TY - CPAPER U1 - Konferenzveröffentlichung A1 - Liu, Can A1 - Li, Wen A1 - Demarest, Bradford A1 - Chen, Yue A1 - Couture, Sara A1 - Dakota, Daniel A1 - Haduong, Nikita A1 - Kaufmann, Noah A1 - Lamont, Andrew A1 - Pancholi, Manan A1 - Steimel, Kenneth A1 - Kübler, Sandra T1 - IUCL at SemEval-2016 Task 6: An Ensemble Model for Stance Detection in Twitter T2 - Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016). San Diego, California. June 16-17, 2016 N2 - We present the IUCL system, based on supervised learning, for the shared task on stance detection. Our official submission, the random forest model, reaches a score of 63.60, and is ranked 6th out of 19 teams. We also use gradient boosting decision trees and SVM and merge all classifiers into an ensemble method. Our analysis shows that random forest is good at retrieving minority classes and gradient boosting majority classes. The strengths of different classifiers wrt. precision and recall complement each other in the ensemble. KW - Syntaktische Analyse Y1 - 2016 U6 - https://nbn-resolving.org/urn:nbn:de:bsz:mh39-61835 UN - https://nbn-resolving.org/urn:nbn:de:bsz:mh39-61835 UR - https://aclweb.org/anthology/S/S16/ SN - 978-1-941643-95-2 SB - 978-1-941643-95-2 SP - 394 EP - 400 PB - Association for Computational Linguistics CY - Stroudsburg, PA ER -