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bundle with the research findings.
An additional aspect when providing online tools

for (scientific) work is that operation must be guar-
anteed to be secure, uninterrupted and failure-free
(in the best case), since on the one hand users de-
pend on them for their research and on the other
hand the validity of the results depend on their cor-
rectness.

3 Reproducibility

In order to make scientific studies with computer-
assisted methods reproducible, not only prerequis-
ites have to be fulfilled by the study design and the
underlying data, but also the software should be
designed and developed in such a way that it can be
run on other systems in the form used for the initial
study. This poses numerous challenges (Ivie and
Thain, 2018), especially for online tools, but first
and foremost, it requires

1. licensing that is as open as feasible,

2. transparent versioning of the software, and

3. a high degree of portability, so the software
can be run independent of its environment and
time.

It should be noted, of course, that reproducibility
can basically only be achieved according to the best
effort principle. Full control over and complete
documentation of the environment can rarely be
guaranteed (i.e. full control over the hardware, the
operating system, the compiler or interpreter used,
etc.).

3.1 Licensing
To enable autonomous reproduction of a study using
computer-assisted methods, the software used must
be accessible for everyone without restriction in the
best case. In order for the implementation to be
completely transparent, publication as open source
is essential (Hasselbring et al., 2020). This not
only helps with reproducibility, but can also reveal
problems in the analysis, originating from errors in
the software used (Goldacre et al., 2019).

The decisive criterion in the selection of soft-
ware licences for the publication of KorAP mod-
ules was to restrict their use as little as possible and

3We follow the terminology by the Association for Com-
puting Machinery (2020). Please note, that the definitions for
“reproducibility” and “replicability” were revised in version
1.1; see Plesser (2018) for an overview on the terminology.

not without reason. Therefore, we have published
most of the KorAP modules under the very liberal
BSD 2-clause license4 as open-source software on
our Gerrit server5 and on GitHub6. The biggest
concern we had with our license choice was that
the BSD licence does not exclude the subsequent
removal of externally developed code. Our com-
promise solution to this consisted of pointing out in
the licence notes (certainly not completely legally
secure) that externally contributed code would also
automatically fall under the BSD licence. For the
case that substantial code parts were contributed by
external developers, we also planned to introduce
Contribution License Agreements (CLA) independ-
ently via corresponding hooks in GitHub and Gerrit.
So far, we have not had any bad experiences with
our licensing policy.

The decision on Cosmas II licensing was made
against opening up the source code in the mid-
1990s. Therefore all aspects of reproducibility were
in the responsibility of the project owner.

3.2 Versioning

As software continues to be developed, there are dif-
ferences that may disrupt reproducibility. At times
backwards incompatibility is also inevitable. This
is where versioning plays an important role. Ver-
sioning ensures consistent behaviour of a software
by identifying and recording immutable states of
a software (i.e. that are called versions) over time.
By using version control systems, older versions of
a software can be rebuilt. We use Git for versioning
KorAP and SVN for Cosmas II. Moreover, we use
GitHub for hosting the KorAP Git repository.

A version number or hierarchy (e.g. “1.5.2”) is
often used to communicate changes between states.
While the different levels of a version number can
indicate different forms of change (compare with se-
mantic versioning7), it is crucial that the behaviour
of a released version of software is immutable, and
that it can be restored at any time. In the case of
KorAP, different components are in play (Diewald
et al., 2016), which are operated and released inde-
pendently of each other. In order to provide users
with information about the whole software stack
in use, a central API endpoint was designed that
returns the individual version numbers of the com-

4Also called Simplified BSD License or FreeBSD License
5https://korap.ids-mannheim.de/gerrit/admin/

repos
6https://github.com/KorAP
7https://semver.org/
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ponents involved.
Hashing and tagging can be used for identifying

and naming particular changes respectively (Ivie
and Thain, 2018). Git uses a hash function to cre-
ate a unique identifier for each change or commit
(Chacon and Straub, 2014). An accurate versioning
system would involve the transparent communica-
tion of git commit hashes. Tags on these commits
are often used to mark releases, but they are not
necessarily unique. In KorAP, we take advantage
of Git commit hashes as commit references, and
Gerrit change-id (see sec. 4.1) to group commits
belonging to the same review. Moreover, we use
tags to mark releases both in KorAP and Cosmas
II.

Releases can be made citable by archiving them
in Zenodo, an open access repository for deposit-
ing research resources, as supported by GitHub8.
Zenodo will issue a Digital Object Identifiers (DOI)
for each release in a GitHub repository connected
to it. We have published recent KorAP releases in
Zenodo.

Beside software versioning, it is important to
maintain API versioning to support clients using
older APIs, especially when there are breaking
changes in the newer APIs such as changes in the re-
quest or response formats and types. API versioning
is commonly achieved by including the API version
number in the service URL (i.e. URI versioning),
adding a custom header or using the Accept header
indicating the API version number. For KorAP API,
we support API versioning by including the API
version number within its service URL path.

3.3 Portability
Exact repetition of a computer-assisted scientific
study would require “building the same program
with the same compiler running on the same hard-
ware and the same operating system” (Ivie and
Thain, 2018, p. 63:4), which is rarely possible9. In
the case of online tools, this is further complicated
because the server architecture (both hardware and
software) is seldom communicated to make attacks
more difficult (see sec. 4). This requirement is even
more ambitious to meet if a study is to be repro-
duced far in the future, when common hardware
and software have changed to a great extent.

Therefore we instead aim at a high degree of port-
8https://guides.github.com/activities/

citable-code/
9This may still lead to different results in case of non-

deterministic behaviour.

ability of the system while ensuring equivalence of
the final result. As a single criterion for equivalent
behaviour, we consider the error-free run of all test
suites of the system – including their dependencies
(see sec. 4.3). To test the error-free operation in dif-
ferent environments, we use Continuous Integration
for some components via GitHub (see sec. 4.3). To
facilitate full building of the overall system locally,
we provide both Vagrant10 and Docker11 files as
our way to enable a virtualization approach (Howe,
2012).

At the beginning of the development of COS-
MAS II (Bodmer, 1996), the only requirement in
terms of portability was the use of GNU-C, so it
was usually necessary to access the existing envir-
onment to reproduce behaviour.12

3.4 Replicability
To additionally enable replicability of a computer-
assisted study (i.e. re-implementation of the design
by a different team using methods developed inde-
pendently; see Footnote 3), further detailed docu-
mentation of the methods used is necessary. In the
case of research software tools, this is sometimes
part of the official documentation and thus does
not require repeated explanation in publications. In
many cases, such as the use of collocation meas-
ures, independently implemented methods already
allow for the replicability of results (at least from
the software point of view).

In KorAP, to facilitate replicability of studies,
different query languages were implemented to al-
low comparison of results across multiple corpus
analysis platforms. The use of virtual corpora en-
ables the replicability of studies with different data
bases (for example, considering comparable cor-
pora; Kupietz et al., 2020); APIs, URL-encoded
queries and various client libraries should help fa-
cilitate this. The functionality of KorAP and Cos-
mas II is documented in scientific publications, in
manuals, in GitHub Readmes and Wikis, and com-
mented in the code.

4 Dependability and Security

Avizienis et al. (2004) provide a taxonomy of de-
pendable and secure computing, whose individual

10https://github.com/KorAP/KorAP-Vagrant
11https://hub.docker.com/u/korap
12Only due to multiple migrations of the software, for in-

stance from Solaris to a modern 64-bit Linux architecture, did
the aspect of portability come to the front, albeit not in the
context of facilitating reproducibility.
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parts can be seen as cornerstones of quality manage-
ment in the provision of software. One definition of
dependability is “the ability of a system to avoid ser-
vice failures that are more frequent or more severe
than is acceptable”, attributed with the Availabil-
ity, Reliability, Safety, Integrity and Maintainabil-
ity of the system. When taking security concerns
into account, the confidentiality of the system is
another important attribute (Avizienis et al., 2004,
ch. 2.3).13

4.1 Availability and Reliability
Availability is defined as the “readiness for correct
service” and reliability as its “continuity”. With
respect to security, this means a limitation to au-
thorized actions only.

In order to keep the availability of KorAP at
a high level, we use the service monitoring tool
Icinga14, which monitors the availability of the web
services themselves and the status of the servers
involved in order to be able to recognise emerging
problems early on. To indicate planned downtimes,
we currently use the start page of KorAP’s web in-
terface. In order to also be able to notify API users
in the future, a corresponding message is planned
for the functions for establishing connections in
KorAP’s client libraries. A fail-safe server struc-
ture with load-balancing and automatic switching
between servers is not yet implemented for KorAP.
This is also because with limited resources and in
the context of research tools, we do not prioritise
availability over reliability.

Concerning reliability in corpus linguistic re-
search, in particular, it is a commonplace that inter-
esting corpus findings are often initially artefacts of
corpus composition and that corpus sampling and
analysis cycles should therefore be regarded as an
iterative process (Kupietz, 2016). One could add
that the findings that remain after the elimination of
confounders may also not represent true properties
of the language domain under study, but also results
of software bugs.

A proven means of reducing software errors is the
use of code review (McIntosh et al., 2016), which
in the context of research tools can also often take
on the role of a classic peer review, at a fine granu-
larity level. Among assisting systems, Gerrit Code
Review15 has become particularly well established

13The following definition quotes are taken from Avizienis
et al. (2004).

14https://icinga.com/
15https://www.gerritcodereview.com/

in recent years.16 Gerrit is an open-source team
collaboration tool that is typically operated via a
web interface. Developers can use it to review oth-
ers’ changes to their source code and comment, im-
prove, augment, approve or reject those changes. It
is tightly integrated with Git and can be considered
an interface layer on top of Git.

The multiple-eyes principle not only helps to
avoid errors and to be able to make design decisions
collaboratively, but also ensures that code know-
ledge is distributed among several people, even if
only individuals are responsible for a code base. In
this way, personnel failures or absences do not ne-
cessarily lead to serious disruptions in operations,
maintenance and development.

Admittedly, the use of Gerrit means an increase
in the entry threshold, especially if the users are not
yet very experienced in dealing with Git either. In
addition, the review effort is certainly not to be neg-
lected and the maintenance of Gerrit also involves
a certain additional effort. Nevertheless, in view
of the direct comparison with projects running in
parallel without code review and the advantages
already mentioned above, we are convinced that in
the case of research tools, the use of a code review-
ing system is worthwhile at least from a project size
of 2-3 people. The initial and recurring costs in-
curred are more than made up for by the avoidance
of errors and the distributed code knowledge. In
our experience, another positive side effect of code
reviews in terms of reliability is that commits are
typically smaller and that pieces of parallel develop-
ment strains can be more often combined without
conflicting merges. This also increases the readab-
ility and traceability of the commit history.

To prevent unauthorized activities, we use integ-
rate the OAuth 2.0 framework (Hardt, 2012) allow-
ing users to grant their applications access to the
KorAP APIs17. These applications may thus per-
form operations within the scope of their grants,
e.g. searching and retrieving annotations, on behalf
of the users.

4.2 Safety, Confidentiality, and Integrity

Safety is defined as the “absence of catastrophic
consequences on the user(s) and the environment”,
confidentiality – as an attribute to security only – as
“the absence of unauthorized disclosure of inform-

16Gerrit is used by several prominent companies and pro-
jects, such as Android, SAP, LibreOffice, Volvo, Skia, TYPO3,
ARM, and Wikimedia.

17https://github.com/KorAP/Kustvakt/wiki
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ation” and integrity as the “absence of improper
system alterations”, which in regard to security in-
cludes unauthorized alterations.

Such security risks are in particular a threat to
unmaintained online tools and can bring a very
quick end to their operation. When potentially ser-
ious security vulnerabilities of an online tool be-
come known and there are no longer any respons-
ible parties, an academic institution usually has no
choice but to take the tool offline immediately. Espe-
cially since, unlike research data management plans,
research software management plans are probably
a rarity. But even with tools that are still in devel-
opment or maintenance, it is not obvious how to
identify security problems with reasonable effort.
In the case of KorAP, however, the publication of
the source code on GitHub already helped us a lot
without further ado. GitHub has an integrated se-
curity scanner that is enabled by default for public
repositories. It detects so called Common Vulnerab-
ilities and Exposures (CVE) in used dependencies
and notifies the repository owners. Similar code
scanner plugins for IDEs can serve as a supplement
or alternative. There also seem to be open source
approaches for such scanners, but we have no ex-
perience with them.

After having received a notification about CVE
of a library and there is already an update to this
that resolves the vulnerability, a common problem
is that the update often also requires the update of
other libraries, which again depend on other library
updates and so on. This can mean that fixing a se-
curity vulnerability in one used library ultimately
requires significant work to adapt the code to all the
interface and behaviour changes of all the neces-
sarily updated libraries (see sec. 4.3). Doing this
quickly without taking the tool offline in the mean-
time can be a major challenge, even for software
that is still under active maintenance.

Unless the use of external libraries is dropped,
which however causes other costs and issues (see
following section), the only secure option is to up-
date library dependencies regularly and to factor
this in from the outset as permanent maintenance
costs for the operation of the online tool.

Tools that can help with the continuous updating
of library dependencies have proven useful for cer-
tain projects (Mirhosseini and Parnin, 2017; Wessel
et al., 2018). Dependabot18, a so called dependency
scanner, not only informs about updated dependen-

18https://dependabot.com/

cies, but also automatically makes merge requests
to update, in the case of Java19, Maven or Gradle
project files. Following GitHub’s acquisition of
Dependabot in May 2019, the feature was added
natively to GitHub. In the meantime, there is also
an open-source project based on the original De-
pendabot core, that makes Dependabot available
for GitLab.

We have been using Dependabot with GitHub
since July 2020 for the KorAP component Kustvakt
and have since received an average of 15 update
pull requests per month. These update requests are
particularly useful and easy to handle with corres-
ponding continuous integration workflows, which
can be used to automatically check whether the
software is still buildable and operational with the
updated library (see 4.3, below).

4.3 Maintainability

Maintainability is the “ability to undergo modifica-
tions, and repairs” of a system. Continuous main-
tenance is necessary not only to fix bugs, to accom-
modate changes in demand and to address security
issues (sec. 4.2), but also to accommodate changes
in the behaviour of client or server environments.

Modularity has proved to be useful to simplify a
complex system by breaking it down into smaller
independent modules or components. Smaller mod-
ules are easier to maintain and reuse than a complex
system, since they are easier to understand, test and
restructure independently of others. KorAP is com-
posed of small independent components, both the
service (Diewald et al., 2016) as well as the prepro-
cessing pipeline.

Due to the increased complexity of the system,
the maintenance of software dependency trees re-
quires a great deal of effort, so that a constant trade-
off must be made between reuse and reimplement-
ation of functions (i.e. re-inventing the wheel vs
dependency hell; see Abdalkareem et al., 2020). In
KorAP, we decided to use both approaches, namely
reusing functions and libraries as far as possible (as
long as indirect dependencies are manageable) and
re-implementing only when necessary (e.g. when
existing functions are not adequate to cope with
new requirements).

All KorAP components are equipped with com-
prehensive test suites. The test suites help us on the
one hand to check new functions for proper beha-

19Besides Java, various other programming languages are
also supported, such as JavaScript and Python.
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viour, and on the other hand to automatically en-
sure that program changes do not alter any previous
behaviour (cf. Rafi et al., 2012). It is also signific-
ant for checking if updated dependencies break or
modify the system flow. We also use the automatic
detection of test coverage to identify deficiencies
and gaps in the test suites. It should be noted that
the maintenance of the test suites involves signific-
ant extra costs. In some areas, we recently employ
additional fuzzing techniques (Miller et al., 1990)
to test unexpected input to address shortcomings in
manually crafted tests.

An important automatable instrument to control
the functionality of software in the last instance are
continuous integration (CI) tests. We now apply
such CI test workflows to the production branches
of almost all KorAP components, using GitHub
Actions20. The workflows check if the tool can be
built and apply all its available tests partly in differ-
ent operating system environments (see sec. 3.3).
Our CI workflows are usually configured in such a
way that they are also automatically apply merge
requests submitted via GitHub, so that it is imme-
diately apparent if these affect the functionality of
the software 21.

5 Discussion

Developing, maintaining, and operating online re-
search software tools presents numerous challenges
including ensuring reproducibility, dependability
and security, as it requires knowledge and skills in
many different areas. In fact, however, like research
software in general, these tools are predominantly
developed by individuals from academia – and less
with a background in software development (Co-
hen et al., 2021). In our case, this background is in
linguistics.

Cohen et al. (2021) introduce a model of four
pillars considered essential to develop sustainable
research software in such an environment, with soft-
ware development being only one of the pillars.
As additional pillars, they introduce community in-
volvement for collaborative problem solving, train-
ing of researchers in software development tech-
niques, and policy development for institutional
support. We consider these points to be essential for
the development of online research software tools

20https://docs.github.com/en/actions
21Consisting of multiple components developed in vari-

ous programming languages and frameworks having distinct
formats and structures, KorAP is too complex and not suitable
for uniform code and comment styles and conventions.

as well, whereby we would add another pillar for
maintaining and operating the system.

While the perception of the importance of soft-
ware for scientific work is growing, development,
maintenance, and operation is rarely associated
with gaining scientific merit: “many activities are
software maintenance – new functionalities or end-
less bug fixing – and hardly publishable” (Goble,
2014, p. 6). Anzt et al. (2021) therefore propose
to accept contributions to open source projects (so-
called “pull requests”) as a new form of academic
contributions to conferences22, in order to increase
the motivation to participate in the development of
research software tools, which is beneficial for the
wider scientific community.

Our remarks regarding quality management to
ensure reproducibility, dependability and security
of online research software tools should in no way
be misunderstood as best practices. They are only
meant to reflect our choices and experiences in
these areas running the corpus analysis platforms
KorAP and Cosmas II, whereby all these decisions
were based on a cost-benefit calculation. Especially
when creating research software, the effort to run a
practicable quality management is often not compat-
ible with the circumstances. We are however con-
vinced that the aforementioned aspects are worth to
be considered in the development, operation, and
maintenance – maybe even in the planning – of
online research software tools in general.
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