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Abstract:

In a recent article, Meylan and Griffiths (Meylan & Griffiths, 2021, henceforth, M&G) focus their
attention on the significant methodological challenges that can arise when using large-scale linguistic
corpora. To this end, M&G revisit a well-known result of Piantadosi, Tily, and Gibson (2011, hence-
forth, PT&G) who argue that average information content is a better predictor of word length than
word frequency. We applaud M&G who conducted a very important study that should be read by any
researcher interested in working with large-scale corpora. The fact that M&G mostly failed to find clear
evidence in favor of PT&G’s main finding motivated us to test PT&G’s idea on a subset of the largest
archive of German language texts designed for linguistic research, the German Reference Corpus con-
sisting of ∼43 billion words. We only find very little support for the primary data point reported by
PT&G.
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1. Introduction

We thank M&G for an important study that we recommend to any researcher interested
in working with large-scale corpora, as it highlights important methodological challenges
that can arise when using large-scale linguistic corpora. Also, their study provides several
recommendations for researchers conducting such analyses. When applying those best prac-
tices, M&G demonstrate that there is “substantially attenuated support for the claim [of
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PT&G] that word lengths are more strongly correlated with average information content than
with frequency” (M&G, p. 5). We believe that the finding of PT&G is important both for
cognitive science and quantitative linguistics, as it provides an information-theoretic expla-
nation for Zipf’s law of abbreviation––the tendency of more frequent words to be shorter, a
potentially universal property of human languages (Bentz & Ferrer-i-Cancho, 2016). There-
fore, we decided to test PT&G’s main finding1 on a subset of the (presumably) largest archive
of contemporary German language texts specifically designed for linguistic research, the Ger-
man Reference Corpus (henceforth, DeReKo, for details, see Kupietz et al., 2010; Kupietz et
al., 2018).

2. Data and preprocessing

DeReKo currently contains more than 50 billion [henceforth, b] tokens and comprises a
multitude of genres, such as (a large number of) newspaper texts, fiction, or specialized texts,
with a current growth rate of ∼3b words per year (Kupietz et al., 2018). Tokenization was car-
ried out using the KorAP tokenizer (Kupietz et al., 2021), the deterministic finite automaton
scanning rules of which are based on those of the Apache Lucene tokenizer. Part-of-speech
tagging and lemmatization is based on TreeTagger (Schmid, 1994). We do not impose any
frequency threshold regarding the inclusion of n-grams. For example, only n-grams with a
token frequency of at least 40 are included in the Google 1T datasets (Brants & Franz, 2006)
that is used both by M&G and in PT&G. The same threshold was used in the second main data
source of M&G, the Google Books 2012 datasets (Michel et al., 2011). We believe that this
threshold severely limits the usability of the Google datasets for most quantitative linguistic
research. For example, in our sample of DeReKo consisting of 43,139,394,275 tokens,2 only
4.03% of all 107,834,517 types occur with a token frequency of more than 40. In a similar
vein, only 1.16% of all 6,843,888,373 3-gram types occur more than 40 times in DeReKo.3

First, we converted all characters to lower case. The average information content value of
each word type based on an unsmoothed 3-gram model was estimated as was done in both
PT&G and M&G. In addition, we generated a smoothed 3-gram model (see Appendix for
details on statistical modeling). Following M&G’s suggested best practices, we then used a
basic lemma list of the New High German standard language generated by Stadler (2014)
to identify a set of conventionalized word forms. The list is based on DeReKo and con-
sists of more than 325 thousand [henceforth, k] entries. While the lemma list was generated
with the help of automatic methods (Stadler, 2014), it meets highest quality standards, since
it uses a headword list from a lexicological-lexicographic project based at the Institute for
the German Language (IDS) as input where all contained 300k headwords were manually
checked for consistency and, if necessary, errors were deleted from the list (Schnörch, 2015;
Storjohann, 2016). The list does not contain proper names, abbreviations, or other nonwords
(Stadler, 2014) and we also excluded strings that contain cardinal numbers since orthographic
word length for cardinal numbers naturally does not match actual production times. To find
the set of word forms realized for each lemma (i.e., inflected forms), we first identified all
word types where a corresponding lemma is recognized by the TreeTagger. We then merged
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this list with Stadler’s basic lemma list and kept all word forms where the corresponding
lemma is also available in the lemma list. The final list consists of N = 841,435 different
word types.

Importantly, note that, like in M&G (note 3), those preprocessing steps were conducted
after the estimation of average information content values, that is, both the unsmoothed and
smoothed language models were estimated for the whole corpus, but words that are not part of
the generated list of word types were not used to calculate the association between information
content and word length.

Word lengths are calculated as the number of Unicode characters of a word type. In addi-
tion, we use production times (i.e., average word pronunciation durations) and syllable counts
from the Bavarian Archive for Speech Signals (Schiel, 2010).4

3-gram data are freely available in an IDS Repository at hdl.handle.net/10932/00-057D-
0921-30F0-F201-D under a non-commerical academic license. To test the reliability of the
resulting statistical associations, we generated three versions of the corpus: (i) a full version
consisting of all articles (∼43.1b word tokens); (ii) a half version where we randomly chose
half of all available articles (∼21.6b tokens); and (iii) a quarter version where we randomly
chose one quarter of all articles (∼10.8b tokens).5 Smoothed and unsmoothed average infor-
mation contents for all ∼107.8 million [henceforth, m] word types, commented Stata 14.2
(StataCorp, 2015) code, and a replication in R (R Core Team, 2021) are available in a reposi-
tory on the Open Science Foundation https://osf.io/NREBJ/.

3. Results

Fig. 1 presents the results for the association between orthographic word length and pre-
dictability. PT&G include the 25k most frequent words in their analyses.6 For all three corpus
sizes and both for the unsmoothed and smoothed language models, our results do not sup-
port PT&G’s main finding in this frequency range: in all six scenarios, the 1-gram model
(i.e., negative log 1-gram probability as in PT&G, see Appendix) is the better predictor of
word length, both in isolation and when the other predictor is held constant.

The same is true if we compute associations for the 12.5k most frequent words. Like M&G
(p. 13), we emphasize that the theoretical argumentation in PT&G implies that there actu-
ally should be the expected stronger relationship between word length and predictability than
between word length and frequency for these subsets of words: for example, Fig. 1 shows
that the 12.5k most frequent in-dictionary types already account for ∼65% of all 41.1b word
tokens in the corpus. We, therefore, believe that this questions the theoretical idea of a com-
municative efficiency maximization principle as discussed by PT&G.

For the 50k most frequent types, only the unsmoothed quarter model supports a stronger
relationship between word length and predictability than between word length and frequency.
There is support for PT&G’s main finding if we include 100k, 200k, 400k, or 800k most
frequent in-dictionary word types for the three unsmoothed models. However, the smoothed
models, which presumably provide less noisy estimates of information content (see PT&G,
Supporting Information Text), only replicate this finding for the 100,000 or 200,000 most

https://hdl.handle.net/10932/00-057D-0921-30F0-F201-D
https://hdl.handle.net/10932/00-057D-0921-30F0-F201-D
https://osf.io/NREBJ/
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Fig 1. Spearman correlations between orthographic word length and average information content for three differ-
ent corpus sizes (quarter: ∼10.8b tokens; half: ∼21.6b tokens; and full: ∼41.1b tokens) based on unsmoothed and
smoothed 1-gram (blue) and 3-gram models (lime); see Appendix for details on statistical modeling. Triangles
show partial Spearman correlations (with the other predictor residualized out). Values on the x-axis indicate the
number of word types included in the analysis (sorted in descending order by frequency). Values in parentheses
represent the cumulated relative frequency of word tokens in the sample. Pink borders indicate results that support
PT&G, that is, the Spearman correlation based on the 3-gram model is significantly higher than the Spearman
correlation based on the 1-gram model; likewise for the partial Spearman correlations (to determine statistical
significance, we bootstrapped the difference between the two Spearman correlation coefficients with 10,000 repli-
cations each; likewise for the partial Spearman correlations. A “significant” result indicates that the corresponding
bias-corrected 99% confidence interval does not contain zero).

frequent word types. Fig. 1 also demonstrates that the statistical associations are qualitatively
highly comparable across varying corpus sizes, which suggests that they are reliable and not
the result of estimation errors.

PT&G further theorize that “the amount of information conveyed by a word should be
linearly related to the amount of time it takes to produce” (p. 3526). Using actual average
production time statistics, we show in Fig. 2 that when partialling out the effect of word
frequency, there is effectively no support for any statistical association between production
time and predictability. In a similar vein, if we compute associations between information
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Fig 2. Spearman correlation between average information content and average production time/syllable count for
the three different corpus sizes (included word types N = 13,356 for the full corpus and N = 13,555 for the
quarter/half corpus, cumulated relative frequency: 57.0% for all three sizes). Other plotting conventions are the
same as in Fig. 1.

content/frequency and the number of syllables as a measure of word length, there is no support
for PT&G’s main finding in neither of the six scenarios.

4. Concluding remarks

While several of the methodological challenges mentioned by M&G regarding large-scale
corpora also arise for the German Reference Corpus, DeReKo has the advantage that it does
not consist of web-gathered material, but was specifically designed as an empirical basis for
linguistic research (Kupietz et al., 2010), resulting in a higher quality standard and thus a
potentially better testbed for evaluating hypotheses about structural properties of language.
The same is true for the basic lemma list that we used to identify conventionalized word
forms (Stadler, 2014). Since––like M&G––we are not able to consistently reproduce PT&G’s
systematically higher correlation between average information content and word length than
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between word frequency and word length, we tentatively conclude that there is, as of now, 

not enough support for PT&G’s main finding, at least for German.8

Open Research Badges

This article has earned Open Data and Open Materials badges. Data are available at
hdl.handle.net/10932/00-057D-0921-30F0-F201-D and materials are available at https://osf.
io/NREBJ/.

Notes

1 As clarified by PT&G (Piantadosi, Tily, & Gibson, 2013: 2), their main finding is “that a
word’s average in-context surprisal predicted word length better than frequency predicts
word length.” In what follows, we directly test this primary data point.

2 The basis for this sample was DeReKo-2020-I (Leibniz-Institute for the German Lan-
guage, 2020) from which we excluded corpora with high proportions of foreign-language
passages, corpora with high proportions of nonredacted texts, and corpora not sufficiently
licensed for external use.

3 To illustrate the effect of truncation in the present context, see Fig. S1, where we repli-
cated the analyses based on truncated corpora, where all 3-grams with a token frequency
of less than 40 were excluded from the raw data.

4 Available at https://www.bas.uni-muenchen.de/forschung/Bas/BasPHONSTATeng.html
5 Available files are compressed with xz. The repository consists of 16 3-gram frequency

lists. Each list was generated based on 1/16 of all selected DeReKo articles (randomly
assigned). 3-grams are stored using integer IDs for each word type, that is, each word type
is mapped to a unique integer (Brants, Popat, Xu, Och, & Dean, 2007). Each list consists
of four TAB-separated columns, where the first three columns represent IDs for each
of the three words. The fourth column gives the frequency count for the corresponding
3-gram. The available list DATA mapping key (“case_ignore_padded_key.tsv”) contains
the mapping of words to the corresponding IDs. For the quarter version/half version, we
used the first four/eight lists.

6 For each analyzed language, PT&G included the 25k most frequent words that also
occurred in the OpenSubtitles corpus of the OPUS Corpus (Tiedemann, 2012).

7 We include 3-grams that run across sentence boundaries, but not 3-grams that run across
article boundaries. To make the 3-gram model a true probability distribution (Jurafsky &
Martin, 2021), we include begin- and end-of article markers («START» and «END») and
compute counts accordingly, that is, C(«START» «START» die) represents the frequency
of articles that begin with definite article “die.”

8 We thank Carolin Müller-Spitzer, Peter Fankhauser and three anonymous reviewers for
input and feedback. We also thank Peter Meyer for helpful conversations regarding our
statistical language model, Denis Arnold for creating an IDS Repository that hosts the
DeReKo 3-gram data, Oliver Schonefeld for IT support and Sarah Signer for proofread-
ing.

https://hdl.handle.net/10932/00-057D-0921-30F0-F201-D
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https://www.bas.uni-muenchen.de/forschung/Bas/BasPHONSTATeng.html
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Fig. S1: Spearman correlations between orthographic
word length and average information content for three
different corpus sizes

Appendix

For each type of word in our corpus, we first extract allΜ sequences of three words, where
the third word is w and whereΜ represents the total count of w in the corpus. In what follows,
we will denote the total count of a word or word sequence X as C(X), so here, M ≡ C(w).7

Let us then consider three random variables, U for the first word, V for the second word, and
W for the last word in the three word sequence. Each random variable can take on different
values, for example, U can take on the value “the,” V can take on the value “pale,” and W can
take on the value “king,” for simplicity, we write C(the pale king) for the total count of the
3-gram “the pale king”. More generally, we write C(uvw) for the total count of the 3-gram
uvw, where U = u, V = v, and W = w. Accordingly, P(uvw) represents the joint probability of
uvw and P(w|uv) represents the conditional probability of w given the two preceding words u
and v, that is, uv (Jurafsky & Martin, 2021, chapter 3; Manning & Schütze, 1999, chapter 6;
Brants, Popat, Xu, Och, & Dean, 2007).

As suggested by PT&G and replicated by M&G, the average amount of information con-
veyed by w can be approximated based on all types of different uv sequences that precede w

https://doi.org/10.7146/hjlcb.v18i34.25800
https://doi.org/10.1109/18.87000
https://doi.org/10.1109/18.87000
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(i.e., C(uvw) > 0) as:

η 3©(w) = −
∑

u

∑

v

P (uv|w) log2P (w|uv) (A1)

Let us first apply Bayes’ theorem to compute P(uv|w), so we can rewrite Eq. 1 as:

η 3©(w) = −
∑

u

∑

v

P (w|uv) P (uv)

P (w)
log2P (w|uv)

Since P(uv) can be expanded as P(v|u)P(u), we can write:

η 3©(w) = −
∑

u

∑
v P (w|uv) P (v|u) P (u) log2P (w|uv)

P (w)
(A2)

To estimate η 3©(w), we first train an unsmoothed language model by using the maximum
likelihood (henceforth, ml) estimates of the probabilities in Eq. 2, to approximate P(w|uv),
we compute the count of the 3-gram C(uvw) and normalize by the count of the 2-gram C(uv):

Pml (w|uv) = C (uvw)

C (uv)
. (A3)

In a similar vein, we can write:

Pml (v|u) = C (uv)

C (u)
. (A4)

To compute P(w), we write:

Pml (w) = C (w) /N, (A5)

where N denotes the size of the corpus in words; likewise for P(u).
To address the primary finding reported by PT&G, that is, to test if a word’s average

in-context surprisal better predicts word length than frequency (Piantadosi, Tily & Gibson,

2013), we compare the results of the 3-gram model, that is, η
3©

ml (w), with an unsmoothed
1-gram model, where the average amount of information conveyed by w is approximated as:

η
1©

ml (w) = −log2Pml (w) (A6)

In addition, we train a smoothed 3-gram model, where we linearly interpolate all probabil-
ities based on the prediction by partial matching algorithm, where escape probabilities are
estimated by method C (Cleary & Witten, 1984), which is known as Witten-Bell smoothing
in the language modeling community (Chen & Goodman, 1996; Witten & Bell, 1991). Or
put differently, instead of generating a probability distribution that is solely based on 3-gram
counts, we blend together predictions of 3-, 2-, and 1-grams and assign higher weights to
n-grams of higher order (Knoll & Freitas, 2012), where individual weights are determined
by calculating the number of different words observed after a specific n-gram. In a corpus
consisting of Κ different word types, the smoothed (henceforth, sm) unigram probability can
be written as:

Psm (w) = λKPml (w) + (1 − λK )
1

K
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where (1 − λK ) = 1/(N + W ) and thus:

Psm (w) = C (w) + 1

N + K
. (A7)

Likewise for P(u). The smoothed conditional probability of w given v can be calculated as:

Psm(w|v) = λvPml (w|v) + (1 − λv)Psm(w),

where λv = C(v)/(C(v) + γv) is calculated based on γv that denotes the number of different
words observed after v. Substituting, we can thus write:

Psm (w|v) = C (vw) + γvPsm (w)

C (v) + γv
(A8)

Likewise for P(v|u). In a similar vein, we estimate the probability of w given uv as:

Psm (w|uv) = C (uvw) + γuvPsm (w|v)

C (uv) + γuv
, (A9)

where γuvdenotes the number of different words observed after uv. Again, we compare the

results of the smoothed 3-gram model, that is, η
3©

sm (w), with a smoothed 1-gram model, where
the average amount of information conveyed by w is approximated as:

η
1©

sm (w) = −log2Psm (w) (A10)

All language models were generated in Stata/MP on a Linux server (CentOS 7.9.2009) with
756GB of available RAM (more than 90% were needed for generating the language models
for the full corpus; computation time: ∼3.6 days).
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