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In a previous study in this journal1, Aceves and Evans present a large-scale quantitative 

information-theoretic analysis of parallel corpus data in ~1,000 languages to show that there 

are apparently strong associations between the way languages encode information into words 

and patterns of communication, e.g. the configuration of semantic information. During the 

peer review process, one reviewer raised the question of the extent to which the presented 

results depend on different corpus sizes (see the Peer Review File). This is a very important 

question given that most, if not all, of the quantities associated with word frequency 

distributions vary systematically with corpus size.2–4 While Aceves and Evans claim that 

corpus size does not affect the results presented, I challenge this view by presenting 

reanalyses of the data that clearly suggest that it does. 

To test for a potential bias due to corpus size, my reanalysis focusses on the relation between 

information density and semantic density (cf. Fig. 2 in the paper). Aceves and Evans interpret 

the obtained correlation to suggest a strong positive association between language information 

density and semantic density across corpora. I first concentrate on the "Bible_NT" corpus, 

which encompasses the majority of the languages investigated by Aceves and Evans, with 

76.18% (number of languages NL = 761) of the total 999 languages being exclusively 

available in this dataset. As visualised in Fig. 1a, the Pearson correlation between information 

density and semantic density for this corpus amounts to ρPearson = 0.711 (NL = 828, N = 828, 

two-sided non-parametric permutation P-value with 10,000 Monte Carlo permutations, Pperm 
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< 0.001). Since the relationship clearly seems to be non-linear, I also calculated the Spearman 

correlation that is qualitatively highly comparable, with ρSpearman = 0.791 (Pperm < 0.001). 

However, Fig. 1b,c clearly demonstrate that both information density and semantic density are 

strongly correlated with corpus size (in words), with ρPearson = -0.922 (Pperm < 0.001) and  

ρSpearman = -0.916 (Pperm < 0.001) for information density and ρPearson = -0.824 (Pperm < 0.001) 

and ρSpearman = -0.906 (Pperm < 0.001) for semantic density. 

Fig. 1: Relation between information density, semantic density and corpus size (in words) for the 
Bible_NT corpus for NL = 828 languages and N = 828 data points. In all four scatter plots grey 
circles represent observed data points, while the cranberry line represents a locally weighted 
scatterplot smoother ("lowess”). The mint line in b,c represents the parametric prediction described in 
the text. a, Replication of the relationship between information density and semantic density as 
reported by Aceves and Evans. b, Relationship between information density and corpus size (in 
thousands, K). c, Relationship between semantic density and corpus size (in K). d, Relationship 
between information density and semantic density with control for the influence of corpus size.  

To test whether this dependence on corpus size affects the results presented by Aceves and 

Evans, I calculated the correlation between information density and semantic density that would 

be observed when corpus size were held constant, i.e. partial Pearson (𝜌𝑃𝑒𝑎𝑟𝑠𝑜𝑛
′ ) and partial



Spearman (𝜌𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛
′ )  correlations. To compute 𝜌𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛

′ , the variables are first ranked, then 

the partial correlations are computed in the usual way.5 To compute 𝜌𝑃𝑒𝑎𝑟𝑠𝑜𝑛
′ , I first fitted an

ordinary least squares (OLS) regression with information density as the outcome and corpus 

size as the predictor. The mint line in Fig. 1b shows that the model has an excellent fit, with the 

amount of explained variance, R2(OLS) = 84.97%. I then fitted an OLS regression with 

semantic density as the outcome and – to account for the non-linear functional form of the 

association– the log of corpus size and the log of corpus size squared as predictors. Again the 

mint line in Fig. 1c reveals that the model has an excellent fit, with R2(OLS) = 87.33%. I then 

computed the Pearson correlation between the residuals from both models. 

Fig. 1d shows that the influence of corpus size on the observed relationship turns out to be 

considerable, even reversing the direction of the correlation and thus suggesting a negative 

relationship between information and semantic density, with 𝜌𝑃𝑒𝑎𝑟𝑠𝑜𝑛
′  = -0.233 (Pperm < 0.001) 

and 𝜌𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛
′  = -0.229 (Pperm < 0.001). In general, Supplementary Table 1 shows that only in 

6 out of 18 investigated corpora, 𝜌𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛
′  is greater than zero at P < 0.05 (adjusted for 

multiple testing).5 

I proceeded by reanalysing the relationship between information density and semantic density 

for the whole dataset (N = 1,377). Aceves and Evans report the results (cf. SI Table 5 and SI 

Fig. 3) of a linear mixed effects regression model (LMM) where semantic density is predicted 

by fixed effects for information density, corpus size (in words), indicator variables for each 

corpus category and random intercepts for language family and language nesting observations 

within languages and languages within families. Fig. 2a replicates this analysis. The effect of 

language information density, βLID = 1.018 is significant (parametric two-sided P-value, Ppara 

< 0.001). To evaluate the model fit, I computed the amount of variance explained by the fixed 

effect components of the LMM, R2(LMM), as suggested by ref.6, eq. 26. For the reported 

model, R2(LMM) = 33.74%. Aceves and Evans include the raw value of corpus size as a fixed 



covariate. However, Fig. 2b illustrates that the distribution of corpus sizes is significantly 

right-skewed, violating assumptions of the regression model and adversely affecting the 

model fit.7 A common technique for dealing with this problem is to apply a logarithmic 

transformation.7 Fig. 2c shows that this approach does reduce the skewness to some extent. 

However, due to the substantial variation in sizes among the different corpora (see 

Supplementary Figure 1), the transformed distribution is still skewed. To allow the 

relationship between corpus size and semantic density to vary across different corpus 

categories, I fitted a LMM where semantic density is predicted by fixed effects for 

information density, corpus size (logged), indicator variables for each corpus category, first-

order interactions between corpus category and corpus size (logged) and random intercepts 

for language family and language nesting observations within languages and languages within 

families. This modified model demonstrates a significantly improved model fit, as reflected 

by a substantially higher amount of variance explained by the fixed effects, with R2(LMM) = 

57.78%. Fig. 2d visualizes the predicted effect of information density on semantic density for 

this model. As in the first reanalysis presented above, the direction of the relationship is 

reversed, with βLID = -0.1321, but does not reach significance at any conventional level (Ppara

= 0.157). 

With regard to the reviewer's comment, in my opinion my reanalyses clearly show that the 

relationships presented by Aceves and Evans are indeed highly dependent on corpus size. 

Apart from systematic cross-linguistic differences, such as variations in morphological 

structures and compounding, this finding is especially relevant for the analyses of Aceves and 

Evans because the corpus data they use vary greatly between languages in terms of text size. 

For example, within the Subs16 corpus, there are languages with less than 100 available 

movie subtitles, such as Bengali with 76 and Esperanto with 89, compared to languages such 

as Swedish with ~27.3K and Italian with ~96.5K subtitles.8 This further calls into question the 

overall validity and the interpretation of the results. 



Fig. 2: Relation between information density, semantic density and corpus size (in words) for the 
for all corpora, NL = 999 languages and N = 1,377 data points. a, Predictive margins with 95% 
confidence intervals visualising the relationship between information density and semantic density as 
reported by Aceves and Evans (cf. SI Fig 3). The LMM with semantic density as the outcome contains 
fixed effects for information density, corpus size and indicator variables for each corpus category and 
random intercepts for language family and language. b, Histogram visualizing the distribution of 
corpus size.  c, Histogram visualizing the distribution of the log of corpus size. d, Predictive margins 
with 95% confidence intervals visualising the relationship between information density and semantic 
density for a LMM with semantic density as the outcome that contains fixed effects for information 
density, corpus size (logged), indicator variables for each corpus category, interactions between corpus 
category and corpus size (logged) and random intercepts for language family and language.  



Data availability 

The Aceves and Evans dataset is available at 

https://github.com/peteaceves/Language_Density_and_Communication. 

Code availability 

Stata (version 18.0) output and code to conduct the reported reanalyses is available at 

https://osf.io/fmgct/. 
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Supplementary Information 

Supplementary Table 1 | Partial Spearman correlations between information density and 
semantic density controlling for corpus size. 1st column: Corpus. 2nd column: Number of cases. 3rd 
column: Partial Spearman correlation coefficient. 4th column: permutation P-value (each with 10,000 
Monte Carlo permutations). 5th column: Support for Aceves & Evans is categorised as "yes" if the 
partial Spearman correlation is positive and significant at the 95%-level and "no" otherwise. To 
account for multiple testing5, the Bonferroni-correction is applied i.e. 𝑃𝑝𝑒𝑟𝑚 < 0.05/𝑘 where k = 18,
i.e. the number of tests. 

Corpus N 𝜌𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛
′ 𝑃𝑝𝑒𝑟𝑚 Support for Aceves & Evans? 

Bible_Full 222 0.690 0.000 yes 
Bible_NT 828 -0.229 0.000 no 
ECB 19 0.223 0.364 no 
EMA 22 0.477 0.034 no 
EU_Bookshop 23 0.777 0.000 yes 
EU_DGT 23 0.655 0.002 yes 
EU_JRC 16 0.683 0.005 no 
EuroParl 21 0.806 0.000 yes 
GNOME 10 0.525 0.120 no 
KDE 54 0.600 0.000 yes 
News11 8 0.883 0.003 no 
News9 8 0.588 0.123 no 
ParaCrawl 14 0.644 0.013 no 
Subs16 45 0.280 0.065 no 
Subs18 46 0.443 0.002 yes 
TED 14 0.449 0.127 no 
Tatoeba 10 0.788 0.005 no 
UN 7 -0.393 0.384 no 



Supplementary Figure 1 | Visualisation of the distribution of corpus sizes across 
corpora. Shown are the sizes of the individual language documents (in words, logged) per 
corpus. The individual plots are sorted by median corpus size in ascending order. Box plot 
elements are defined as follows: centre line, median; box boundaries, first and third quartiles; 
whiskers, as defined by Tukey9; points, outliers. 




