fil-
ters on structural attributes can be defined semi-
graphically (cf. Figure 3) in order to restrict
queries to strata of the corpus for which some meta
data annotation matches or does not match a regu-
lar expression.

4.3 Simplified query language

Users who do not want to enter CQP syntax them-
selves can use Colibri2’s simplified query lan-
guage, which offers only a few basic operators for
corpus searches. To keep it simple, the language
will not be extended or modified. Translation to
native CQP syntax is done exclusively and trans-
parently in the interface.

First of all, case-sensitivity cannot be specified
as part of a query but is rather switched on and off
globally using a button. A query consists of a se-
quence of literal tokens and lemmas, wherein lem-
mas have to be prefixed with �. Within tokens and
lemmas, * can be used as the wildcard for zero or
more arbitrary characters. Token distances (other
than the default of 0) can be specified as \n (fixed
distance of n tokens) or \n-m (distance of n to m
tokens). See Figure 1 for an example.

4.4 Context reconstruction

Because single sentences without a larger context
are useless for some types of linguistic research,
we have created a tool that reconstructs contexts

16https://webcorpora.org
17The limitation to 10,000 is implemented in the interface

and can be circumvented in API mode using HTTP GET re-
quests.

31



Figure 1: Colibri2 simple search view and part of a KWIC preview; the simple query is translated to
[word="ohne"%c][]{0,2}[lemma="Beanstandung"%c]

for at least some sentences in any concordance ex-
ported from Colibri2. The tool is called Calf , it
is written in Python and available on all common
platforms.18 Using Calf , researchers can down-
load the contexts of sentences in Colibri2 concor-
dances from the original resources available on the
web.

Calf reads in concordances exported from
Colibri2 which include the URLs of the original
web pages. If the web page is still available, it
is downloaded, tokenized, and the sentence from
the concordance is searched using a fuzzy match-
ing strategy. In case this fails (i. e., the page is no
longer available or its contents have changed), the
sentence is queried using Google’s search engine.
Calf then tries to locate the sentence on the pages
returned by Google. If the sentence was found ei-
ther under the original URL or using Google, a
context of a configurable number of characters is
extracted and added to the concordance.

Detailed evaluations of the method will be pub-
lished elsewhere, but as an example, I have ex-
ported a concordance returned by Colibri2 for the
word Chuzpe in DECOW14AX. It contained 201
sentences which Calf processed in 12 minutes and
54 seconds using an ordinary DSL line. Of the
201 sentences, 97 were found using the original
URL, and an additional 36 sentences were found

18http://corporafromtheweb.org/calf

using Google, resulting in 133 (66%) successfully
reconstructed contexts.

4.5 Architecture

The Colibri2 system can deal with corpora of vir-
tually arbitrary size, even though the underlying
IMS OCWB has a hard limit of roughly 2 GT per
corpus. To achieve this, the system accesses large
corpora partitioned into several sub-corpora. Our
German corpus, for example, comes in 21 parti-
tions of roughly 1 GT each. These partitions can
be installed on arbitrarily many back-end servers,
where PHP code talks to the CQP executable, cf.
Figure 4. The interface, implemented in the user’s
browser in JavaScript using jQuery and jQuery
UI, sends queries to the front-end server. Query
checking and management of user credentials are
implemented exclusively in the front end server.
If the user has the appropriate rights and the query
passes all sanity checks, the front end server sends
queries to the back end servers and aggregates the
results, before serving the data to the user inter-
face. The front end server talks to the back end
servers either in serial or parallel mode, where in
the parallel mode a configurable number of back
end servers is called simultaneously. Especially
the parallel mode allows the capacity of the system
(in terms of numbers of users and corpus sizes) to
grow, with the network traffic between front end
server and back end servers being the main limit-

32



Figure 2: Colibri2 results view and part of a KWIC preview

Figure 3: Sample filter on structural attributes;
only sentences from web pages with last-modified
header from 2009 will be returned

ing factor.
On our reference system, all communications

are secured by SSL. The granularity of access
rights is currently restricted to (i) public corpora
and (ii) corpora requiring login. More fine-grained
access rights management is planned. As of June
10, 2015, we serve 190 users on a single low-end
virtual server with 14 virtual cores, 14 GB RAM,
400 GB SSD storage, and a 100 Mbit/s connec-
tion.19 The server simultaneously acts as the front
end server and the only back end server, so we
do not even take advantage of the advanced load
distribution features of the system. Nevertheless,
there have so far been no performance issues.

5 Summary and outlook

The set of tools developed for COW14 as de-
scribed in this paper allows us to efficiently
build very large web corpora (conservatively
estimated up to 100 GT). The use of a simple

19The SSD storage, although still highly expensive in
servers, appears to be crucial for good performance.

SLURM-based HPC approach to parallelization
allows us to use any tool which we want for lin-
guistic annotation by wrapping it in a Bash script,
and we are therefore experimenting with more
and advanced annotation tools for dependency
parsing, text classification (register, genre, etc.),
etc. Finally, we do not only create the corpora,
but we also bring them to the working linguist
free of charge. Based on user feedback, we have
many plans for the interface. Above all, we are
going to implement static links to absolute corpus
positions, such that requests following the scheme
webcorpora.org/ref/<corpus>/<position>

will allow users to quote corpus examples with a
unique identifier and also exchange such links.

Acknowledgments

I would like to thank Felix Bildhauer for ongo-
ing joint work on the COW corpora since 2011. I
would also like to thank the HPC service offered
by the Zedat data center of Freie Universität Berlin
for computing resources. Also, Stefan Müller of
Freie Universität Berlin has provided an enormous
amount of computing and storage resources for
COW, for which I thank him. The work presented
here was partially funded by the German Research
Council (DFG) through grant SCHA1916/1-1.

33



Authentication
SSL

Authentication
SSL

JSON
(preview)

JSON
(preview)

TSV download
(concordance)

TSV download
(concordance)

Client
(JavaScript)

Frontend server
(PHP)

Backend servers
(PHP/CQP)

JSONJSON

JSONJSON

JSONJSON

Figure 4: Colibri2 architechture

References
Marco Baroni, Silvia Bernardini, Adriano Ferraresi,

and Eros ZanchettaBaroni. 2009. The WaCky Wide
Web: A collection of very large linguistically pro-
cessed web-crawled corpora. Language Resources
and Evaluation, 43(3):209–226.

Chris Biemann, Gerhard Heyer, Uwe Quasthoff, and
Matthias Richter. 2007. The Leipzig Corpora Col-
lection - Monolingual corpora of standard size. In
Proceedings of Corpus Linguistics 2007, Birming-
ham, UK.

Chris Biemann, Felix Bildhauer, Stefan Evert, Dirk
Goldhahn, Uwe Quasthoff, Roland Schäfer, Jo-
hannes Simon, Leonard Swiezinski, and Torsten
Zesch. 2013. Scalable construction of high-quality
web corpora. Journal for Language Technology and
Computational Linguistics, 28(2):23–60.

Anders Björkelund, Bernd Bohnet, Love Hafdell, and
Pierre Nugues. 2010. A high-performance syntactic
and semantic dependency parser. In Coling 2010:
Demonstration Volume, pages 33–36, Beijing.

Andrei Z. Broder. 2000. Identifying and filtering
near-duplicate documents. In R. Giancarlo and
D. Sanko, editors, Proceedings of Combinatorial
Pattern Matching, pages 1–10, Berlin.

Stefan Evert and Andrew Hardie. 2011. Twenty-first
century corpus workbench: Updating a query archi-
tecture for the new millennium. In Proceedings of
the Corpus Linguistics 2011 conference, Birming-
ham. University of Birmingham.

Manaal Faruqui and Sebastian Padó. 2010. Train-
ing and evaluating a german named entity recog-
nizer with semantic generalization. In Proceedings
of KONVENS 2010, Saarbrücken, Germany.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43nd Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2005), pages 363–370.

Eugenie Giesbrecht and Stefan Evert. 2009. Part-of-
speech (POS) tagging – a solved task? an evaluation
of POS taggers for the German Web as Corpus. In
Iñaki Alegria, Igor Leturia, and Serge Sharoff, edi-
tors, Proceedings of the Fifth Web as Corpus Work-
shop (WAC5), pages 27–35, San Sebastián. Elhuyar
Fundazioa.

Adam Kilgarriff and Gregory Grefenstette. 2003. In-
troduction to the special issue on the Web as corpus.
Computational Linguistics, 29:333–347.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. Maltparser:
A language-independent system for data-driven de-
pendency parsing. Natural Language Engineering,
13(2):95–135.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to German.
In Proceedings of the EACL SIGDAT-Workshop,
Dublin, Ireland.

Roland Schäfer and Felix Bildhauer. 2012. Build-
ing large corpora from the web using a new ef-
ficient tool chain. In Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Mehmet Uğur Doğan,
Bente Maegaard, Joseph Mariani, Jan Odijk, and
Stelios Piperidis, editors, Proceedings of the Eight
International Conference on Language Resources
and Evaluation (LREC’12), pages 486–493, Istan-
bul. ELRA.

Roland Schäfer and Felix Bildhauer. 2013. Web Cor-
pus Construction. Synthesis Lectures on Human
Language Technologies. Morgan and Claypool, San
Francisco.

Roland Schäfer, Adrien Barbaresi, and Felix Bildhauer.
2013. The good, the bad, and the hazy: Design de-
cisions in web corpus construction. In Stefan Evert,
Egon Stemle, and Paul Rayson, editors, Proceedings
of the 8th Web as Corpus Workshop (WAC-8), pages
7–15, Lancaster. SIGWAC.

Roland Schäfer. 2015. Accurate and efficient general-
purpose boilerplate detection. in prep.

34


